
Functional

Dependencies

Orit Abitbol 039467113

Shani Goldberg 065961914

Roee Minster 066373770

Functional Dependencies (FD) - Definition

• Let R be a relation scheme and X, Y be sets of attributes in R.

• A functional dependency from X to Y exists if and only if:

▫ For every instance |R| of R, if two tuples in |R|

agree on the values of the attributes in X, then

they agree on the values of the attributes in Y.

• We write X Y and say that X determines Y.

• Example on Student (sid, name, supervisor_id, specialization):

▫ {supervisor_id} {specialization} means:

 If two student records have the same supervisor (e.g., Johann),

then their specialization (e.g., Databases) must be the same.

 On the other hand, if the supervisors of 2 students are

different, we do not care about their specializations (they may

be the same or different).

Armstrong’s Axioms

Be X, Y, Z sets of attributes in a relation scheme of a relation R and F is

a set of functional dependencies for R.

Reflexivity:

If YX, then F |- XY (trivial FDs).

• Example:

 {name, supervisor_id}{name}

Augmentation:

If F |- XY , then F |- XZYZ.

• Example:

 if {supervisor_id} {specialization},

 then {supervisor_id, name}{specialization, name}.

Transitivity:

If F |- XY and F |- YZ, then F |- XZ.

• Example:

 if {supervisor_id} {specialization} and

 {specialization} {lab},

 then {supervisor_id}{lab}.

Properties of Armstrong’s Axioms

• Armstrong’s axioms are sound and complete.

• Sound:

 If F |- f then F|= f.

• Complete:

 If F|= f then F |- f.

Where F is a set of FDs and f is a single FD.

Reflexivity:

Be XY and

Then

Translating Armstrong’s Axioms into

First Order Logic

R

u1 ……………….. um

u1' ……………….. um'

.

.

.

.

.

.

' ' '

1 1 2 2

' '

1 1 1 2 1 2

, , , ,..., ,

(,...,) (,...,) [] [] [] []

m m

m m

u u u u u u

R u u R u u t X t X t Y t Y

1t

2t

Where

1 ' '1

,..., ,..., .
k k

x x y yX u u and Y u u and Y X

Augmentation:

If

Then

Where

' ' '

1 1 2 2

' '

1 1 1 2 1 2

, , , ,..., ,

(,...,) (,...,) [] [] [] []

m m

m m

u u u u u u

R u u R u u t X t X t Y t Y

' ' '

1 1 2 2

' '

1 1 1 2 1 2

, , , ,..., ,

(,...,) (,...,) [] [] [] []

m m

m m

u u u u u u

R u u R u u t XW t XW t YW t YW

1 ' ' '' ''1 1

,..., ,..., ,..., .
k k k

x x y y w wX u u and Y u u and W u u

Transitivity:
If

And

Then

Where

' ' '

1 1 2 2

' '

1 1 1 2 1 2

, , , ,..., ,

(,...,) (,...,) [] [] [] []

m m

m m

u u u u u u

R u u R u u t X t X t Y t Y

' ' '

1 1 2 2

' '

1 1 1 2 1 2

, , , ,..., ,

(,...,) (,...,) [] [] [] []

m m

m m

u u u u u u

R u u R u u t Y t Y t W t W

' ' '

1 1 2 2

' '

1 1 1 2 1 2

, , , ,..., ,

(,...,) (,...,) [] [] [] []

m m

m m

u u u u u u

R u u R u u t X t X t W t W

1 ' ' '' ''1 1

,..., ,..., ,..., .
k k k

x x y y w wX u u and Y u u and W u u

Projection of Functional Dependencies

• Given a set of FDs F over R, we want to know
which set of FDs is satisfied in a smaller relation
scheme, S where S is a subset of R.

• Definition:
 The projection of a set of FDs F over R onto a

relation scheme S, where S is a subset of R, is
given by:

 The FDs in F[S] are said to be embedded in S.

[] { | }F S X Y X Y F and XY S

• If

 then S is said to preserve the set of FDs F over R.

• Theorem:

▫ There exist a relation r over R and a relation s over
S where S R and a set of FDs F over R s.t
s|=F+[S]. But, there does not exist a relation r over
R where r|= F and s s.t s|=F+[S].

[] { | }F S X Y X Y F and XY S

()S r

• Proof:
▫ Let R be a relation scheme R={A,B,C,D,E,H,I} and

let S be a relation scheme S={A,B,C,D,E} .
F={A→I, B→I, C→H, D→H, IH→E}.

 Let G= {AC→E, AD→E, BC→E, BD→E}, G is a

 cover of F+[S].

 Let s={t1, t2, t3, t4} be the relation over S where S is:

 A B C D E

a1 b1 c1 d1 e1

a2 b2 c2 d2 e2

a3 b3 c1 d2 e3

a1 b2 c3 d3 e4

Can you complete
the columns

H and I?

It easy to see that s|=G and s|= F+[S]. Suppose that there exist a
relation r over R s.t r|=F and s= πS(r).
We can conclude that u1,u2,u3, u4 r s.t for i {1,2,3,4}, ti=ui[S].
Let u1 [HI] =<h1, i1>:

 Then the following equalities can be
 deduced from F:
 1. u1[A]=u4[A] and A → I ∈ F u1[I]=u4[I]

 2. u2[B]=u4[B] and B → I ∈ F u2[I]=u4[I]

 3. (1) + (2) u1[I]= u2[I].

 4 .u1[C]=u3[C] and C → H ∈ F u1[H]=u3[H]

 5. u2[D]= u3[D] and D → H ∈ F u2[H]=u3[H]

 6. (4) + (5) u1[H]=u2[H].

 7. (3) + (6) u1[IH]=u2[IH].

A B C D E H I

a1 b1 c1 d1 e1 h1 i1

a2 b2 c2 d2 e2 h1 i1

a3 b3 c1 d2 e3 h1

a1 b2 c3 d3 e4 i1

We have assumed that r|=F
therefore, u1[E]= u2[E] since
IH→E F.
However, this leads to a
contradiction since
t1[E]≠ t2[E] u1[E] ≠ u2[E].

We can conclude that there
does not exist a relation r over
R s.t r|=F and s= πS(r).

A B C D E H I

a1 b1 c1 d1 e1 h1 i1

a2 b2 c2 d2 e2 h1 i1

a3 b3 c1 d2 e3 h1

a1 b2 c3 d3 e4 i1

This proof was taken from “A Guided Tour of Relational Databases and Beyond”,
Mark Levene and George Loizou, Springer Publishing Company.

• Definition:

▫ An Inclusion Dependency (IND) over a DB scheme R is a
statement of the form R1[X] R2[Y] where R1,R2 R and X,Y
are sequences of attributes s.t X R1 , Y R2 and |X|=|Y|.

• Example:

Inclusion Dependencies

STUDENTS

Student Department

Roee CS

Shani CS

Orit Math

Ira Math

Yossi Biology

DEANS

Dean Department

Eyal CS

Chris Biology

John Math

Mark Physics

[] []STUDENTS Department DEANS Department

• Definition:

▫ An MVD X→→Y(R) is satisfied in a relation r over
R, denoted by r|= X→→Y(R), if t1,t2 r, if

t1[X]=t2[X], then ∃𝑡3 ∈ 𝑟 s.t:
1. t1[X]=t2[X]=t3[X].

2. t3[Y]= t1[Y], t3[Z]= t2[Z].

Multivalued Dependencies

• Example:

• In this table we have the MVD

 Furniture→→Num_of_Legs.

Furniture Color Num_of_Legs

Table Brown 4

Table Brown 6

Table Black 4

Table Black 6

Chair Black 3

Chair Black 1

Chase FDs - Test for

Looseness Join

Chase FDs - Test for Lossless Join
• Why do we need it for?

To know when natural join of two or more relations
is meaningful, which means that the join operation
does not cause any loss of information.

The Chase test will allow us to conclude whether or
not a natural join of a given decomposition is a
lossless join.

Clarification: Loss in lossless refers to the loss of
information and not the loss of rows. Actually the loss of
information occurs because of added rows in the joins.

The chase algorithm is composed of two parts:

1. the pre-processing of the input.

2. the execution of the algorithm itself using the
processed input from part 1.

Chase FDs - Test for Lossless Join

• Input for Part 1:

 Relation scheme R = (A1, A2,..., An).

 Decomposition D = (R1,R2,…,Rk).

• Input for Part 2:

 Set of FDs F.

• Output:

• YES if the decomposition has the lossless

join property.

• NO otherwise.

Part 1:

1. Build an empty table of size k n, where k

is the number of the decompositions and

n is the number of the attributes s.t:

A1 A2 … An

R1

R2

Rk

Part 1 (continue):

2. Fill each column Ai as follow:

for (i=1, i<=n, i++)

{ index=1

 for (j=1, j<=k, j++)

 { if (Ai is in Rj)

 write the lower case letter of the attribute

 else

 write the lower case letter of the attribute
 with the index++.

 }

}

Example: given R={A,B,C,D}, D={AB,BC,CD}

 A B C D

R1 a b c1 d1

R2 a1 b c d2

R3 a2 b1 c d

Part 1 (continue):

Halt with YES if entire row is without indexes,

otherwise continue to part 2.

What enables us to halt
with Yes at this point?

Part 2:

• Use the given FD's to force indexed letters to become

non-indexed letters (meaning if AB and you have a and

bi in the same row, then bi becomes b).

• Example: lets continue the previous example using the

processed table from part 1. Given F={BA}

 BA

A B C D

R1 a b c1 d1

R2 a1 b c d2

R3 a2 b1 c d

A B C D

R1 a b c1 d1

R2 a b c d2

R3 a2 b1 c d

Part 2 (continue):

• Halt with YES if entire row is without indexes,

otherwise continue going over all the FD’s until halting

with YES or if no more changes can be done then halt

with NO.

• Part 2 (continue):

• Example: In our last example we don’t have a row

without indexes and there are no more functional

dependencies we can use, so we will halt with NO.

• But, if we also had the functional dependency CD in F

we could continue with the algorithm:

 CD
A B C D

R1 a b c1 d1

R2 a1 b c d2

R3 a2 b1 c d

A B C D

R1 a b c1 d1

R2 a b c d

R3 a2 b1 c d

Part 2 (continue):

In this case we halt with YES since there is an
entire row without indexes.

A B C D

R1 a b c1 d1

R2 a b c d

R3 a2 b1 c d

• Let’s go back to the question that was raised in
the end of part 1 of the Chase test:

▫ After we built the first Chase table at the end of
part one what enables us to halt with Yes even
before executing the second part of the Chase test?

• Lemma 1:

▫ At the end of part one of the Chase test the first
Chase table contains a row with no indexes if the
given decomposition D contains the scheme R
itself (meaning R={A1,A2 ,…,An}).

• Example:

▫ R={A,B,C}

▫ D={AB,BC,ABC}

• Proof:

▫ Since the decomposition D contains R then at the end of part one

of the Chase test, the first Chase table contains a row without

indexes and we can halt with YES. This decomposition is indeed

lossless since the natural join will give us the

original table r over R because there exist i s.t Ri=R.

A B C

R1 a b c1

R2 a1 b c

R3 a b c

1 ()
i

k

i Rr r

• Lemma 2:
 If the Chase test halts with YES then r|=F.

▫ Example:
Lets go back to our main example where R={A,B,C,D},
D={AB,BC,CD}, F={BA, CD}. The last table we got is
(lets mark this table rlast):

You can see that there is an indexless row, so the Chase
test halts with YES and also rlast |=F.

A B C D

R1 a b c1 d1

R2 a b c d

R3 a2 b1 c d

• Lemma 3 :
If r|=F then the Chase test doesn’t necessarily halts with
YES.

▫ Example:
Back to our main example where R={A,B,C,D},
D={AB,BC,CD}, F={BA}. The last table we got is (lets
mark this table rlast):

You can see that rlast |=F, but in this case the Chase test
halts with NO.

A B C D

R1 a b c1 d1

R2 a b c d2

R3 a2 b1 c d

• Now you try it…

1. Given R={A,B,C} and D={AB,BC} execute the
first part of the Chase test.

2. Lets mark the table you got as r1 . Write all the
FD’s s.t r1|=F but the Chase test halts with NO.

3. Write the FD’s that are necessary for the Chase
test to halt with Yes.

The answers are in the next slide…

1. Given R={A,B,C} and D={AB,BC} the first part of the
Chase test produce this table:

2. The FD’s s.t r1|=F but the Chase test halts with NO are:
AB, CB, AC, CA. These FD’s are vacuous truth.

3. The FD’s that are necessary for the Chase test to halt
with Yes are:

▫ BC: force the first row of r1 to become indexless.

▫ BA : force the second row of r1 to become indexless.

For each one of these FD’s the Chase test will halt with
YES.

A B C

R1 a b c1

R2 a1 b c

References

• “Foundation of Databases”, Serge Abiteboul,
Richard Hull and Victor Vianu, Addison-Wesley
Publishing Company.

• “A Guided Tour of Relational Databases and
Beyond”, Mark Levene and George Loizou,
Springer Publishing Company.

• “Functional Dependencies”, Lecture 5, Database
Systems Course 236363.

• “Normal Forms”, Lecture 6, Database Systems
Course 236363.

