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Disjoint unions of structures, 1

There are several ways of looking at disjoint
unions of structures.

The most general might be:

Aqp a 1o-Structure, A4 a 7i-Structure,
o=T1oUmT |_|{P0,P1}

B = Ap U .A; is the o-structure with

B= AgU Ay, Pi(B = A; and
for Rer;, R(B) = R(A))

Remark: For o = 1 = 7 onhe puts often

R(B) = R(Ao) U R(A1)

Sometimes the predicates P; are ommitted.
Only with the definition above are the parts A;

definable from the disjoint union.
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Disjoint unions of structures, II

Theorem:(Feferman, Vaught, Ehrenfeucht)

If Ap NMSOL By and Aq ~ MSOL B1 so

AglU Aq ~ MSOL Bo U By

If hq’v(AO) — h,q,fv(BO) and h,q’fv(A]_) — hq’v(Bl)
SO

In other words, the (q,v)-Hintikka sentence of
a disjoint union is uniquely determined by the
(¢, v)-Hintikka sentence of its parts,
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Concatenation, 1

The concatenation of two words over an al-
phabet 2 is a special case of a disjoint union
of ordered structures, where the second part
follows the first.

We denote, for a word w € >* the correspond-
ing structure by Ay.

We denote by A4, e A, the structure
corresponding to the word vw.
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Concatenation, II

Theorem:(Biichi, Ehrenfeucht)

If Ag ~M50T By and Ay ~M5OL By so

Age A| ~ SOLB ® 31

If hq’v(AO) — h'q,’U(BO) and h,q’fv(A]_) — hq’v(Bl)
SO

hgw(Ag e A1) = hgu(Bo @ B1) (+)

In other words, the (g, v)-Hintikka sentence of
a concatenation is uniquely determined by the
(¢, v)-Hintikka sentence of its parts,
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Finite Automata, I

We have deterministic and non-deterministic
finite automata (Turing machines without work
tape).

We one-directional and two-directional
finite automata.

et
X € {(det,one), (n—det, one), (det, two), (n—det, two) }.
A language (set of words) L a X — FA, if it is
accepted by some X finite automaton.

Theorem:(Rabin and Scott, 1959)

Lis X —-—FAIff LisY — FA for each X,Y €
{(det, one), (n—det, one), (det, two), (n—det, two) }.

The proof was given in the course Automata and Formal

Languages
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Finite Automata, 1II

We can also look at

e Multi-tape, k-tape finite automata
with one simultaneous head on the tapes.

e Mmulti-head, k-head finite automata.

e k-pebble finite automata
with pebbles (markers) on the tape.

Theorem:
A language L is k-tape X — FA iff
L is 1-tape X — FA.

But there are more languages which are
2-head X — FFA than with one head.
The same with even one pebble.
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Regular Languages, I

Let > be a finite alphabet.

A denotes the empty word.

> * is the set of all finite words (including \).
>t is the set of all non-empty finite words,
(excluding \).

Regular 2_-expression are

e ), and a for each a € X;

e if r,s are regular expressions,
so are (ruUs),(rs) and rT.
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Regular Languages, II

For a regular expression r we define a language
Lang(r).

Assume Lang(r) = R and Lang(s) = S.
o Lang(®) = 0, Lang(a) = {a} for a € X.
o Lang(rUs) = RUS
o Lang(rs) ={uv:u € R,v € S} = RS

e We define R! = R and R*"*! = R"R, and

e Lang(rt)=RT.

A language L is regular iff L = Lang(r) for
some > -regular expression r.
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Regular Languages, III

Complementation:
For r» we form the expression —r with Lang(—r) =
>+ — Lang(r).

Theorem:
For every regular expression r lang(—r) is reg-

ular.

A an expression is regular plus-free if it is de-
fined inductively by

o 0, {a}

o (ruUs),(rs), (—r)

A regular language is plus-free if it is of the
form Lang(r) for some plus-free expression.

10
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Finite Automata, III

Theorem:
(Kleene, 1953, Rabin and Scott 1959)

The following are equivalent for languages L:

e L is regular

o L is (det,one) — FA

e L is (n—det,two) — FA

and also for

(det,two) — FFA and (n — det, one) — F A.

The proof was given in the course
Automata and Formal Languages
11
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Finite Automata, 1V

Theorem:(Biichi-Trakhtenbrot)
A set of words L is regular iff the set of its
structures Ky is definable in MSOL

Theorem:(McNaughton)
A set of words L is plus-free regular iff the set
of its structures Ky is definable in FOL

12
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Proof of Buchi’'s Theorem, I

Proof: If L is regular, it can be defined by a
regular expression r.

We use induction.

For v, concatenation and complement, we use
FOL operations. For T we quantify over sets
of positions and relativize the formulas of the
induction hypothesis.

Note that we did not use (r*).
We avoid the empty word .

How could we include it?

13
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Proof of Buchi's Theorem, II

Now assume that K7, is defined by ¢ € FmM 0L (7).
We define the the automaton for L.
The states are Hq (7).

The transitions are given by (+) of the previ-
ous theorem with the second word a singleton.

The accepting states are the (¢, v)-Hintikka
formulas the disjunction of which is equivalent
to ¢.

This works both for FOL and MSOL with the according

modifications.

14
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Pumping Lemma, I

Theorem: Let A be a finite
(deterministic, one-directional)
finite automaton with n states
and defining the language L(A).

Let w € L(A) with length Z(w) > n.
Then there exists words z,y, z such that

e w=zxyz and y = A\ and

e for each k € N zy*z € L(A)

A pumping lemma for context free languages was stated
first in 1961 by Bar-Hillel, Perles, Shamir.

15
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Pumping Lemma, II

We want to apply the Pumping Lemma to
MSOL.

Theorem: Let ¢ be a MSOL(7,,,45(x))-S€ntence
over words in 1 with quantifier rank ¢ and v
variables and defining the language L(¢).

Let 7,45 < Yo,q,x= b€ the number of Hintikka

sentences in FmMSOL(r(2)).

Let w € L(¢) with length ¢(w) > Ngw,>- Then
there exists words z,y, z such that

e w=xyz and y = A\ and

e for each k € N zy*z € L(&)

16
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Pumping Lemma, III
Examples

The following are not regular

o {az:bi. i € N}, {a'b'¢ : i € N},
{a?bd - i,j € N,i < j},

e [ he set of prime numbers as binary words.
This follows easily from a deep theorem on primes:

Theorem: For every n € N there are successive
Primes p;c,), Pi(n)+1 SUch that pi)41 — Pin) 2 n-

A direct proof is in
Michael Harrison, Introduction to Formal Language
Theory, Addison-Wesley 1978, chapter 2.2

A unary language L is regular iff
X ={i:a' € L} is ultimately periodic.

X € N (in increasing order) is ultimately periodic iff there
is p such that for ¢ large enough z;4, = z;.

17
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Non-definability in MSOLq, 1

MSOL; is the MSOL for structures which are
graphs of the form G = (V, E) (E a binary re-
lation).

The following are not MSOL-definable.

e HALF-CLIQUE: graphs with a cliqgue of
size at least [V

e HAM: graphs which have a
hamiltonian cycle.

e EULER: graphs which have an Eulerian cir-
cuit.

18
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Non-definability in MSOL{, II

Proof for HALF-CLIQUE:

ASSUME Ppa1f—clique € MSOLy
defines HALF-CLIQUE.

For each word w = a'b’,4,j #= 0 of length n
we define a graph G as follows:

V={1,...,n}
E = {(u,v) CV?:¢(u,v) = P(u) A P,(v) ANu # v}

Clearly Gy in HALF-CLIQUE iff
w = a't! with ¢ < j.

But then let & be the formula we obtain from
substituting E(x,y) in ¢ by ¥(z,y).

w = & iff w=a't? with i < j.

By BUchi’s Theorem, this implies that
{a'®’ : i < j} is regular, a contradiction.
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Non-definability in MSOL;{, III

Proof for HAM:
Assume ¢pqm € MSOL; defines HAM.

For each word w = a'b’,4,j # 0 of length n
we define a graph G4 as follows:

V={1,...,n}
E = {(u,v) CVZ?:9y(u,v) = Pa(u) A Pp(v)}

Clearly Gw in HAM iff
w = a't! with 1 = j.

But then let & be the formula we obtain from
substituting E(x,y) in ¢ by ¥(z,y).

w k= & iff w = a' with i = j.

By BUchi’s Theorem, this implies that
{a'b" : ¢ € N} is regular, a contradiction.
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Non-definability in MSOL{, IV

Proof for EULER:

A graph is eulerian iff it is connected and all
vertices have even degree.

Hence, the complete graph K, is eulerian iff
n=2m-+1.

For each word w = a'b’,4,j #= 0 of length n
we define a graph G4 as follows:

V={1,...,n}
E = {(u,0) C V2 : 9(u,0) = u # v}

Clearly Gy in EULER iff
w=a't! with 1 4+ 75 =2m + 1.

Similarly as before, this implies that
{a¥ : v+ 5 =2m 4 1} is regular.
But it is regular.

THIS PROOF DOES NOT WORK' !
21
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Non-definability in MSOL{, V

The proofs for HALF-CLIQUE and HAM
actually show more:

Theorem:
HAM and HALF-CLIQUE are not M SO L-definable
even on ordered graphs.

An ordered graph G = (V, E,<) is a graph with a linear

order on the vertices.

But EULER is M SOL definable on ordered graphs,
because on linear orders there is a formula
deven(X) Which says that | X | is even.

Note also that on unary words
{a*: i =2m}

IS ultimately periodic and hence regular.
22
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Non-definability in MSOLq, V

EXxercise:

To prove that
EULER is not MSOL-definable

Hint:

Use that sets of even cardinality are not M SO L-
definable.

23
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Translation schemes, I

In these proofs we used a technique which we
will spell out in full generality:

e For a word w € L we defined a graph Gy

e defined by an M SO L-formula
actually a FOL-formula ¢

e T hen we assumed that the class of graphs
K was definable by ¢.

o Put ® = substp(o, ¥(z,y))

e Show that w e L iff Gy € K

e Conclude that L is defined by .

24
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We shall develop a formalism for

Translation schemes

which will play a central rOle a

in the sequel of the course.
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