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Computing devices, I

Device: Input — [Device D| — Output

Machines: Finite Automaton, Turing Machine (with resource bounds),
Register Machine (with resource bounds),

Circuits: Boolean and Algebraic Circuits

Formulas: Formulas of First Order Logic FOL,
Second Order Logic SOL, Monadic Second Order Logic MSOL,
Fixed Point Logic, Temporal logic, etc
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Computing devices, II

Transducer:

In-structure — |Device T | — Out-structure

Acceptor:

Input — |Device A| — {0,1}

Counter:

Input — |Device C| — N
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Combinatorial problems, 1

Acceptors: Deciding properties of a graph
Connected, cycle-free, hamiltonian, 3-colorable

Graph — | Device A| — {0,1}

Transducers: Finding configurations in a graph
Connected component, (hamiltonian) cycle, 3-coloring

Graph — | Device T | — Graph

Counters: Counting configurations in a graph
Connected components, (hamiltonian) cycles,

Graph — |Device C| —+ N
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Input for Devices

e For Finite Automata and Turing Machines the inputs are coded as (fi-
nite) words over some alphabet 3.

e For Boolean circuits the inputs are coded as
Boolean vectors in ({0, 1}".

e For Algebraic circuitS over a field or ring R,
the inputs are coded as vectors over Un R™.

e For Register Machines we may have specialized registers
for specific data types, including words, natural numbers,
real numbers, finite relations, etc.....
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Complexity theory, 1

Each machine type uses resources:
e Computing time
e Number of gates

Space on tape

e Number of auxiliary registers

Content size of registers
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Complexity theory, II

Computability: There is a machine which solves the problem.

Complexity: There is a machine which solves the problem
with prescribed resources.

Machine classes: Determinsitic Finite Automata,
Non-determinsitic Finite Automata,
Pushdown Automata, Weighted Automata

Determinsitic Complexity classes: Time(f(n)), Space(f(n)),
PTime =P, LogSpace = L, PSpace.

Non-determinsitic Complexity classes: NTime(f(n)), NSpace(f(n)),

NPTime = NP, NLogSpace = NL,
NPSpace.

L CNL =CoNL CP CNP C PH C PSpace C ExpTime
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Complexity theory, III

Upper bounds: Problem P can be solved in the prescibed resource bounds.
Lower bounds: Problem P cannot be solved in the prescibed resource bounds.

Relative bounds: Problem P needs at least/most the amount of resources
as problem P’.
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Definability, I

We specify a problem (a set of instances) in a formal language.

Formal languages can be

e Regular expressions for sets of words.

The words over {a,b} where all the a’'s come before the b's.

e First order logic FOL for sets of graphs.

The regular graphs of degree 5.

e Second order logic SOL for sets of graphs.

The connected graphs.

e Temporal logic for behaviour of programs.

Inputs on which the program terminates.
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Definability, 1I

A problem P is definable in a formal language L

if there is an expression (a formula) of £ which characterizes exactly the
instances of P.

Definable in £: Connectivity of graphs is definable in Monadic Second Order
Logic MSOL.

Non-definable in £: Connectivity of graphs is not definable in First Second
Order Logic FOL.

Relative-definable in £: A graph is Eulerian in any logic £ where being of
even cardinality is definable.
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Definability, III

How do we prove definability in a given logic L7

e \We translate the set theoretic concept directly into the logic.

A graph has no edges.

e We first translate the set theoretic concept C into another concept C’
and prove their equivalence.

A graph is Eulerian iff it is connected and each vertex has even degree.
This may be a (difficult) theorem of mathematics. .
Then we translate C’ into L.

How do we prove non-definability in a given logic L7
e We have to develop special tools!
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Descriptive Complexity

We are looking for theorems of the form:

A class of objects O is
computable with specific resource bounds
Iff

it is definable in a specific logic L.

The first theorem of this firm was discovered during World War II indepen-
dently in the USA (by S. Kleene) and in Poland (by A. Mostowski).
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The Kleene-Mostowski Theorem (1943, 1947)

A set A C IN of natural numbers is recursively enumerable

(or equivalently semi-computable by a Turing machine) iff

A is definable in the arithmetic structure of the natural numbers
(IN, 4+, x,<,0,1) by a =9 formula.

39 formulas are FOL formulas with only bounded quantifiers 3z < ¢,Vz < ¢t. 9 formulas are
FOL formulas of the form Jz¢(z) where ¢ € 9.

S. Kleen'e'
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The Buchi-Elgot-Trakhtenbrot Theorem
(1958, 1960)

A language (set of words) is recognizable by a
Finite Automaton iff it is definable in

(existential) Monadic Second Order Logic.

b

B. Trakhtenbrot

R. Buchi
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The Jones-Selman-Fagin Theorem (1974)

A language (set of words) is recognizable by a
non-deterministic Turing machine in polynomial time iff
it is definable in existential Second Order Logic.

N. Jones A. Selman
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The Immerman-Vardi-Gradel Theorem (1980, 1991)

A language (set of words) is recognizable by a
deterministic Turing machine in polynomial time iff it is
definable in existential Second Order Logic with Horn formulas.

N. Immerman M. Vardi E. Gradel
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Lecture 1:

Second Order Logic SOL and its fragments.

In this course we look at (labeled) graphs and other relational structures.

e [ he basic definitions.
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L.ogics, a reminder

We define logics.
e \Vocabularies: The basic relations
e Structures: Interpretations of vocabularies
e Variables: Indivicual variables, relation variables, function variables
e Atomic formulas
e Boolean closures

e Quantifications
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Vocabularies

A vocabulary is a (finite) set of basic symbols.

We deal with (possibly many-sorted) relational vocabularies.
The basic symbols are sorts symbols and relation symbols.

Sort symbols: U, :a € IN

Relation symbols: R;, : i € Ar,a € IN where Ar is a set of arities, i.e. of
finite sequences of sort symbols.

Constant symbols: ¢, 3 for o, 8 € IN, where « indicates the sort number.

In the case of one-sorted vocabularies, the arity is just of the form
\(U, Uu,...... ,U)/ which will denoted by n.

Vocabularies are denoted by greek letters 7,0, 7, 0; with 2 € IN.
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T-Structures, 1

T-structures are interpretations of vocabularies.

More precisely, a T-structure is a function assigning subsets of cartesian prod-
ucts of a fixed set A to each symbol.

Ql:T%AUUp(A”)

n=1
with the following restrictions:
o A(U,) = A, C A
o A(U,) NAUp) =0 for a #=
o If i = (Uq,,...,Uy,) is the arity of R;, then

Q[(Rz‘,a) g Aal, X oo, XAak

° Ql(ca,g) € A,.
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T-structures, II: Graphs and hypergraphs

Graphs and digraphs: 7.4,, = {U1, R21}.
The elements of the set A(U1) = V are called vertices. The subset
A(R21) = E C V2 is called the (directed) edge relation.
If £ is symmetric, the r-structures is an undirected graph, otherwise it
is a directed graph (aka digraph).
If (u,u) € E the veretx u has a loop.

Hypergraphs: 74.0pn = {U1,U2, R(12y1}
The elements of the set A(U;) =V are called vertices.
The elements of the set A(U;) = E are called edges.
The subset A(R;121) €V x E is called the undirected incidence relation.

Directed hypergraphs: 7,4.0pn = {U1,U2, R(121)1}
The elements of the set A(U1) = V are called vertices.
The elements of the set 2(U>) = E are called edges.
The subset Ql(R<1,2,1>’1) C VxExV is called the directed incidence relation.
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T-Structures, III: Labeled graphs and words

Vertex labeled Graphs: Graphs with /~-many vertex labels, ¢ € IN:

Tlgraph — {U17 R2,1> Pl, ceey Pﬁ};
like graphs but with unary predicates P, for vertex labels.

Edge labeled Graphs: Graphs with /-many edge labels, ¢ € IN:
Tlgraph = {Ul,RQ,Z} with ¢ = 1, ce ,f ,
like graphs but with ¢-many edge relations for edge labels.

Words in >*: Let X be a finite alphabet (set).
Tword — {U17 R2,1,R1,a}, a € 2 , where
A(R3,1) is a linear order, and
A(R1,4) N Ql(Rl,b) = (@ for a,be X,a % b, and Uan
Tword-Structures satsifying these conditions are words in 2*.
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Empty structures

In logic and universal algebra a 7-structure 2 is non-empty, i.e., for at least
one sort symbol U, € 7 the set 2A(U,) # 0.

We allow empty structures!

The reason for not allowing empty structures is the axiomatization of First
Order Logic FOL. The axiom

VeP(x) = JzP(x)

only holds in non-empty one-sorted r-structures.
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Making structures one-sorted

We can always make 7-structures into one-sorted 7/-structures:
e We replace the sorts U, € 7 by one sort V € 7/.
e We add for each sort U, € 7 a unary relation symbol P, € 7.

e We replace each R,, ..): € T by Ru; € 7. Constant symbols remain
the same.

We then make a 7-structure 21 into a 7/-structure 21’ by setting
o A(V) = UUQET A(U,), and
o A (P,) =2AUy,)
o A(R(a,,. i) = A (Fm,)
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Isomorphisms and homomorphisms of r-structures

Let 2 and B be two 7-strucures on sets
A=U,v.er2Us and B =, y o, B(Ua respectively.
Let f: A— B a function. f is a 7-homomorphism if

e For all U, € T we have:
a € A(Uy,) iff f(a) € B(Uy,).

e For all R, ) €T We have:
(CL]_, R Cl,m) S 22l(Pi(ozl,...,ozm),i) iff (f(al)a SR f(am)) S %(R(al,...,am),i)'

e For all ¢, € 7 we have:

f((ca)) = B(ca).
f is a 7-isomorphism if additionally f is one-one and onto.

20 and B are T-isomorphic if there is a m-isomorphism f: A — B.
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T-substructures

Let 2 and B be two 7-strucures on sets
A=U,pe A2Us and B=J B (U, respectively.

o, U.eT

21 is isomorphic to a substructure of B if there is a function f : A — B such
that:

e f iS one-one.

e For all U, € 7 we have:
If a € A(U,) then f(a) € B(U,).

o For all R, . )i €T We have:
If (a1,...,am) € A™ then

(a1,...,am) € A(R(q,. i) iTT (fla1),..., flam)) € B(Ra,.. an).i)-

e For all ¢, € 7 we have:

f(A(ca)) = B(ca).

If f is the identity, we say 2 is a substructure of 8.
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Subgraphs and induced subgraphs

In graph theory an undirected graph G without multiple edges is given by two
sets V(@) and E(GR) with E(G) C V(G)®@.

Let G, H be two graphs.

Subgraph: H is a subgraph of G if V(H) CV(G) and E(H) CV(H)?NE(G).

This corresponds to the notion of substructure for graphs
viewed as hypergraphs. i.e., 7-structures for = = 7grapn

Induced subgraph: H is an induced subgraph of G if V(H) C V(G) and
E(H) =V(H)P N EQ).

This corresponds to the notion of substructure for graphs
viewed as graphs, i.e., 7-structures for © = 74.4pn

Isomorphisms: H and G are isomorphic as 7y.qpn-Structures iff
they are isomorphic as 7p4.qpn-Structures.
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Properties of a m-structure

A property of r-structures is a class P of
T-Structures closed under T-isomorphisms.

Examples:
e All finite T-structures.
o All {Roo}-structures where Ry is interpreted as a linear order.

e Al finite 3-dimensional matchings 3DM, i.e. all {R3o}-Structures with
universe A where the interpretation of Rzo contains a subset M C A3
such that no two triples of M agree in any coordinate.

e AIll binary words which are palindroms.
We say a r-structure A has property P iff A € P.
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First Order Logic FOL

We now assume our vocabularies are one-sorted with sort symbol V.

We define the set of formulas FOL(7):
Variables: u,v,w,... ranging over elements of the interpretation of V.
Terms: Variables and constant symbols in 7 are r7-terms.

Atomic formulas: For each R,,; € 7 and 7-terms t1,...,t, the expressions
Ry i(t1,...,tm), t1 = t2 are atomic formulas in FOL(7).

Boolean conncectives: If ¢ and ¢ are in FOL(7), so are

PNY, VY, ¢ = and —g.

Quantifiers: If ¢ is in FOL(7) and v is a variable, then
Jvg and Yve are in FOL(7).
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Second Order Logic SOL

We now define SOL(7), the set of SOL-formulas for a vocabulary 7:

FOL : FOL(7) C SOL(7) and SOL(7) is closed under boolean connectives
and first order quantification.

Second order variables: For each m,j € IN—{0} we have second order vari-
ables X,, ; of arity m.
For each X,,,; a second order variable, and 7-terms tq,...,t, the expres-
sion X, i(t1,...,tn), is an atomic formulas in SOL(7).

Second order quantification: If ¢ € SOL(7) so are VX,, ¢ and 31X, ;¢.

Monadic Second Order formulas MSOL(7) are those where for the arity m of
the second order variables we have m = 1.

Analogously, SOL"(7) is obtained by restricting the arity m of the second
order variables to m < n.
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Lecture 1: Definability in graph theory

In this course we look at (labeled) graphs and other relational structures.

e Graph properties are classes of graphs
closed under graph isomorphism.

e Graph parameters are functions of graphs
invariant under graph isomorphism
with values in some domain, usually a ring or semi-ring such as the natural
numbers IN or the integers /Z or the reals IR, or a polynomial ring in
sveral indeterminates.
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Second Order Logic (SOL)

e Second Order Logic is the natural language
to talk about graph properties.

We shall show this informally and only after that define
the syntax and semantic of SOL.

e \We shall see we can also use SOL to define graph parameters.
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Second Order Logic SOL and some of its fragments.

Atomic formulas for graphs are E(u,v) and u = v for individual variables u, v,
and R(u1,...,uy) for m-ary relation variables R.

e First Order Logic FOL.:

Closed under boolean operations and quantification over individual vari-
ables. No relation variables.

e Second order Logic SOL:

Closed under boolean operations and quantification over individual and
relation variables of arbitrary but fixed arity.

e Monadic Second order Logic MSOL.:

Closed under boolean operations and quantification over individual and
unary relation variables.
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Concrete graphs (in R3)

A concrete graph G is given by
e a finite set of points V in R3, and

e a finite set E of ropes linking two points v1, vs.
The ropes are continuous curves which do not intersect.

Without loss of generality we can take the points also in IR™ for m > 3.

The ropes are called arcs.
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Plane graphs

A plane graph G is given by
e a finite set of points V in R?, and
e finite set E of arcs linking two points vy, vo.

The arcs are continuous curves which do not intersect.

All intersection points in the drawing are points of the graph!

File:w-sol.tex
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Abstract graphs

An abstract graph G = (V(G), E(G)) is given by
e a finite set of vertices V =V (G), and
e a finite set £ = E(G) of edges linking two vertices v, vs.

Here E C V(2 where V(2 denotes the set of
unordered pairs of elements of V.
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V=1{1,...,6)

{(1,2),(2,3),(3,1)}u
E=<{{(4,5),(5,6),(6,4)}U
{(1’ 6)7 (67 3)7 (37 5)7 (57 2)7 (27 4)7 (47 1)}
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Graph isomorphism and subgraphs

Two graphs Gy = (V4,FE1) and Go = (V», E») are isomorphic if there is a
function f: Vi3 — V5 such that

e f is bijective (one-one and onto), and
o (u,v) € E1 iff (f(u), f(v)) € Eo.

G1 = (V1, E41) is a subgraph of Go = (V», E») if V1 C V5 and E; C Ebs.

G1 = (V1, Eq1) is an induced subgraph of G, = (V5», E») if V1 C V5 and for all
(u,v) € V1(2) N E> we also have (u,v) € F1.

G1 = (V1, E1) is a spanning subgraph of Go = (V,, E») if £y C E» and for all
u € Vo u € Vy iff there is v € V5 with (u,v) € Ej.
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Two isomorphic graphs

Vi=1Ve=1{1,...,6}

By = {{(172), (2,3),(3,1),(4,5),(5,6),(6,4)}U
{(1,6),(6,3),(3,5),(5,2),(2,4),(4,1)}

Er — {{(174)7 (47 3)7 (37 1)7 (57 2)7 (27 6)7 (67 5)}U
{(17 6)7 (67 3)7 (37 2)7 (274)7 (47 5)1 (5a 1)}

(G1 and G» are isomorphic with

f(1)=1,7(2) =4,7(3) =3,f(4) =5,7(5) =2,f(6) =6.
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G'1 is isomorphic to G.
G2 is a subgraph of G, but not an induced subgraph.
G3 is an induced subgraph and G4 is a spanning subgraph of G.

S5m—u 6
G4
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Some graph properties: Regularity

A graph G is (give definition in SOL):

e Of degree bounded by d € IN.

Every vertex has at most d neighbors.

e k-regular (k€ IN)

Every vertex has exactly k£ neighbors.

e regular

Every vertex has exactly the same number of neighbors.

e Regular and degree bounded by d.
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Definable in First Order Logic FOL

e [ he vertices vg,v1,...,v, are all different:
i,j<n
Difr(vo,vl,...,vn) . /\ V; ;ﬁ Vj
1=0,7=1,1<3y

e A vertex vg has degree at most d:

d+1 i=d+1,7=d+1
Deggd(vo) S VU1, ..., 0y, Vd+1 /\ E(’Uo, ’Ui) — \/ V; = Vj
i=0 i=0,j=0,ij

e A vertex vg has degree at least d:

d
Degzd(vo) s dvy, ..., v <Diﬂ:(’01, - ,Ud) VAN /\ E(Uo, ’l)z))
i=1
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Regularity definable in .....

The following graph properties are definable in FOL (use previous slide):
e k-regular;
e regular and of bounded degree d;

The following are not definable in FOL (nor in Monadic Second order Logic
MSOL):

e regular;

e cach vertex has even degree.

To show non-definability in FOL we need the machinery of

Ehrenfeucht-Fraissé Games or Connection matrices.
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Regularity definable in .....

The following are definable in SOL.:

e Two sets A, B C V have the same size:

EQS(A, B) : AR (Funct(R, A, B) AInj(R) A Surj(R))

where Funct(R, A, B),Inj(R), Surj(R) are FOL-formulas saying that R is a
function from A to B which is one-one (injective) and onto (surjective).

e A vertex v has even degree:

The set of neighbors of v can be partitioned into two sets of equal size

EDeg(vo) : 3A, B (Part(N,, A, B) NEQS(A, B))

e [Two vertices u,v have the same degree:

The set of neighbors N,, N, of v and v have the same size.

SDeg(u,v) : EQS(Ny, Ny)
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Some graph properties: Closure proerties of graph classes.

A graph property is called
e hereditary if it is closed under induced subgraphs.
e monotone if it is closed under subgraphs, not necessarily induced.

e monotone decrasing if it is closed under deletion of edges, but not nec-
essarily of vertices.

e monotone increasing if it is closed under addition of edges, but not nec-
essarily of vertices.

e additive if it is closed under disjoint unions.

Note that monotone implies hereditary and monotone decreasing.
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Examples for the closure properties

e d-regular graphs are only additive.

e Graphs of bounded degree d are monotone and additive.

e Cliques (complete graphs) are hereditary but not monotone.
e Connectivity is only monotone increasing.

e EXxercise: Check the above closure properties of graph properties for
your favorite graph properties.

e EXxercise: Check the above closure properties of all the graph properties
discussed in the sequel of this course.
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Forbidden (induced) subgraphs

Let H ={H;:i€ I} be a family of graphs.

e We denote by Forb,,,(#H) (Forb;,.(#)) the class of graphs G which have
no (induced) subgraph isomorphic to some graph H € H.

e Forb,,,(H) is monotone and Forb;,s(#) is hereditary.

Theorem: (Exercise)

Let P be a monotone (hereditary) graph property. Then there exists a family
H = {H; : i € I} of finite graphs such that P = Forby,;,(#) (respectively
P = Forb,qa(H)).

Proposition: Let H ={H;:i € I} be a family of graphs with I finite. Then
both Forb,,,(H) and Forb;,;(#) are definable in FOL.
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Homework 1

Characterize the following graph properties using
Forb,(H) or Forb,,.(H),
and determine their definability in FOL and SOL.

e Forests
e Cliques

e Find other examples! You may consult:

OBOOK (bk:BrandstaedtLeSpinrad,

AUTHOR = {A. Brandst\"adt and V.B. Le and J. Spinrad},

TITLE = {Graph Classes: A survey},

PUBLISHER = {{S1AM} },

SERIES = {{SIAM} Monographs on Discrete Mathematics and Applications},
YEAR = {1999})

File:w-sol.tex 50



236331-2015/6, Computability and Definability Lecture 1: Graph Theory

Some graph properties: Colorability

Let P be a graph property. A graph G is (give definition in SOL, MSOL):

e 3-colorable:

The vertices of G can be partitioned into three disjoint sets C; : + = 1,2,3 such that
the induced graphs G[C;] consist only of isolated points.

This can be expressed in MSOL.

e k-P-colorable(k € IN):

The vertices of G can be partitioned into k£ disjoint sets C; : 2 = 1,...,k such that the
induced graphs G[C;] are in P.

If P is definable in SOL (MSOL), this is also definable in SOL (MSOL).

e P-colorable:

The vertices of G can be partitioned into disjoint sets C; : ¢« € I C IN such that the
induced graphs G[C;] are in P.

This is definable in SOL provided P is. It is not MSOL-definable.
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k-colorable graphs

A subset Vi of a graph G = (V,E) is independent if it induces a graph of
isolated points (without neighbors nor loops).

A graph is k-colorable if its vertices can be partitioned into k£ independent
sets.

P8Ft(X1,X2,X3) .
((Xl UXoU X3 = V) N ((Xl M XQ) = (XQ M X3) = (X3 ﬂXl) = @))

Ind(X) :
(Vo1 € X)(Vvp € X)—-E(v1,v2)
With this 3-colorable can be expressed as

3C13C>3C3 (Part(C1,C2,C3) A Ind(C1) A Ind(C2) A Ind(C3))
We have expressed 3-colorability by a formula in Monadic Second Order Logic.

Question: Can we express this in First Order Logic 7
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Some graph properties: Chordality

A graph is a simple cycle of length k of it is of the form:

A graph is a simple cycle iff it is connected and 2-regular.

A graph G is chordal or triangulated if there is no induced subgraph of GG
isomorphic to a simple cycle of length > 4.

Exercise: Find a MSOL-expression for chordality.
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Some graph properties: Eulerian and Hamiltonian

A graph G is (give definition in SOL):

e Eulerian:

We can follow each edge exactly once, pass through all the edges, and return to the
point of departure.

Theorem (Euler): A graph is Eulerian iff it is connected and each vertex
has even degree.

e Hamiltonian:

We can follow the edges visiting each vertex exactly once, and return to the point of
departure.
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Eulerian graphs

A graph G = (V, E) is Eulerian if we can follow each edge exactly once, pass
through all the edges, and return to the point of departure.

Equivalently:
Can we order all the edges of F

€1,€2,€3,...€Em

and choose beginning and end of th edge e; = (u;,v;) such that for all 1,
v; = Ui+1 and vy, = ug.

3R (LinOrd(R, E)A
(Vu, v, v, v'First(R,u,v) A Last(R, v/, v") — u =" )A
(Vu, v, v, v'Next(R, u,v,u'v)) = v = u’))
whith the obvious meaning of LinOrd(R, E), First(R,u,v) and Last(u,v).

Alternatively, we can use Euler's Theorem.

As we shall see later, it cannot be expressed in MSOL.
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Hamiltonian graphs

We note: A graph with n vertices is Hamiltonian if it contains a spanning
subgraph which is a cycle of size n.

We define formulas:
Conn(V4, E1): (V4, Ep) is connected.

Cycle(V1, E1): (V1,E1) is a cycle, i.e., regular of degree 2 and connected.

Ham(V, E) : 3V13E; (Cycle(V1,E1) NAE1 C EAVE = V)
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A subtle point: Graphs vs hypergraphs, I

e Graphs are structures with universe V of vertices, and a
binary edge relation E.
There can be at most one edge between two vertices.

e Hypergraphs have as their universe two disjoint sets V and E and an
incidence (hyperedge) relation R(u,v,e).
There can be many edges between two vertices.

e In both cases the relations are symmetric in the vertices.

e A Graph G can be viewed as hypergraph (h-graph) h(G) where there is
at most one edge (up to symmetry) between two vertices.

e [ here is a one-one correspondence between graph and h-graphs.
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Lecture 1: Graph Theory

G and h(G)

1

‘mlm P 2

idi |
. 4
G 5

6
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A subtle point: Graphs vs hypergraphs, II

e FOL and SOL are equally expressive on graphs and h-graphs.

e MSOL is more expressive on h-graphs than on graphs.

Hamiltonicity is not definable in MSOL on graphs, but is definable on
h-graphs.

We shall discuss this in detail in a later lecture.
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How to prove definablity in SOL, MSOL and FOL?

So far we have looked at properties of
abstract (directed) graphs and hypergraphs.

e Formulate the property using set theoretic language of finite sets over
the set of vertices and edges and their incidence relation.

e Try to mimick this formulation in SOL.

e If you succeed, try to do it in MSOL or even FOL.
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Test your fluency in SOL! (Homework)

—E- ... —E—. Pn :.\ Ks

Express the following properties in FOL, if possible.

e A graph G is a cograph if and only if there is no induced subgraph of ¢
iIsomorphic to a FPa.

e A (G is Ps-sparse if no set of 5 vertices induced more than one P, in G.
e Triangle-free graphs: There is no induced Ks.

e EXxistence of prescribed (induced) subgraph H.

e H-free graphs: non-existence of prescribed (induced) subgraph H.

e Let P be a graph property.
P-free graphs: non-existence of an induced subgraph H € P.
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Topological properties of graphs (from Wikipedia)

http://en.wikipedia.org/wiki/Genus_(mathematics)

So far our graph properties were formulated in the language of graphs, in-
volving as basic concepts only vertices, edges and their incidence relations.

Topological graph theory studies the embedding of graphs in surfaces, spatial
embeddings of graphs, and graphs as topological spaces.
e A graph is planar if it is isomorphic to a plane graph.

e The genus of a graph is the minimal integer n such that the graph can be
drawn without crossing itself on a sphere with n handles (i.e. an oriented
surface of genus n).

Thus, a planar graph has genus 0, because it can be drawn on a sphere
without self-crossing.

-~

genus: 0,1,2,3
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Planar graphs, I

A graph is planar iff it is isomorphic to a plane graph.

This definition involves the geometry of th Euclidean plane.

How can we express planarity

without geometry 7
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.:-;(T; :“!,’

Kuratowski’'s T heorem

1

Kazimierz Kuratowski (1896-1980)

http://en.wikipedia.org/wiki/Kuratowski’s_theorem

A subdivision of a graph G is a graph formed by subdividing its edges into
paths of one or more edges.

i—1 I ~1-1-1

N

K3 and a subdivision of K3

- -— . —

Theorem: A finite graph G is planar if and only if it does not contain a
subgraph that is isomorphic to a subdivision of Kg or K33.
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Planar graphs, II

Theorem: Planarity is definable in MSOL.

e \We use Kuratowski's Theorem.

e For a fixed graph H, G is a subdivision of H, is definable in MSOL.

e For a graph property P definable in MSOL,
(G has a subgraph H € P, is definable in MSOL.

Exercise: Prove the last two statements.
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Graph minors, 1

http://en.wikipedia.org/wiki/Graph minor

An undirected graph H is called a minor of the graph G if H can be formed
from G by deleting edges and vertices and by contracting edges.

H is a minor of G.

O—I i—oo

First construct a subgraph of G by deleting the dashed edges (and the
resulting isolated vertex), and then contract the thin edge
(merging the two vertices it connects).
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Graph minors, II

Proposition: For fixed H the statement H is a minor of (G
is definable in MSOL.

e An edge contraction is an operation which removes an edge from a graph
while simultaneously merging the two vertices it used to connect.

e An undirected graph H is a minor of another undirected graph G if a
graph isomorphic to H can be obtained from G by contracting some
edges, deleting some edges, and deleting some isolated vertices.

e The order in which a sequence of such contractions and deletions is
performed on G does not affect the resulting graph H.

e Let (V)H = {v1,...,vm}. We have to find V1,...,V,, C V(G) which we all
contract to a vertex u; corresponding to v; such that V; connects to Vj
iff (v,-,fvj) € E(H).

e The vertices in V(G) — |J" Vi are discarded.
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Minor closed graph classes

e H is a topological minor of G if G has a subgraph which is isomorphic to
a subdivision of H.

e A graph property P is closed under (topological) minors, if whenever
G € P and H is a (topological) minor of G the also H € P.

Examples:
e Trees are not closed under minors, but forests are.

e Graphs of degree at most 2 are minor closed, but graphs of degree at
most 3 are not.

e Planar graphs are both closed under minors and topological minors.
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Forbidden minors, 1

Let H ={H;:i€ I} be a family of graphs.

e We denote by Forb,,;n(H) (Forbsy..n(H)) the class of graphs G which have
no (topoligical) minors isomorphic to some graph H € H.

e Forb,,;n(H) is closed under topological minors, is monotone and hence,
hereditary.

Theorem: (Exercise)

Let P be a graph property closed under (topological) minors. Then there
exists a family H = {H; : ¢ € I} of finite graphs such that P = Forb;,(H)
(respectively P = Forbmin(H)).

Proposition: Let H ={H;:i € I} be a family of graphs with I finite. Then
both Forb,.n(#H) and Forby,;,(H) are definable in MSOL.
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The Graph Minor Theorem, 1983-2004

aka Robertson-Seymour Theorem
(formerly the Wagner conjecture, 1937)

Here is one of the deepest theorems in structural graph theory:

Theorem: Let P be a graph property closed under minors.
Then P = Forb,,;»n(H) with H finite.

Corollary: Every graph property P property closed under minors
is definable in MSOL.

3 ._ ™
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Prof. Dr. Klaus Wagner

i
K. Wagner N. Robertson P. Seymour
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Wagner's Theorem and Hadwiger’'s Conjecture

Theorem: A graph G is planar iff Ks and K33 are not minors of G.
e T his gives another proof that planarity is MSOL-definable.

Conjecture: If a graph G is not k-colorable then its has the complete graph
K41 as a minor.

The conjecture was proven for k < 6.

The converse is not true.
There are bipartite graphs with a K4 minor.
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Logic and Complexity: Regular languages

Let L C >* be a magenta language, i.e., a set of words over the alphabet 3.
We assume you are familiar with automata theory!
Theorem:(Kleene; Biichi, Elgot; Trakhtenbrot)

The following are equivalent:
e L is recognizable by a deterministic finite automaton.
e L is recognizable by a non-deterministic finite automaton.
e [ is regular, i.e., describable by a regular expression

e The set of r,orq-Structures 2, with w € L is definable in MSOL (7yord)-
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Complexity classes

Lecture 1: Graph Theory

We need to recall some complexity classes:
L: Deterministic logarithmic space.

NL: Non-deterministic logarithmic space.

P: Deterministic logarithmic space.

NP: Non-deterministic polynomial time.

PH: The polynomial hierarchy.

#P: Counting predicates in P (Valiant's class)

PSpace: Deterministic polynomial space.
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Complexity of SOL-properties

Fagin, Christen:
The NP-properties of classes of r-structures are exactly the
4SO L-definable properties.

Meyer,Stockmeyer:
The PH-properties (in the polynomial hierarchy)
of classes of r-structures are exactly the SOL-definable prop-
erties.

Makowsky, Pnueli:
For every level X2 of PH there are MSOL-definable classes
which are complete for it.
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Separating Complexity Classes, I

have
LCNLCPCNPCPH C#P C PSpace

To show that PH does not collapse to NP we have to find a 7-sentence
»SOL(7) which is not equivalent over finite structures to an existential
T-sentence ySOL(71).

Every sentence ¢ € SOL(7) is equivalent (over finite structures) to an

existential sentence ¢ € SOL(7) iff NP = CoNP.
Note we allow arbitrary arities of the quantified relation variables.
Over infinite structures this is known to be false (Rabin)

If thereis a ¢ € SOL(7) which is not equivalent to an existential sentence,
then P #= NP.

And there should be such a sentence !

To show that PSpace is different from PH it suffices to find
a PSpace-complete graph property which is not SOL-definable.
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HEX and Geography, I

e [ he game HEX:
Given a graph G and two vertices s,t.
Players I and II color alternately vertices in V — {s,t} white and black
respectively.
Player I tries to construct a white path from s to ¢t and Player II tries to
prevent this.

HEX: The class of graphs which allow a Winning Strategy for player 1.

e [The game GEOGRAPHY:
Given a directed graph G. Players I and II choose alternately new edges
starting at the end point of the last chosen edge. The first who cannot
find such an edge has lost.

GEO: The class of graphs which allow a Winning Strategy for I.
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HEX and Geography, II

Theorem (Even, Tarjan): HEX is PSPACE-complete.
Theorem (Schaefer): GEO is PSPACE-complete.

Problem: Are they SOL-definable?

This would imply that PSPACE= PH, and the polynomial hierarchy
collapses to some finite level!

Short versions: Fix k£ € IN.
SHORT-HEX, SHORT-GEOGRAPHY asks whether Player I can win in
k moves.

S-HEX and S-GEO are the class of (orderd) graphs where player I has a
winning strategy.

S-HEX and S-GEO are FOL-definable for fixed k.
(and therefore solvable in P).
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The role of order, 1

Let 7— be the one sorted vocabulary without any relation or constant symbols.
We have only equality as atomic formulas.

Let 7~ be the one sorted vocabulary with one binary relation symbol R- which
will e interpreted as a linear order.

e [ he class of structures of even cardinality EVEN is not definable in
MSOL(7=).

We shall prove this later.

e The class of structures of even cardinality EVEN is definable in MSOL (7=)
by a formula ¢gvEN.
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The role of order, II: Constructing ¢pyvEN

We use the order to define the binary relation 2NEXT and the unary relation
Odd

e For a structure A = (A, <), let (a,b) € 2NEXT? iff a < b and there is
exactly one element strictly between a and b.

e The first element is in Odd*.
If a € Odd® and (a,b) € 2NEXT? then b € Odd*.

o Let opyrpn De the formula which says that the last element is not in Odd.

e Now the a structure (A4, <) is in EVEN iff its last element is not in Odd*.

Q.E.D.
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The role of order, III: Order invariance

In the previous example EVEN the MSOL (7<)-formula ¢gy N is order invariant
in the following sense:

Let 2A;,2> be two structures with universe A and different order relations <3
and <.
Then Ay = ¢pven iff Ao = dpveN.

We generalise this:

Let 2A;,%> be two 7 U {R<}-structures with universe A and different order
relations A1 (R<) =<1 and A2(R<) =< but for all other symbols in R € 7 we
have 201 (R) = A2(R).

A 17U {R<}-formula in SOL is order invariant if for all structures 2;,%> as
above we have

A1 = iff As = ¢
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The fragment HornESOL (7).

e A quantifier-free m-formula is a Horn clause if it is a disjunction of atomic
or negated atomic formulas where at most one is not negated.

—a1 Voo V...V oa, VB

where «;, 8 are atomic.

e A quantifier-free r-formula is a Horn formula if it is a conjunction of Horn
clauses.

e A formula ¢ € SOL(7) is in HornESOL(7) of it is of the form
U1, Uy o ooy U VU1, oy omH (01, ooy U, Uy, Uy oo Ug )

where H is a Horn formula and v; are first order variables.
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Some classes of graphs
order invariantly (o.i.) definable in HOrnESOL (74,.4pn)

Graphs of even cardinality, of even degree. order is needed !

e Bipartite graphs G = (V1, V2, E) with |Vi| = |V2].

Reqgular graphs, and regular graphs of even degree.
e Connected graphs.

e Eulerian graphs.

To be discussed on the blackboard.
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The Immermann-Vardi-Graedel Theorem (IVQG)

Let 7 be a relational vocabulary with a binary relation
for the ordering of the universe.

Theorem 1 (Immermann, Vardi, Graedel 1980-4)

Let C be a set of finite T-structures. The following are equivalent:
o CcP;

e there is a T-formula ¢ € HornESOL(7) such that 2 € C iff 2 = ¢.

Here the presence of the ordering is crucial:
Without it the class of structures for the empty vocabulary of even cardinality
is in P, but not definable in HornESOL.
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The Immermann-Vardi-Graedel Theorem (IVG):

Order invariant version

Let 7 be a relational vocabulary and
1 = 17U {R<}. with a binary relation for the ordering of the universe.

Theorem 2 (Graedel 1980-4, Dawar, Makowsky)

Let C be a set of finite T-structures. The following are equivalent:

o CcP;

e there is an order invariant T -formula ¢ € HornESOL (1) such that for all
T-structures 21 and linear orderings RA C A(V)? A € C iff (A, RY) = ¢.
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Conclusion: The logical equivalent to P = NP

Let 7 be a relational vocabulary which contains
a binary relation for the ordering of the universe.

The following are equivalent:
e P = NP in the classical framework.

e Every ESOL(7)-formula is equivalent over finite ordered 7-structures to
some HornESOL (7)-formula.

e Every 0.i. ESOL(7)-formula is equivalent over finite ordered r-structures
to some o0.i. HornESOL(7)-formula.
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Logics capturing complexity classes

Without requiring the presence of order we have:
e A class C of finite structures is in NP iff C is definable in existential SOL.
e A class C of finite structures is in PH iff C is definable in SOL.

By requiring the presence of an order relation we have

e A class C of finite structures is in P iff C is 0.i. definable in existential
HornESOL.

e T here are similar theorems for L, NL, PSpace.
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Numeric graph invariants (graph parameters)

We denote by G = (V(G), E(G)) a graph,

and by G and Ggmpe the class of finite (simple) graphs, respectively.

A numeric graph invariant or graph parameter is a function

f:g—-1IR
which is invariant under graph isomorphism.

(i) Cardinalities: |V(G)|, |E(G)]

(ii) Counting configurations:
k(G) the number of connected components,
my(G) the number of k-matchings
(iii) Size of configurations:
w(G) the cligue number
x(G) the chromatic number
(iv) Evaluations of graph polynomials:

x (G, \), the chromatic polynomial, at A =r for any r € IR.
T(G, X,Y), the Tutte polynomial, at X =z and Y =y with (z,y) € IR?.
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Definability of numeric graph parameters, I

We first give examples where we use small, i.e., polynomial sized sums and products:

(i) The cardinality of V is FOL-definable by

Zl

veV

(ii) The number of connected components of a graph G, k(G) is MSOL-definable by
>, !
CCV:component(C)

where component(C) says that C is a connected component.

(iii) The graph polynomial X*(&) is MSOL-definable by
I =
ceV:first—in—comp(c)

if we have a linear order in the vertices and first — in — comp(c) says that c is a first
element in a connected component.
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Definability of numeric graph parameters, II

Now we give examples with possibly large, i.e., exponential sized sums:

(iv) The number of cliques in a graph is MSOL-definable by

Z 1

CCV:clique(C)

where clique(C') says that C induces a complete graph.

(v) Similarly “the number of maximal cliques” is MSOL-definable by

Z 1

CCV:maxclique(C)

where maxcliqgue(C) says that C induces a maximal complete graph.

(vi) The clique number of G, w(G) is is SOL-definable by

Z 1

CCV:largest—clique(C)

where largest — clique(C) says that C induces a maximal complete graph of largest size.
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Definability of numeric graph parameters, III

Let R be a (polynomial) ring.

A numeric graph parameter p : Graphs — R is L-definable if it can be defined
inductively:

e Monomials are of the form H5:¢(5)t where t is an element of the ring R and ¢ is a
formula in £ with first order variables v.

e Polynomails are obtained by closing under small products, small sums, and large sums.
Usually, summation is allowed over second order variables, whereas products
are over first order variables.

L is typically Second Order Logic or a suitable fragment thereof.
We are especially interested in MSOL and CMSOL, Monadic Second Order
Logic, possibly augmented with modular counting quantifiers.

If £ is SOL we denote the definable graphparameters by SOLEVAL%, and
similarily for MSOL and CMSOL.

Our definition of SOLEVAL is somehow reminiscent to the defintion of Skolem’s definition

of the Lower Elementary Functions.
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