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Overview

• Counting Functions and Specker Functions

• Linear Recurrence over Z

• Order Invariance

• Linear Recurrence Relations for Lk-Specker Function

• Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

• Main Theorem
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Outline

• In this lecture we look at functions f : N → N which have a
combinatorical interpretation.

• We then ask what can be said about their growth rate, and
specially if they satisfy a linear recurrence relation.

• We introduce the concept of ordered structures, and their
counting function.

• We define the Specker Polynomial, and use it to characterize
functions that satisfy linear recurrence.
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Counting Functions

and

Specker Functions
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The counting function

• Let A be the class of all finite relational structures with rela-
tions Ri : 1 ≤ i ≤ s of arity ρi (we denote it as R̄).

• For a subclass K ⊆ A of structures, closed under isomorphism,
we define Kn to be to be the structures in K with the universe
[n].

• We define the counting function for K as spK(n) = |Kn|.
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The counting function

Examples:

(i) let K1 be the set of all binary relations (s = 1; ρ1 = 2) then spK1(n) = 2n2

(ii) let K2 be the set of binary strings (s = 1; ρ1 = 1) with exactly m ”1”s,

then spK2(n) =
(
n
m

)
.

(iii) let K3 be the set of full graphs (s = 1; ρ1 = 2), then spK3(n) = 1

(iv) let K4 be the set of prime sized sets (s = 0), then spK4(n) = 1 if n is prime
and zero otherwise.

As the examples above show, the growth rate of spK can be very different from

one class to another.
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The counting function

• For a class K, we would like to know how the func-

tion spK(n) behave, specially if it satisfy a linear

recurrence.

• In addition, we would like spK(n) to have a combi-

natorial interpretation.

• Therefore the current definition is too general and

we need to give some constraints over our counting

function.
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Specker Functions

We say that K is definable in logic L if there is a sentence ϕ in L
such that for any R̄ structure A, A ∈ K iff A |= ϕ.

Definition (Specker function):

A function f : N → N is called a Lk Specker function if there exists

a finite set of relation symbols R̄ of arity at most k and a class K
of R̄-structures definable in L such that f(n) = spK(n).
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Specker Functions

We would like to know, under what conditions the
Specker function spK(n) satisfy a linear recurrence relation.

f(n+ k) =
k−1∑
i=0

aif(n+ i); ai ∈ Z

We can use characteristic equations to show that the solution

for a linear recurrence as the one above is bounded above by

f(n) ≤ 2O(n).
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Specker Functions - Examples

(i) Let f(n) = 2n then f counts the number of subsets of a set
of size n. This function is FOL1 definable using a single unary
relation.

(ii) We can generalize it to kn for all k ∈ N This function has a
simple linear recurrence f(n+1) = kf(n)

(iii) The number of linear orders n! is a FOL2 Specker function.
This function doesn’t satisfy a linear recurrence because it is
not 2O(n).

(iv) The number of undirected labeled trees (due to Cayley) is
nn−2 which is MSOL2 definable.
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Linear Recurrence over Z
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Linear Recurrence over Z

• Let τ be the dictinary with unary relation.

We can look on a structure with the universe [n]

as a word over binary alphabet, but then two words

with the same number of ”1”s will be isomorphic.

• To be able to represent general languages, we

introduce the natural order <nat over the universe.

• Using the logical representation for words in

languages we have the next theorems:
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Linear Recurrence over Z

Theorem 1 (Schützenberger)
For every regular language L, aL(n) = |{w ∈ L : |w| = n}| satisfy a
linear recurrence relation.

Theorem 2 (Büchi)
Let K be a language. Then K is regular iff it is definable in MSOL
given the natural order <nat on [n]

From these two theorems we get

Theorem 3
Let f be a MSOL1 Specker function, given the natural order <nat

on [n], then it satisfy a linear recurrence relation over Z

f(n) =
d∑

j=1

ajf(n− j)

where aj are constant.
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Linear Recurrence over Z

• The last theorem shows that a MSOL1 Specker function f
given the natural order satisfies a linear recurrence.

• We want to show a converse direction.

• In order to do so, we first extend the definition of the Specker
functions, to be able to count ordered structures (the same
way we added <nat to prove the last theorems).
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Order Invariance
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Order Invariance

Definition: (Order Invariant)

• A class D of ordered R̄-structures is a class of R̄ ∪ {<1}
structures, where for every A ∈ D the interpretation of the
relation symbol <1 is always a linear order of the
universe of A

• An L formula ϕ(R̄, <1) for ordered R̄ structures is truth-value
order inavariant (t.v.o.i) if for any two structures

Ai =
⟨
[n], <i, R̄

⟩
(i = 1,2)

we have that

A1 |= ϕ ⇐⇒ A2 |= ϕ

This means that if A1 = A2 are the same except for maybe
their linear orders then they could not be told apart by ϕ.

We denote by TV L the set of t.v.o.i L formulas.
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Order Invariance - Examples

a. Any binary language is a class of ordered P -structures, where
P is a unary relation.
< define the order of the letters in the word, and P defines
what is the letter.

b. The formula φ1 =”There are at least two ”1” in the word” is
t.v.o.i

c. The formula φ2 =”The last letter is ”1” (in the relation)” is
not t.v.o.i.
Let Ai be the structures ⟨{a, b}, <i, P ⟩ where P = {a}

a <1 b (the word ”10”)

and

b <2 a (the word ”01”)

Here we have A1 ̸|= φ2 but A2 |= φ2.
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Order Invariance - Cont.

• For a class of ordered structures D, let

ospD(n,<1) = |{(R1, ..., Rs) ⊆ [n]ρ(1)×· · ·×[n]ρ(s) : ⟨[n], <1, R1, ..., Rs⟩ ∈ D}|
A function f : N → N is called an Lk-ordered Specker function
if there is a class of ordered R̄ structures D of arity at most k
definable in L such that

f(n) = ospD(n,<1)

• A function f : N → N is called counting order invariant (c.o.i)
Lk-Specker function if there is a finite set of relation symbols
R̄ or arity at most k and a class of ordered R̄-structures D
definable in L such that for all linear orders <1 and <2 we
have

f(n) = ospD(n,<1) = ospD(n,<2)
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Order Invariance - Examples

For a binary language define

φ1 = ∀x∀y(ϕsucc(x, y) → (P (x) → ¬P (y)))

where ϕsucc means y is the succesor of x.

ϕsucc(x, y) = (x <1 y) ∧ (∀z[(x <1 z ∧ z ̸= y) → y <1 z])

This formula says that the word doesn’t contain two consecutive
”1”s.

If f is the FOL1-ordered Specker function defined for φ1, then an
easy calculation shows that

f(n) = Fib(n+1)
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Linear Recurrence Relations

for

Lk-Specker Function
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Example - F (n) = 2 · F (n− 1) + F (n− 2)

Lets first look at an example using the linear recurrence

F (n) = 2 · F (n− 1) + F (n− 2)
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Example - F (n) = 2 · F (n− 1) + F (n− 2)

There are 5 routes that go from the root to one of the leaves.

(5,4,3,2), (5,4,3,1), (5,4,2), (5,3,2), (5,3,1)

The value of F (5) is 23F (2) + F (1) + F (2) + 2F (2) + F (1)

Each route is a sequence of choices in the recursion formula.

For example, the first route from the left, always choose 2·F (n−1).

The second from the left, first choose 2·F (n−1) and then F (n−2).
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Example - F (n) = 2 · F (n− 1) + F (n− 2)

Each route can be thought of as a partition of the set {1,2,3,4,5}
to three sets:

(i) The set of its internal vertices. This can be subdivided into
the vertices corresponding to the choice of 2F (n−1) and the
vertices corresponding to F (n− 2).

(ii) The (singleton) set of the leaf.

(iii) All the other numbers that do not appear in the route.
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Example - F (n) = 2 · F (n− 1) + F (n− 2)

We return to the general case

f(n+ k) =
k−1∑
i=0

aif(n+ i); ai ∈ Z

For a route P , we denote by ti the number of times the route
chose to go down in the tree using aif(n + i), then P contribute
to f(n)

at00 · at11 ...a
tk−1

k−1 · f(βn) =
t0∏

j=1

a0 ·
t1∏

j=1

a1...

tk∏
j=1

ak · f(βn)

Where f(βn) is an initial condition.

In the end, we sum over all the routes. This leads us to the next

definition:
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Lk-Specker polynomials

Definition:

(i) A Lk Specker polynomial A(n, x̄) in indeterminate set x̄ has
the form

∑
R1:Φ1(R1)

· · ·
∑

Rt:Φt(R1,...,Rt)

 ∏
v1,...,vk:Ψ1(R̄,v̄)

xm1 · · ·
∏

v1,...,vk:Ψl(R̄,v̄)

xml


where v̄ stands for (v1, ..., vk), R̄ stands for (R1, ..., Rt) and the
Ri’s are relation variables of arity ρi at most k.

Each Ri range over relations of arity ρi over [n] and the vi
range over elements of [n] satisfying the iteration formulas
Φi,Ψi ∈ L

(ii) Order invariant Lk-Specker polynomial are defined analogously
to Specker functions.
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Lk-Specker polynomials - Examples

• If f is a Specker function that counts R̄-structure which satisfy
φ(R̄), then we can write f(n) =

∑
R̄:φ(R̄) 1 so the Specker

polynomial is a generalization of the Specker function.

• Let P be a unary relation then the Specker Polynomial∑
P :true(P )

∏
v:P (v)

x =
∑

P :true(P )

x|P | =
n∑

m=0

(n

m

)
xm

is the generating function for the binom function fn(m) =
(
n
m

)
.

26



Logical Methods in Combinatorics, 236605-2009/10 Lecture ?

Lk-Specker polynomials

First we show that Specker Polynomials behave nicely under vari-
able substitution with polynomials.

Lemma 4
Let A(n, z̄) ba a c.o.i MSOL1-Specker polynomial with indetermi-
nates z̄ = (z1, ..., zs) where hi(w̄) ∈ Z.

Let A(n, (h1(w̄), ..., hs(w̄))) denote the variable substitution in A(n, z̄)
where for i ∈ [s], zi is substituted to hi(w̄).

Then A(n, h̄) is an integer evaluation of a counting order invariant
MSOL1-Specker polynomial.
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Proof of Lemma 4

We show the lemma is true for substituting z1 by h1(w̄), and the
lemma will follow by induction. Write

h1(w̄) =
d∑

j=1

cjw
αj,1

1 · · ·wαj,t

t

The indeterminate z1 shows in the Specker polynomial as
∏

v1:Ψ1(R̄,v1)

z1.

After substituting z1 by h1(w̄), we will get d∑
j=1

cjw
αj,1

1 · · ·wαj, t

t

 d∑
j=1

cjw
αj,1

1 · · ·wαj, t

t

 · · ·

 d∑
j=1

cjw
αj,1

1 · · ·wαj, t

t


each monom in the result of the above product, is a multiplication

of monoms from each of the copies of h1.
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Proof of Lemma 4 - Cont.

In other words, each monom in the result can be written as∏
v1∈U1

c1w
α1,1

1 · · ·wα1, t

t ·
∏
v1∈U2

c2w
α2,1

1 · · ·wα2, t

t · · ·
∏
v1∈Ud

cdw
αd,1

1 · · ·wαd, t

t

where (U1, U2, ..., Ud) is a partition of the elements of [n] which
satisfy Ψ1(R̄, v1) - we denote this formula by ϕPart(Ψ1)(Ū).

Now we only need to sum over all partitions, so

A(n, (h1(w̄), z2, ..., zs)) =∑
R1:Φ1(R1)

· · ·
∑

Rt:Φt(R̄)

∑
Ū :ϕPart(Ψ1)(Ū) ∏

v1:Ψ2(R̄,v1)

z2 · · ·
∏

v1:Ψs(R̄,v1)

zs ·
∏
v1∈U1

c1w
α1,1

1 · · ·wα1, t

t · · ·
∏
v1∈Ud

cdw
αd,1

1 · · ·wαd, t

t


where Ū = (U1, U2, ..., Ud). Notice that ϕPart(Ψ1)(Ū) is in MSOL1.

29



Logical Methods in Combinatorics, 236605-2009/10 Lecture ?

Proof of Lemma 4 - Cont.

To complete the proof we see that

∏
v1:θ

cjw
αj,1

1 · · ·wαj, t

t =
∏
v1:θ

cj


aj,1 times︷ ︸︸ ︷∏

v1:θ

w1 · · ·
∏
v1:θ

w1

 · · ·


aj, t times︷ ︸︸ ︷∏

v1:θ

wt · · ·
∏
v1:θ

wt


We can now substitute all the ci with new indeterminates, and so
A(n, (h1(w̄), z2, ..., zs)) is an evaluation of an counting order invari-
ant MSOL1-Specker polynomial.
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

The next theorem shows the connection between polynomials with
linear recurrence and and the Specker polynomials

Theorem 5
Let An(x̄) be a sequence of polynomials with finite indeterminate
set x̄ = (x1, ..., xs) which satisfies a linear recurrence over Z[x̄].

Then, there exists a counting order invariant MSOL1-Specker poly-
nomial A′(n, x̄, ȳ) such that An(x̄) = A′(n, x̄, ā) where
ā = (a1, ..., al) ∈ Zl.
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

Proof:

An(x̄) has linear recurrence so we write

An(x̄) =
r∑

i=1

fi(x̄)An−i(x̄) fi(x̄) ∈ Z[x̄]

A1(x̄), A2(x̄), ..., Ar(x̄) ∈ Z[x̄]

In order to evaluate An(x̄) we need first to evaluate An−i1(x̄) for
all i1 ∈ 1, ..., r.

In the same manner, in order to evaluate An−i1(x̄) we need first to
evaluate An−i1−i2(x̄) for all i2 ∈ 1, ..., r.

We can continue this until we reach an initial condition.
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

We define a path in the recurrence tree to be

(An(x̄), An−i1(x̄), An−i1−i2(x̄), ..., An−i1−i2−...−ilx̄)

where ik ∈ [r] and An−i1−i2−...−il(x̄) is an initial condition.

Finally, to evaluate An(x̄) we need to sum up over all the recurrence
pathes.
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

A recurrence path is defined by the numbers T = (i1, i2, ..., il).

It contributes

f1(x̄)
#(1,T ) · · · fr(x̄)#(r,T )An−

∑
ik
(x̄)

where #(j, T ) counts the number of times j appears in T .

For each path we partition [n] to three subsets

• Ū = (U1, U2, ..., Ur) - where Uj is all the k such that Ak appears
in the path where the next polynomial in the path is Ak−j (and
in particular we get that k /∈ [r] - it’s not one of the initial
conditions)

• Ī = (I1, I2, ..., Ir) - where Ij = {j} if Aj is the initial condition
in the path, and Ij = ∅ otherwise.

• S = [n] \ (
∪

Uj ∪
∪

Ij) - the rest of [n].
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

We now write An(x̄) as

An(x̄) =
∑

Ū ,Ī,S,ϕrec(Ū ,Ī,S)

∏
v:v∈U1

f1(x̄) · · ·
∏

v:v∈Ur

fr(x̄)·
∏

v:v∈I1

A(1, x̄) · · ·
∏

v:v∈Ir

A(r, x̄)

Where ϕrec(Ū , Ī, S) says

(i)
(
Ū , Ī, S

)
form a partition for [n].

(ii) n ∈
∪

Uj - the recurrence path start with n.

(iii) |
∪

Ij| = 1 - there is only one initial condition in the path.

(iv) if v ∈ [n] \ [r] then v /∈
∪

Ij, and if v ∈ [r] then v /∈
∪

Uj - the
path must go through vertices in Ū and reach an end when
v ∈ [r].

(v) for every v ∈ Uj, the vertices {v− 1, v− 2, ..., v− (j − 1)} are in
S, and v − j ∈ (

∪
Uj ∪

∪
Ij)
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Linear recurrence ⇒ c.o.i MSOL1-Specker polynomial

Next, we define

B(n, x̄) =
∑

Ū ,Ī,S,ϕrec(Ū ,Ī,S)

∏
v:v∈U1

z1 · · ·
∏

v:v∈Ur

zr ·
∏

v:v∈I1

zr+1 · · ·
∏

v:v∈Ir

z2r

ϕrec is MSOL1 definable, so B(n, z̄) is a counting order invariant
MSOL1-Specker polynomial.

By the previous lemma we have that

An(x̄) = B(n, (f1(x̄), ..., fr(x̄), A(1, x̄), ..., A(r, x̄)))

is an evaluation in Z of a c.o.i MSOL1-Specker polynomial.
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Main Theorem
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Main Theorem

At last, we wish to characterize the functions f : N → N which
satisfy a linear reccurence.

Theorem 6
Let f be a function over N. Then f satisfies a linear recurrence
relation over Z iff

f = f1 − f2

where f1, f2 are two counting order invariant MSOL1-Specker func-
tions.
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f = f1 − f2; f1, f2 c.o.i ⇒ f satisfy linear recurrence

Proof:
First assume that f = f1−f2 where f1, f2 are c.o.i MSOL1-Specker
functions.

From theorem 3 we have that f1, f2 satisfies a linear recurrecne
relation over Z.

It can be shown that the difference of two linear recurrence series
also has linear recurrence relation, thus we get that the function
f satisfies a linear recurrence over Z.
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f satisfy linear recurrence ⇒ f = f1 − f2; f1, f2 c.o.i

Assume now that f has a linear recurrence over Z.

From the previous theorem, f is an evaluation of a c.o.i MSOL1-
Specker polynomial

f(n) = A(n, ā); ā = (a1, a2, ..., al) ∈ Zl

The main idea behind the proof is that for a set Y , and a non
negative integer a ≥ 0, a|Y | counts the number of partition of Y to
a disjoint subsets.

We shall prove the theorem for one indeterminate, and the general
case is similar.
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f satisfy linear recurrence ⇒ f = f1 − f2; f1, f2 c.o.i

Let

A(n, y) =
∑

R:Φ(R)

∏
v:Ψ(R,v)

y

We define the set Y to be all the v such that Ψ(R, v).

This can be defined in MSOL1 by

Ψ′(Y,R) = ∀v(v ∈ Y ⇐⇒ Ψ(R, v))

For a non negative a ≥ 0 denote Z̄ = (Z1, Z2, ..., Za) then the
formula ϕpart(Y, Z̄) which says that Y is the disjoint union of Zi is
MSOL1 definable.
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f satisfy linear recurrence ⇒ f = f1 − f2; f1, f2 c.o.i

As stated before we have for a fixed Y the equation

a|Y | = |{Z̄ | ϕpart(Y, Z̄)}| =
∑

Z̄:ϕpart(Y,Z̄)

1

We now sum it all up

A(n, a) =
∑

R:Φ(R)

∏
v:Ψ(R,v)

a =
∑

R,Y :Φ(R)∧Ψ′(Y,R)

∏
v:v∈Y

a

=
∑

R,Y :Φ(R)∧Ψ′(Y,R)

a|Y | =
∑

R,Y,Z̄:Φ(R)∧Ψ′(Y,R)∧ϕpart(Y,Z̄)

1

=
∑

R,Y,Z̄:βa(R,Y,Z̄)

1 = |{R, Y, Z̄ | βa(R, Y, Z̄)}|

where βa(R, Y, Z̄) = Φ(R) ∧Ψ′(Y,R) ∧ ϕpart(Y, Z̄)
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f satisfy linear recurrence ⇒ f = f1 − f2; f1, f2 c.o.i

This shows that if f is the evaluation at a non-negative a ≥ 0,
then it is a c.o.i MSOL1 Specker Polynomial.

Because the constant function 0 is also a c.o.i MSOL1 Specker
function, then f is the difference of two c.o.i MSOL1 Specker
function.

If a < 0 in a similar way we get

A(n, a) =
∑

R,Y,Z̄:β|a|(R,Y,Z̄)

(−1)|Y |

=
∑

R,Y,Z̄:β|a|(R,Y,Z̄)∧ϕeven(Y )

1−
∑

R,Y,Z̄:β|a|(R,Y,Z̄)∧¬ϕeven(Y )

1

= |{R, Y, Z̄ | β|a|(R, Y, Z̄) ∧ ϕeven(Y )}|
−|{R, Y, Z̄ | β|a|(R, Y, Z̄) ∧ ¬ϕeven(Y )}|

Using the order < we have on [n] we can write ϕeven in MSOL1, and
so we have that for all a ∈ Z, the evaluation at a is the difference
of two c.o.i MSOL1 Specker function.
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Main Theorem - Examples

(i) The Fibonacci sequence satisfy F (n+2) = F (n+1)+ F (n),
hence it is the difference of two c.o.i MSOL1 Specker function.

(ii) This theorem generalize theorem 3 - the function g ≡ 0 is
c.o.i MSOL1 Specker function, so every c.o.i MSOL1 Specker
function f satisfy a linear recurrence relation, since f = f−0 =
f − g.
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