Finite Automata

Regular Languages

Monadic Second Order Logic

Disjoint unions of structures, I

There are several ways of looking at disjoint unions of structures.

The most general might be:

$$\mathcal{A}_0$$
 a τ_0 -structure, \mathcal{A}_1 a τ_1 -structure, $\sigma = \tau_0 \sqcup \tau_1 \sqcup \{P_0, P_1\}$

 $\mathcal{B} = \mathcal{A}_0 \sqcup \mathcal{A}_1$ is the σ -structure with

$$B = A_0 \sqcup A_1$$
, $P_i(\mathcal{B} = A_i \text{ and}$
for $R \in \tau_i$, $R(\mathcal{B}) = R(\mathcal{A}_i)$

Remark: For $\tau_0 = \tau_1 = \tau$ one puts often $R(\mathcal{B}) = R(\mathcal{A}_0) \sqcup R(\mathcal{A}_1)$

Sometimes the predicates P_1 are ommitted.

Only with the definition above are the parts A_i definable from the disjoint union.

Disjoint unions of structures, II

Theorem: (Feferman, Vaught, Ehrenfeucht)

If
$$\mathcal{A}_0 \sim_{q,v}^{MSOL} \mathcal{B}_0$$
 and $\mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_1$ so
$$\mathcal{A}_0 \sqcup \mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_0 \sqcup \mathcal{B}_1$$

If
$$h_{q,v}(\mathcal{A}_0)=h_{q,v}(\mathcal{B}_0)$$
 and $h_{q,v}(\mathcal{A}_1)=h_{q,v}(\mathcal{B}_1)$ so

$$h_{q,v}(\mathcal{A}_0 \sqcup \mathcal{A}_1) = h_{q,v}(\mathcal{B}_0 \sqcup \mathcal{B}_1)$$

In other words, the (q, v)-Hintikka sentence of a disjoint union is uniquely determined by the (q, v)-Hintikka sentence of its parts,

Concatenation, I

The concatenation of two words over an alphabet Σ is a special case of a disjoint union of *ordered structures*, where the second part follows the first.

We denote, for a word $w \in \Sigma^*$ the corresponding structure by A_w .

We denote by $A_v \bullet A_w$ the structure corresponding to the word vw.

Concatenation, II

Theorem: (Büchi, Ehrenfeucht)

If
$$\mathcal{A}_0 \sim_{q,v}^{MSOL} \mathcal{B}_0$$
 and $\mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_1$ so
$$\mathcal{A}_0 \bullet \mathcal{A}_1 \sim_{q,v}^{MSOL} \mathcal{B}_0 \bullet \mathcal{B}_1$$

If
$$h_{q,v}(\mathcal{A}_0)=h_{q,v}(\mathcal{B}_0)$$
 and $h_{q,v}(\mathcal{A}_1)=h_{q,v}(\mathcal{B}_1)$ so

$$h_{q,v}(\mathcal{A}_0 \bullet \mathcal{A}_1) = h_{q,v}(\mathcal{B}_0 \bullet \mathcal{B}_1) \tag{+}$$

In other words, the (q, v)-Hintikka sentence of a concatenation is uniquely determined by the (q, v)-Hintikka sentence of its parts,

Finite Automata, I

We have **deterministic** and **non-deterministic** finite automata (Turing machines without work tape).

We **one-directional** and **two-directional** finite automata.

Let

 $X \in \{(det, one), (n-det, one), (det, two), (n-det, two)\}.$ A language (set of words) L a X - FA, if it is accepted by some X finite automaton.

Theorem:(Rabin and Scott, 1959)

 $L \text{ is } X - FA \text{ iff } L \text{ is } Y - FA \text{ for each } X, Y \in \{(det, one), (n-det, one), (det, two), (n-det, two)\}.$

The proof was given in the course Automata and Formal Languages

Finite Automata, II

We can also look at

- multi-tape, k-tape finite automata with one simultaneous head on the tapes.
- multi-head, k-head finite automata.
- k-pebble finite automata with pebbles (markers) on the tape.

Theorem:

A language L is k-tape X - FA iff L is 1-tape X - FA.

But there are **more** languages which are 2-head X - FA than with one head. The same with even one pebble.

Regular Languages, I

Let Σ be a finite alphabet.

 λ denotes the empty word.

 Σ^* is the set of all finite words (including λ).

 Σ^+ is the set of all non-empty finite words, (excluding λ).

Regular Σ -expression are

- \emptyset , and a for each $a \in \Sigma$;
- if r, s are regular expressions, so are $(r \cup s), (rs)$ and r^+ .

Regular Languages, II

For a regular expression r we define a language Lang(r).

Assume Lang(r) = R and Lang(s) = S.

- $Lang(\emptyset) = \emptyset$, $Lang(a) = \{a\}$ for $a \in \Sigma$.
- $Lang(r \cup s) = R \cup S$
- $Lang(rs) = \{uv : u \in R, v \in S\} = RS$
- We define $R^1 = R$ and $R^{n+1} = R^n R$, and $R^+ = \bigcup_{1 \le n} R^n$.
- $Lang(r^+) = R^+$.

A language L is regular iff L = Lang(r) for some Σ -regular expression r.

Regular Languages, III

Complementation:

For r we form the expression $\neg r$ with $Lang(\neg r) = \Sigma^+ - Lang(r)$.

Theorem:

For every regular expression $r \ lang(\neg r)$ is regular.

A an expression is *regular plus-free* if it is defined inductively by

- \emptyset , $\{a\}$
- $(r \cup s), (rs), (\neg r)$

A regular language is *plus-free* if it is of the form Lang(r) for some plus-free expression.

Finite Automata, III

Theorem:

(Kleene, 1953, Rabin and Scott 1959)

The following are equivalent for languages L:

- \bullet L is regular
- L is (det, one) FA
- L is (n det, two) FA

and also for

(det, two) - FA and (n - det, one) - FA.

The proof was given in the course Automata and Formal Languages

Finite Automata, IV

Theorem:(Büchi-Trakhtenbrot)

A set of words L is regular iff the set of its structures K_L is definable in MSOL

Theorem:(McNaughton)

A set of words L is plus-free regular iff the set of its structures K_L is definable in FOL

Proof of Büchi's Theorem, I

Proof: If L is regular, it can be defined by a regular expression r.

We use induction.

For \vee , concatenation and complement, we use FOL operations. For $^+$ we quantify over sets of positions and relativize the formulas of the induction hypothesis.

Note that we did not use (r^*) . We avoid the empty word λ .

How could we include it?

Proof of Büchi's Theorem, II

Now assume that K_L is defined by $\phi \in Fm_{q,v}^{MSOL}(\tau)$.

We define the the automaton for L.

The states are $\mathcal{H}_{q,v}(\tau)$.

The transitions are given by (+) of the previous theorem with the second word a singleton.

The accepting states are the (q, v)-Hintikka formulas the disjunction of which is equivalent to ϕ .

This works both for FOL and MSOL with the according modifications.

Pumping Lemma, I

Theorem: Let A be a finite (deterministic, one-directional) finite automaton with n states and defining the language L(A).

Let $w \in L(A)$ with length $\ell(w) \geq n$. Then there exists words x, y, z such that

- w = xyz and $y \neq \Lambda$ and
- for each $k \in \mathbb{N}$ $xy^kz \in L(A)$

A pumping lemma for **context free** languages was stated first in 1961 by Bar-Hillel, Perles, Shamir.

Pumping Lemma, II

We want to apply the Pumping Lemma to MSOL.

Theorem: Let ϕ be a $MSOL(\tau_{words(\Sigma)})$ -sentence over words in Σ^+ with quantifier rank q and v variables and defining the language $L(\phi)$.

Let $\eta_{v,q,\Sigma} \leq \gamma_{v,q,\Sigma}$ be the number of Hintikka sentences in $Fm_{q,v}^{MSOL}(\tau(\Sigma))$.

Let $w \in L(\phi)$ with length $\ell(w) \geq \eta_{q,v,\Sigma}$. Then there exists words x, y, z such that

- w = xyz and $y \neq \Lambda$ and
- for each $k \in \mathbb{N}$ $xy^kz \in L(\phi)$

Pumping Lemma, III Examples

The following are not regular

- $\{a^ib^i:i\in\mathbb{N}\}$, $\{a^ib^ic^i:i\in\mathbb{N}\}$, $\{a^ib^j:i,j\in\mathbb{N},i\leq j\}$,
- The set of prime numbers as binary words. This follows easily from a deep theorem on primes:

Theorem: For every $n \in \mathbb{N}$ there are successive primes $p_{i(n)}, p_{i(n)+1}$ such that $p_{i(n)+1} - p_{i(n)} \ge n$.

A direct proof is in

Michael Harrison, Introduction to Formal Language Theory, Addison-Wesley 1978, chapter 2.2

A unary language L is regular iff $X = \{i : a^i \in L\}$ is ultimately periodic.

 $X \in \mathbb{N}$ (in increasing order) is ultimately periodic iff there is p such that for i large enough $x_{i+p} = x_i$.

Non-definability in $MSOL_1$, I

 $MSOL_1$ is the MSOL for structures which are graphs of the form $G = \langle V, E \rangle$ (E a binary relation).

The following are not $MSOL_1$ -definable.

- ullet HALF-CLIQUE: graphs with a clique of size at least $\frac{|V|}{2}$
- HAM: graphs which have a hamiltonian cycle.
- EULER: graphs which have an Eulerian circuit.

Non-definability in $MSOL_1$, II

Proof for HALF-CLIQUE:

Assume $\phi_{half-clique} \in MSOL_1$ defines HALF-CLIQUE.

For each word $w = a^i b^j$, $i, j \neq 0$ of length n we define a graph G_w as follows:

$$V = \{1, ..., n\}$$

$$E = \{(u, v) \subseteq V^2 : \psi(u, v) = P_b(u) \land P_b(v) \land u \neq v\}$$

Clearly G_w in HALF-CLIQUE iff $w = a^i b^j$ with $i \leq j$.

But then let Φ be the formula we obtain from substituting E(x,y) in ϕ by $\psi(x,y)$.

$$w \models \Phi \text{ iff } w = a^i b^j \text{ with } i \leq j.$$

By Büchi's Theorem, this implies that $\{a^ib^j: i \leq j\}$ is regular, a **contradiction**.

Non-definability in $MSOL_1$, III

Proof for HAM:

Assume $\phi_{ham} \in MSOL_1$ defines HAM.

For each word $w = a^i b^j$, $i, j \neq 0$ of length n we define a graph G_w as follows:

$$V = \{1, ..., n\}$$

 $E = \{(u, v) \subseteq V^2 : \psi(u, v) = P_a(u) \land P_b(v)\}$

Clearly G_w in HAM iff $w = a^i b^j$ with i = j.

But then let Φ be the formula we obtain from substituting E(x,y) in ϕ by $\psi(x,y)$.

$$w \models \Phi \text{ iff } w = a^i b^j \text{ with } i = j.$$

By Büchi's Theorem, this implies that $\{a^ib^i:i\in\mathbb{N}\}$ is regular, a **contradiction**.

Non-definability in $MSOL_1$, IV

Proof for EULER:

A graph is eulerian iff it is connected and all vertices have even degree.

Hence, the complete graph K_n is eulerian iff n = 2m + 1.

For each word $w = a^i b^j$, $i, j \neq 0$ of length n we define a graph G_w as follows:

$$V = \{1, ..., n\}$$

 $E = \{(u, v) \subseteq V^2 : \psi(u, v) = u \neq v\}$

Clearly G_w in EULER iff $w = a^i b^j$ with i + j = 2m + 1.

Similarly as before, this implies that $\{a^ib^j: i+j=2m+1\}$ is regular. But it is regular.

THIS PROOF DOES NOT WORK!

Non-definability in $MSOL_1$, V

The proofs for HALF-CLIQUE and HAM actually show more:

Theorem:

HAM and HALF-CLIQUE are not MSOL-definable even on **ordered graphs**.

An ordered graph $G = \langle V, E, \langle \rangle$ is a graph with a linear order on the vertices.

But EULER is MSOL definable on ordered graphs, because on linear orders there is a formula $\phi_{even}(X)$ which says that |X| is even.

Note also that on unary words

$$\{a^i: i=2m\}$$

is ultimately periodic and hence regular.

CS 236 331:2001

Lecture 5

Non-definability in $MSOL_1$, V

Exercise:

To prove that ${\sf EULER} \ \ {\sf is} \ \ {\sf not} \ \mathit{MSOL}_1\text{-definable}$

Hint:

Use that sets of even cardinality are not MSOL-definable.

Translation schemes, I

In these proofs we used a technique which we will spell out in full generality:

- ullet For a word $w \in L$ we **defined** a graph G_w
- ullet defined by an MSOL-formula actually a FOL-formula ψ
- Then we assumed that the class of graphs K was definable by ϕ .
- Put $\Phi = subst_E(\phi, \psi(x, y))$
- Show that $w \in L$ iff $G_w \in K$
- \bullet Conclude that L is defined by Φ .

CS 236 331:2001

Lecture 5

We shall develop a formalism for

Translation schemes

which will play a central rôle a in the sequel of the course.