Definability of Combinatorial Functions and Their Linear Recurrence Relations

Written by Ofir David and Daniel Genkin

Source: paper by Johann A. Makowsky and T. Kotek

Faculty of Computer Science,
Technion - Israel Institute of Technology,

Overview

- Counting Functions and Specker Functions
- Linear Recurrence over \mathbb{Z}
- Order Invariance
- Linear Recurrence Relations for \mathcal{L}^{k}-Specker Function
- Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial
- Main Theorem

Outline

- In this lecture we look at functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which have a combinatorical interpretation.
- We then ask what can be said about their growth rate, and specially if they satisfy a linear recurrence relation.
- We introduce the concept of ordered structures, and their counting function.
- We define the Specker Polynomial, and use it to characterize functions that satisfy linear recurrence.

Counting Functions

> and

Specker Functions

The counting function

- Let A be the class of all finite relational structures with relations $R_{i}: 1 \leq i \leq s$ of arity ρ_{i} (we denote it as \bar{R}).
- For a subclass $\mathcal{K} \subseteq A$ of structures, closed under isomorphism, we define \mathcal{K}^{n} to be to be the structures in \mathcal{K} with the universe [n].
- We define the counting function for \mathcal{K} as $s p_{\mathcal{K}}(n)=\left|\mathcal{K}^{n}\right|$.

The counting function

Examples:

(i) let \mathcal{K}_{1} be the set of all binary relations $\left(s=1 ; \rho_{1}=2\right)$ then $s p_{\mathcal{K}_{1}}(n)=2^{n^{2}}$
(ii) let \mathcal{K}_{2} be the set of binary strings $\left(s=1 ; \rho_{1}=1\right)$ with exactly m " 1 "s, then $s p_{\mathcal{K}_{2}}(n)=\binom{n}{m}$.
(iii) let \mathcal{K}_{3} be the set of full graphs $\left(s=1 ; \rho_{1}=2\right)$, then $s p_{\mathcal{K}_{3}}(n)=1$
(iv) let \mathcal{K}_{4} be the set of prime sized sets $(s=0)$, then $s p_{\mathcal{K}_{4}}(n)=1$ if n is prime and zero otherwise.

As the examples above show, the growth rate of $s p_{\mathcal{K}}$ can be very different from one class to another.

The counting function

- For a class \mathcal{K}, we would like to know how the function $s p_{\mathcal{K}}(n)$ behave, specially if it satisfy a linear recurrence.
- In addition, we would like $s p_{\mathcal{K}}(n)$ to have a combinatorial interpretation.
- Therefore the current definition is too general and we need to give some constraints over our counting function.

Specker Functions

We say that \mathcal{K} is definable in logic \mathcal{L} if there is a sentence ϕ in \mathcal{L} such that for any \bar{R} structure $\mathcal{A}, \mathcal{A} \in \mathcal{K}$ iff $\mathcal{A} \equiv \phi$.

Definition (Specker function):

A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called a \mathcal{L}^{k} Specker function if there exists a finite set of relation symbols \bar{R} of arity at most k and a class \mathcal{K} of \bar{R}-structures definable in \mathcal{L} such that $f(n)=s p_{\mathcal{K}}(n)$.

Specker Functions

We would like to know, under what conditions the Specker function $s p_{\mathcal{K}}(n)$ satisfy a linear recurrence relation.

$$
f(n+k)=\sum_{i=0}^{k-1} a_{i} f(n+i) ; \quad a_{i} \in \mathbb{Z}
$$

We can use characteristic equations to show that the solution for a linear recurrence as the one above is bounded above by $f(n) \leq 2^{O(n)}$.

Specker Functions - Examples

(i) Let $f(n)=2^{n}$ then f counts the number of subsets of a set of size n. This function is $F O L^{1}$ definable using a single unary relation.
(ii) We can generalize it to k^{n} for all $k \in \mathbb{N}$ This function has a simple linear recurrence $f(n+1)=k f(n)$
(iii) The number of linear orders n ! is a $F O L^{2}$ Specker function. This function doesn't satisfy a linear recurrence because it is not $2^{O(n)}$.
(iv) The number of undirected labeled trees (due to Cayley) is n^{n-2} which is $M S O L^{2}$ definable.

Linear Recurrence over \mathbb{Z}

Linear Recurrence over \mathbb{Z}

- Let τ be the dictinary with unary relation. We can look on a structure with the universe $[n]$ as a word over binary alphabet, but then two words with the same number of " 1 "s will be isomorphic.
- To be able to represent general languages, we introduce the natural order $<_{n a t}$ over the universe.
- Using the logical representation for words in languages we have the next theorems:

Linear Recurrence over \mathbb{Z}

Theorem 1 (Schützenberger)

For every regular language $L, a_{L}(n)=|\{w \in L:|w|=n\}|$ satisfy a linear recurrence relation.

Theorem 2 (Büchi)

Let \mathcal{K} be a language. Then \mathcal{K} is regular iff it is definable in MSOL given the natural order $<_{n a t}$ on $[n]$

From these two theorems we get

Theorem 3

Let f be a $M S O L^{1}$ Specker function, given the natural order $<_{n a t}$ on $[n]$, then it satisfy a linear recurrence relation over \mathbb{Z}

$$
f(n)=\sum_{j=1}^{d} a_{j} f(n-j)
$$

where a_{j} are constant.

Linear Recurrence over \mathbb{Z}

- The last theorem shows that a $M S O L^{1}$ Specker function f given the natural order satisfies a linear recurrence.
- We want to show a converse direction.
- In order to do so, we first extend the definition of the Specker functions, to be able to count ordered structures (the same way we added $<_{n a t}$ to prove the last theorems).

Order Invariance

Order Invariance

Definition: (Order Invariant)

- A class \mathcal{D} of ordered \bar{R}-structures is a class of $\bar{R} \cup\left\{<_{1}\right\}$ structures, where for every $\mathcal{A} \in \mathcal{D}$ the interpretation of the relation symbol $<_{1}$ is always a linear order of the universe of \mathcal{A}
- An \mathcal{L} formula $\phi\left(\bar{R},<_{1}\right)$ for ordered \bar{R} structures is truth-value order inavariant (t.v.o.i) if for any two structures

$$
\mathcal{A}_{i}=\left\langle[n],<_{i}, \bar{R}\right\rangle(i=1,2)
$$

we have that

$$
\mathcal{A}_{1} \models \phi \Longleftrightarrow \mathcal{A}_{2} \models \phi
$$

This means that if $\mathcal{A}_{1}=\mathcal{A}_{2}$ are the same except for maybe their linear orders then they could not be told apart by ϕ.

We denote by $T V \mathcal{L}$ the set of t.v.o.i \mathcal{L} formulas.

Order Invariance - Examples

a. Any binary language is a class of ordered P-structures, where P is a unary relation.
$<$ define the order of the letters in the word, and P defines what is the letter.
b. The formula $\varphi_{1}=$ " There are at least two " 1 " in the word" is t.v.o.i
c. The formula $\varphi_{2}=$ " The last letter is "1" (in the relation)" is not t.v.o.i.
Let \mathcal{A}_{i} be the structures $\left\langle\{a, b\},<_{i}, P\right\rangle$ where $P=\{a\}$

$$
a<1 b \text { (the word " } 10 \text { ") }
$$

and

$$
b<2 a \text { (the word "01") }
$$

Here we have $\mathcal{A}_{1} \not \vDash \varphi_{2}$ but $\mathcal{A}_{2} \vDash \varphi_{2}$.

Order Invariance - Cont.

- For a class of ordered structures \mathcal{D}, let
$\operatorname{osp}_{\mathcal{D}}\left(n,<_{1}\right)=\left|\left\{\left(R_{1}, \ldots, R_{s}\right) \subseteq[n]^{\rho(1)} \times \cdots \times[n]^{\rho(s)}:\left\langle[n],<_{1}, R_{1}, \ldots, R_{s}\right\rangle \in \mathcal{D}\right\}\right|$
A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called an \mathcal{L}^{k}-ordered Specker function if there is a class of ordered \bar{R} structures \mathcal{D} of arity at most k definable in \mathcal{L} such that

$$
f(n)=o s p_{\mathcal{D}}\left(n,<_{1}\right)
$$

- A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called counting order invariant (c.o.i) \mathcal{L}^{k}-Specker function if there is a finite set of relation symbols \bar{R} or arity at most k and a class of ordered \bar{R}-structures \mathcal{D} definable in \mathcal{L} such that for all linear orders $<_{1}$ and $<_{2}$ we have

$$
f(n)=\operatorname{osp}_{\mathcal{D}}\left(n,<_{1}\right)=\operatorname{osp}_{\mathcal{D}}\left(n,<_{2}\right)
$$

Order Invariance - Examples

For a binary language define

$$
\varphi_{1}=\forall x \forall y\left(\phi_{\text {succ }}(x, y) \rightarrow(P(x) \rightarrow \neg P(y))\right)
$$

where $\phi_{\text {succ }}$ means y is the succesor of x .

$$
\phi_{\text {succ }}(x, y)=\left(x<_{1} y\right) \wedge\left(\forall z\left[\left(x<_{1} z \wedge z \neq y\right) \rightarrow y<_{1} z\right]\right)
$$

This formula says that the word doesn't contain two consecutive "1"s.

If f is the $F O L^{1}$-ordered Specker function defined for φ_{1}, then an easy calculation shows that

$$
f(n)=F i b(n+1)
$$

Linear Recurrence Relations

for
\mathcal{L}^{k}-Specker Function

$$
\text { Example }-F(n)=2 \cdot F(n-1)+F(n-2)
$$

Lets first look at an example using the linear recurrence

$$
F(n)=2 \cdot F(n-1)+F(n-2)
$$

$$
\text { Example }-F(n)=2 \cdot F(n-1)+F(n-2)
$$

There are 5 routes that go from the root to one of the leaves.

$$
(5,4,3,2),(5,4,3,1),(5,4,2),(5,3,2),(5,3,1)
$$

The value of $F(5)$ is $2^{3} F(2)+F(1)+F(2)+2 F(2)+F(1)$
Each route is a sequence of choices in the recursion formula.
For example, the first route from the left, always choose $2 \cdot F(n-1)$. The second from the left, first choose $2 \cdot F(n-1)$ and then $F(n-2)$.

$$
\text { Example }-F(n)=2 \cdot F(n-1)+F(n-2)
$$

Each route can be thought of as a partition of the set $\{1,2,3,4,5\}$ to three sets:
(i) The set of its internal vertices. This can be subdivided into the vertices corresponding to the choice of $2 F(n-1)$ and the vertices corresponding to $F(n-2)$.
(ii) The (singleton) set of the leaf.
(iii) All the other numbers that do not appear in the route.

$$
\text { Example }-F(n)=2 \cdot F(n-1)+F(n-2)
$$

We return to the general case

$$
f(n+k)=\sum_{i=0}^{k-1} a_{i} f(n+i) ; \quad a_{i} \in \mathbb{Z}
$$

For a route P, we denote by t_{i} the number of times the route chose to go down in the tree using $a_{i} f(n+i)$, then P contribute to $f(n)$

$$
a_{0}^{t_{0}} \cdot a_{1}^{t_{1}} \ldots a_{k-1}^{t_{k-1}} \cdot f\left(\beta_{n}\right)=\prod_{j=1}^{t_{0}} a_{0} \cdot \prod_{j=1}^{t_{1}} a_{1} \cdots \prod_{j=1}^{t_{k}} a_{k} \cdot f\left(\beta_{n}\right)
$$

Where $f\left(\beta_{n}\right)$ is an initial condition.

In the end, we sum over all the routes. This leads us to the next definition:

\mathcal{L}^{k}-Specker polynomials

Definition:

(i) A \mathcal{L}^{k} Specker polynomial $A(n, \bar{x})$ in indeterminate set \bar{x} has the form

$$
\sum_{R_{1}: \Phi_{1}\left(R_{1}\right)} \ldots \sum_{R_{t}: \Phi_{t}\left(R_{1}, \ldots, R_{t}\right)}\left(\prod_{v_{1}, \ldots, v_{k}: \Psi_{1}(\bar{R}, \bar{v})} x_{m_{1}} \ldots \prod_{v_{1}, \ldots, v_{k}: \Psi_{l}(\bar{R}, \bar{v})} x_{m_{l}}\right)
$$

where \bar{v} stands for $\left(v_{1}, \ldots, v_{k}\right), \bar{R}$ stands for $\left(R_{1}, \ldots, R_{t}\right)$ and the R_{i} 's are relation variables of arity ρ_{i} at most k.

Each R_{i} range over relations of arity ρ_{i} over $\left[n\right.$] and the v_{i} range over elements of $[n]$ satisfying the iteration formulas $\Phi_{i}, \Psi_{i} \in \mathcal{L}$
(ii) Order invariant \mathcal{L}^{k}-Specker polynomial are defined analogously to Specker functions.

\mathcal{L}^{k}-Specker polynomials - Examples

- If f is a Specker function that counts \bar{R}-structure which satisfy $\varphi(\bar{R})$, then we can write $f(n)=\sum_{\bar{R}: \varphi(\bar{R})} 1$ so the Specker polynomial is a generalization of the Specker function.
- Let P be a unary relation then the Specker Polynomial

$$
\sum_{P: \operatorname{true}(P)} \prod_{v: P(v)} x=\sum_{P: \operatorname{true}(P)} x^{|P|}=\sum_{m=0}^{n}\binom{n}{m} x^{m}
$$

is the generating function for the binom function $f_{n}(m)=\binom{n}{m}$.

\mathcal{L}^{k}-Specker polynomials

First we show that Specker Polynomials behave nicely under variable substitution with polynomials.

Lemma 4

Let $A(n, \bar{z})$ ba a c.o.i MSOL¹-Specker polynomial with indeterminates $\bar{z}=\left(z_{1}, \ldots, z_{s}\right)$ where $h_{i}(\bar{w}) \in \mathbb{Z}$.

Let $A\left(n,\left(h_{1}(\bar{w}), \ldots, h_{s}(\bar{w})\right)\right)$ denote the variable substitution in $A(n, \bar{z})$ where for $i \in[s], z_{i}$ is substituted to $h_{i}(\bar{w})$.

Then $A(n, \bar{h})$ is an integer evaluation of a counting order invariant MSOL${ }^{1}$-Specker polynomial.

Proof of Lemma 4

We show the Iemma is true for substituting z_{1} by $h_{1}(\bar{w})$, and the lemma will follow by induction. Write

$$
h_{1}(\bar{w})=\sum_{j=1}^{d} c_{j} w_{1}^{\alpha_{j, 1}} \cdots w_{t}^{\alpha_{j, t}}
$$

The indeterminate z_{1} shows in the Specker polynomial as \prod

$$
v_{1}: \Psi_{1}\left(\bar{R}, v_{1}\right)
$$

After substituting z_{1} by $h_{1}(\bar{w})$, we will get

$$
\left(\sum_{j=1}^{d} c_{j} w_{1}^{\alpha_{j, 1}} \cdots w_{t}^{\alpha_{j, t}}\right)\left(\sum_{j=1}^{d} c_{j} w_{1}^{\alpha_{j, 1}} \cdots w_{t}^{\alpha_{j, t}}\right) \cdots\left(\sum_{j=1}^{d} c_{j} w_{1}^{\alpha_{j, 1}} \cdots w_{t}^{\alpha_{j, t}}\right)
$$

each monom in the result of the above product, is a multiplication of monoms from each of the copies of h_{1}.

Proof of Lemma 4 - Cont.

In other words, each monom in the result can be written as

$$
\prod_{v_{1} \in U_{1}} c_{1} w_{1}^{\alpha_{1,1}} \cdots w_{t}^{\alpha_{1, t}} \cdot \prod_{v_{1} \in U_{2}} c_{2} w_{1}^{\alpha_{2,1}} \cdots w_{t}^{\alpha_{2, t}} \cdots \prod_{v_{1} \in U_{d}} c_{d} w_{1}^{\alpha_{d, 1}} \cdots w_{t}^{\alpha_{d, t}}
$$

where $\left(U_{1}, U_{2}, \ldots, U_{d}\right)$ is a partition of the elements of $[n]$ which satisfy $\Psi_{1}\left(\bar{R}, v_{1}\right)$ - we denote this formula by $\phi_{\operatorname{Part}\left(\Psi_{1}\right)}(\bar{U})$.

Now we only need to sum over all partitions, so

$$
\begin{gathered}
A\left(n,\left(h_{1}(\bar{w}), z_{2}, \ldots, z_{s}\right)\right)= \\
\sum_{R_{1}: \Phi_{1}\left(R_{1}\right)} \cdots \sum_{R_{t}: \Phi_{t}(\bar{R})} \sum_{\bar{U}: \phi_{\operatorname{Part}\left(\Psi_{1}\right)}(\bar{U})}
\end{gathered}
$$

$$
\left(\prod_{v_{1}: \Psi_{2}\left(\bar{R}, v_{1}\right)} z_{2} \cdots \prod_{v_{1}: \Psi_{s}\left(\bar{R}, v_{1}\right)} z_{s} \cdot \prod_{v_{1} \in U_{1}} c_{1} w_{1}^{\alpha_{1,1}} \cdots w_{t}^{\alpha_{1, t}} \cdots \prod_{v_{1} \in U_{d}} c_{d} w_{1}^{\alpha_{d, 1}} \cdots w_{t}^{\alpha_{d, t}}\right)
$$

where $\bar{U}=\left(U_{1}, U_{2}, \ldots, U_{d}\right)$. Notice that $\phi_{\operatorname{Part}\left(\Psi_{1}\right)}(\bar{U})$ is in $M S O L^{1}$.

Proof of Lemma 4 - Cont.

To complete the proof we see that

$$
\prod_{v_{1}: \theta} c_{j} w_{1}^{\alpha_{j, 1}} \cdots w_{t}^{\alpha_{j, t}}=\prod_{v_{1}: \theta} c_{j}(\overbrace{\prod_{v_{1}: \theta} w_{1} \cdots \prod_{v_{1}: \theta} w_{1}}^{a_{j, 1} \text { times }}) \cdots(\overbrace{\prod_{v_{1}: \theta} w_{t} \cdots \prod_{v_{1}: \theta} w_{t}}^{a_{j, t}})
$$

We can now substitute all the c_{i} with new indeterminates, and so $A\left(n,\left(h_{1}(\bar{w}), z_{2}, \ldots, z_{s}\right)\right)$ is an evaluation of an counting order invariant $M S O L^{1}$-Specker polynomial.

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

The next theorem shows the connection between polynomials with linear recurrence and and the Specker polynomials

Theorem 5

Let $A_{n}(\bar{x})$ be a sequence of polynomials with finite indeterminate set $\bar{x}=\left(x_{1}, \ldots, x_{s}\right)$ which satisfies a linear recurrence over $\mathbb{Z}[\bar{x}]$.

Then, there exists a counting order invariant MSOL¹-Specker polynomial $A^{\prime}(n, \bar{x}, \bar{y})$ such that $A_{n}(\bar{x})=A^{\prime}(n, \bar{x}, \bar{a})$ where $\bar{a}=\left(a_{1}, \ldots, a_{l}\right) \in \mathbb{Z}^{l}$.

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

Proof:

$A_{n}(\bar{x})$ has linear recurrence so we write

$$
\begin{gathered}
A_{n}(\bar{x})=\sum_{i=1}^{r} f_{i}(\bar{x}) A_{n-i}(\bar{x}) \quad f_{i}(\bar{x}) \in \mathbb{Z}[\bar{x}] \\
A_{1}(\bar{x}), A_{2}(\bar{x}), \ldots, A_{r}(\bar{x}) \in \mathbb{Z}[\bar{x}]
\end{gathered}
$$

In order to evaluate $A_{n}(\bar{x})$ we need first to evaluate $A_{n-i_{1}}(\bar{x})$ for all $i_{1} \in 1, \ldots, r$.

In the same manner, in order to evaluate $A_{n-i_{1}}(\bar{x})$ we need first to evaluate $A_{n-i_{1}-i_{2}}(\bar{x})$ for all $i_{2} \in 1, \ldots, r$.

We can continue this until we reach an initial condition.

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

We define a path in the recurrence tree to be

$$
\left(A_{n}(\bar{x}), A_{n-i_{1}}(\bar{x}), A_{n-i_{1}-i_{2}}(\bar{x}), \ldots, A_{n-i_{1}-i_{2}-\ldots-i_{l}} \bar{x}\right)
$$

where $i_{k} \in[r]$ and $A_{n-i_{1}-i_{2}-\ldots-i_{l}}(\bar{x})$ is an initial condition.
Finally, to evaluate $A_{n}(\bar{x})$ we need to sum up over all the recurrence pathes.

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

A recurrence path is defined by the numbers $T=\left(i_{1}, i_{2}, \ldots, i_{l}\right)$.
It contributes

$$
f_{1}(\bar{x})^{\#(1, T)} \cdots f_{r}(\bar{x})^{\#(r, T)} A_{n-\sum i_{k}}(\bar{x})
$$

where $\#(j, T)$ counts the number of times j appears in T.
For each path we partition [n] to three subsets

- $\bar{U}=\left(U_{1}, U_{2}, \ldots, U_{r}\right)$ - where U_{j} is all the k such that A_{k} appears in the path where the next polynomial in the path is A_{k-j} (and in particular we get that $k \notin[r]$ - it's not one of the initial conditions)
- $\bar{I}=\left(I_{1}, I_{2}, \ldots, I_{r}\right)$ - where $I_{j}=\{j\}$ if A_{j} is the initial condition in the path, and $I_{j}=\emptyset$ otherwise.
- $S=[n] \backslash\left(\bigcup U_{j} \cup \bigcup I_{j}\right)$ - the rest of $[n]$.

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

We now write $A_{n}(\bar{x})$ as
$A_{n}(\bar{x})=\sum_{\bar{U}, \bar{I}, S, \phi_{r e c}(\bar{U}, \bar{I}, S)} \prod_{v: v \in U_{1}} f_{1}(\bar{x}) \cdots \prod_{v: v \in U_{r}} f_{r}(\bar{x}) \cdot \prod_{v: v \in I_{1}} A(1, \bar{x}) \cdots \prod_{v: v \in I_{r}} A(r, \bar{x})$
Where $\phi_{\text {rec }}(\bar{U}, \bar{I}, S)$ says
(i) (\bar{U}, \bar{I}, S) form a partition for $[n]$.
(ii) $n \in \bigcup U_{j}$ - the recurrence path start with n.
(iii) $\left|\bigcup I_{j}\right|=1$ - there is only one initial condition in the path.
(iv) if $v \in[n] \backslash[r]$ then $v \notin \bigcup I_{j}$, and if $v \in[r]$ then $v \notin \bigcup U_{j}$ - the path must go through vertices in \bar{U} and reach an end when $v \in[r]$.
(v) for every $v \in U_{j}$, the vertices $\{v-1, v-2, \ldots, v-(j-1)\}$ are in S, and $v-j \in\left(\bigcup U_{j} \cup \bigcup I_{j}\right)$

Linear recurrence \Rightarrow c.o.i $M S O L^{1}$-Specker polynomial

Next, we define

$$
B(n, \bar{x})=\sum_{\bar{U}, \bar{I}, S, \phi_{r e c}(\bar{U}, \bar{I}, S)} \prod_{v: v \in U_{1}} z_{1} \cdots \prod_{v: v \in U_{r}} z_{r} \cdot \prod_{v: v \in I_{1}} z_{r+1} \cdots \prod_{v: v \in I_{r}} z_{2 r}
$$

$\phi_{r e c}$ is $M S O L^{1}$ definable, so $B(n, \bar{z})$ is a counting order invariant $M S O L^{1}$-Specker polynomial.

By the previous lemma we have that

$$
A_{n}(\bar{x})=B\left(n,\left(f_{1}(\bar{x}), \ldots, f_{r}(\bar{x}), A(1, \bar{x}), \ldots, A(r, \bar{x})\right)\right)
$$

is an evaluation in \mathbb{Z} of a c.o.i $M S O L^{1}$-Specker polynomial.

Main Theorem

Main Theorem

At last, we wish to characterize the functions $f: \mathbb{N} \rightarrow \mathbb{N}$ which satisfy a linear reccurence.

Theorem 6

Let f be a function over \mathbb{N}. Then f satisfies a linear recurrence relation over \mathbb{Z} iff

$$
f=f_{1}-f_{2}
$$

where f_{1}, f_{2} are two counting order invariant $M S O L^{1}$-Specker functions.

$$
f=f_{1}-f_{2} ; f_{1}, f_{2} \text { c.o.i } \Rightarrow f \text { satisfy linear recurrence }
$$

Proof:

First assume that $f=f_{1}-f_{2}$ where f_{1}, f_{2} are c.o.i $M S O L^{1}$-Specker functions.

From theorem 3 we have that f_{1}, f_{2} satisfies a linear recurrecne relation over \mathbb{Z}.

It can be shown that the difference of two linear recurrence series also has linear recurrence relation, thus we get that the function f satisfies a linear recurrence over \mathbb{Z}.

```
\(f\) satisfy linear recurrence \(\Rightarrow f=f_{1}-f_{2} ; f_{1}, f_{2}\) c.o.i
```

Assume now that f has a linear recurrence over \mathbb{Z}.
From the previous theorem, f is an evaluation of a c.o.i $M S O L^{1}$ Specker polynomial

$$
f(n)=A(n, \bar{a}) ; \bar{a}=\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in \mathbb{Z}^{l}
$$

The main idea behind the proof is that for a set Y, and a non negative integer $a \geq 0, a^{|Y|}$ counts the number of partition of Y to a disjoint subsets.

We shall prove the theorem for one indeterminate, and the general case is similar.
f satisfy linear recurrence $\Rightarrow f=f_{1}-f_{2} ; f_{1}, f_{2}$ c.o.i

Let

$$
A(n, y)=\sum_{R: \Phi(R)} \prod_{v: \Psi(R, v)} y
$$

We define the set Y to be all the v such that $\Psi(R, v)$.
This can be defined in $M S O L^{1}$ by

$$
\Psi^{\prime}(Y, R)=\forall v(v \in Y \Longleftrightarrow \Psi(R, v))
$$

For a non negative $a \geq 0$ denote $\bar{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{a}\right)$ then the formula $\phi_{\text {part }}(Y, \bar{Z})$ which says that Y is the disjoint union of Z_{i} is $M S O L^{1}$ definable.

$$
f \text { satisfy linear recurrence } \Rightarrow f=f_{1}-f_{2} ; f_{1}, f_{2} \text { c.o.i }
$$

As stated before we have for a fixed Y the equation

$$
a^{|Y|}=\left|\left\{\bar{Z} \mid \phi_{\text {part }}(Y, \bar{Z})\right\}\right|=\sum_{\bar{Z}: \phi_{\text {part }}(Y, \bar{Z})} 1
$$

We now sum it all up

$$
\begin{aligned}
A(n, a) & =\sum_{R: \Phi(R)} \prod_{v: \Psi(R, v)} a=\sum_{R, Y: \Phi(R) \wedge \psi^{\prime}(Y, R)} \prod_{v: v \in Y} a \\
& =\sum_{R, Y: S(R) \wedge \psi^{\prime}(Y, R)} 1
\end{aligned}
$$

where $\beta_{a}(R, Y, \bar{Z})=\Phi(R) \wedge \Psi^{\prime}(Y, R) \wedge \phi_{\text {part }}(Y, \bar{Z})$

```
\(f\) satisfy linear recurrence \(\Rightarrow f=f_{1}-f_{2} ; f_{1}, f_{2}\) c.o.i
```

This shows that if f is the evaluation at a non-negative $a \geq 0$, then it is a c.o.i $M S O L^{1}$ Specker Polynomial.

Because the constant function 0 is also a c.o.i $M S O L^{1}$ Specker function, then f is the difference of two c.o.i $M S O L^{1}$ Specker function.

If $a<0$ in a similar way we get

$$
\begin{aligned}
A(n, a)= & \sum_{R, Y, \bar{Z}: \beta_{|a|}(R, Y, \bar{Z})}(-1)^{|Y|} \\
= & \sum_{R, Y, \bar{Z}: \beta_{|q|}(R, Y, \bar{Z}) \wedge \phi_{\text {eeve }}(Y)} 1-\sum_{R, Y, \bar{Z}: \beta_{|q|}(R, Y, \bar{Z}) \wedge \neg \phi_{\text {even }}(Y)} 1 \\
= & \left|\left\{R, Y, \bar{Z} \mid \beta_{|a|}(R, Y, \bar{Z}) \wedge \phi_{\text {even }}(Y)\right\}\right| \\
& -\left|\left\{R, Y, \bar{Z} \mid \beta_{|a|}(R, Y, \bar{Z}) \wedge \neg \phi_{\text {even }}(Y)\right\}\right|
\end{aligned}
$$

Using the order < we have on [n] we can write $\phi_{\text {even }}$ in $M S O L^{1}$, and so we have that for all $a \in \mathbb{Z}$, the evaluation at a is the difference of two c.o.i $M S O L^{1}$ Specker function.

Main Theorem - Examples

(i) The Fibonacci sequence satisfy $F(n+2)=F(n+1)+F(n)$, hence it is the difference of two c.o.i $M S O L^{1}$ Specker function.
(ii) This theorem generalize theorem 3 - the function $g \equiv 0$ is c.o.i $M S O L^{1}$ Specker function, so every c.o.i $M S O L^{1}$ Specker function f satisfy a linear recurrence relation, since $f=f-0=$ $f-g$.

