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Outline, II

First we give a reminder of the 0-1 law. We define ESO and

MESO and give a simple counter example to prove that the 0-1

law fails for ESO.

Next we prove that the 0-1 law still fails for MESO. Afterwards

we see how to modify the proof so the failure of MESO on

undirected graphs is established.

Finally we present restrictions that can be considered on ESO

(and MESO).
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Introduction

• 0-1 law: A reminder

• Definitions: ESO and MESO

• 0-1 law fails for ESO
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0-1 law: A reminder

Let R be a vocabulary and P be a property on the collection of

all finite structures over R.

• µn(P) denotes the fraction of finite models with domain

n = {0, ..., n− 1}.

• µ(P) = limn→∞µn(P) is called the asymptotic probability

of P.

• We say that the 0-1 law holds for a logic if the asymptotic

probability of any property which is expressible in this logic

is either 0 or 1.
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Definitions: ESO and MESO

• An existential second-order sentence over a vocabulary R is an expression
ψ of the form ∃Sϕ(R∪S), where S is a set of relation variables and ϕ(R∪S)
is a first-order sentence over R∪ S.

• Existential second-order logic, denoted by ESO, is the set of such ex-
pressions.

• The sentence ψ is said to be monadic when S is a set of unary relation
variables.

• Similarly, MESO, monadic existential second-order logic, denotes the set
of such expressions.
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0-1 law fails for ESO

• We need to find an ESO sentence which has no limit probability (or which
is not equal to 0 or 1).

• PARITY is definable in ESO and has no limit probability.

• The following sentence is in ESO and it expresses PARITY :

∃S∀x∃y∀z(S(x, y) ∧ ¬S(x, x) ∧ S(x, z) → y = z ∧ S(x, z) ↔ S(z, x))

This sentence says that there is a permutation S in which every element
has order 2.

• S is not monadic, so this is not a counter example for MESO. However,
PARITY is definable in MESO as we will see in the next section.

• We will meet this sentence again in the Additional remarks section.
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0-1 law fails for MESO

• Idea of the proof

• Definitions

• Lemmas 1-3

• Main Lemma

• Theorem 1

• Remarks
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Idea of the proof

• We will prove that the 0-1 law fails for MESO by defining PARITY .

• It will be easy to define PARITY once we have a linear order of the
universe. This is the Main Lemma.

• The proof of the Main Lemma consists on extending a linear order from
a small part of the structure to the whole structure by using several times
the lexicographic order.

• This is done by using Lemmas 1-3. We use Lemma 1 to say that the
existence of the small part is almost always true (it has limit probability
1). Lemmas 2 and 3 are used to say that it is almost always true that
we can extend the linear order.
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Definitions

Let A and B be subsets of a structure (C;R, ...), where R is

binary.

(i) For b ∈ B, we say that b R-codes {a ∈ A :< a, b >∈ R} with

respect to A.

(ii) We say that B codes distinct subsets of A if no two elements

of B code the same subset of A.

(iii) We say that B codes the power set of A if B codes distinct

subsets ofA and moreover every subset of A is coded by an

element of B.
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Lemma 1, I

Lemma 1. Let R be an arbitary binary relation on {0,1, ..., k−1},

and let n be an integer greater than k2 · 4k. Let p be the prob-

ability that some substructure of a random model of the form

({0, ..., n−1};R′) contains an isomorphic copy of ({0,1, ..., k − 1};R).

Then p approaches 1 as k approaches infinity.
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Lemma 1, II

Proof:

• We build the requested isomorphic embedding.

• Let a = k · 4k, A = {0, ..., a · k} ⊆ {0, ..., n− 1}.

• Partition A into k pieces each of size a.

• At each step 1 ≤ i ≤ k attemp to extend the embedding by mapping i to
some element of the ith piece of the partition.

• Assume we try to add e at step i. Let {e1, ..., ei−1} be the elements
that were already chosen. The probability that e lies in the appropriate
relation with itself is 1

2
, and for each ej, 1 ≤ j ≤ i − 1, it is 1

4
. Thus the

probability of failure at step i is (1− 1
2
· (1

4
)i−1)a ≤ (1− (1

4
)k)a.

• Hence the probability of failure is bounded above by k · (1 − (1
4
)k)a =

k · (1− (1
4
)k)k·4

k

, which approaches 0 as k approaches infinity.
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Lemma 2, I

Lemma 2. If S ⊆ T ⊆ A, where (A;R, ...) is a finite structure,

and if |T | ≥ |S| ·2|S| then with limit probability 1, some subset T ′

of T codes the power set of S.
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Lemma 2, II

Proof:

• We show that with limit probability 1, every subset Si, 1 ≤ i ≤ 2|S|, is
coded by (at least) one element, ei, of T. Then T ′ = {ei : 1 ≤ i ≤ 2|S|}.

• Let S′ be a subset of S.

• For each t ∈ T the probability it codes S′ is 1
2|S|. Thus the probability that

S′ is not coded by an element of T is (1− 1
2|S|)

|T | ≤ (1− 1
2|S|)

|S|·2|S|

.

• Hence, using union-bound, the probability that there is a subset of S
which is not coded by any element of T is bounded by 2|S| · (1− 1

2|S|)
|S|·2|S|

.

• The second factor is asymptotic with 1
e|S|

, so the limit is 0.
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Lemma 3, I

Lemma 3. Suppose that S and T are subsets of a structure

(A;R,S, T, ...) in which T codes distinct subsets of S and such

that there is a first-order definable total order < on S. Then

there is a first-order definable total order on T .

Proof: We define a total order << on T as follows: x << y iff x 6= y and for

a equal to the <-least member of the symmetric difference of the sets coded

by x and y, a is not in x.
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Lemma 3, II

• By its defenition, << is not reflexive.

• << is total since for distinct x1, x2 ∈ T , x1 << x2 or x2 << x1 (the
symmetric difference is not empty because T codes distinct subsets of
S). Also the <-least element in the symmetric difference does not belong
to x1 and x2, so << is not symmetric.

• << is transitive. For x, y, z ∈ T s.t. x << y and y << z we need to prove
that x << z.
Let X,Y and Z be the subsets coded by x, y and z respectively. For U ⊆ T
let mU be the <-least element in U .
Assume by contradiction that z << x, so mX⊕Z ∈ X.
If mX⊕Z ∈ Y :
mX⊕Z ∈ Y ⊕ Z ⇒ mY⊕Z < mX⊕Z ⇒ mY⊕Z ∈ X ⇒ mY⊕Z ∈ X ⊕ Y ⇒ mX⊕Y <
mY⊕Z ⇒ mX⊕Y ∈ Z ⇒ mX⊕Y ∈ X ⊕ Z ⇒ mX⊕Z < mX⊕Y ⇒ mX⊕Y < mX⊕Y .
Similarly, we can get a contradiction if mX⊕Z is not in Y .
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Main Lemma, I

Main Lemma. There is a first-order formula φ(x, y) in a vocab-

ulary which includes a sequence of unary relation symbols P and

binary relation symbols R,R0, R1 and R2 such that the following

sentence has limit probability 1:

(∃P ) 1“φ(x, y) defines a linear order of the universe”

1 ∀xy[(φ(x, y)∧¬φ(y, x))∨(φ(y, x)∧¬φ(x, y))]
∧

∀xyz[(φ(x, y)∧φ(y, z)) → φ(x, z)]
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Main Lemma, II

Proof:

• Fix a structure (A;R,R0, R1, R2), and pick k s.t. |A| ≥ 2k · 22k = 2k · 4k

and |A| < 2k+1 · 22k+1

.

• 2k · 4k exceeds k2 · 4k for sufficiently large k. Thus, by Lemma 1, we
choose (with limit probability 1) P0 ⊆ A of power k s.t. the restriction of
R to P0 is a total order.

• By Lemma 2 we choose (with limit probability 1) P1 ⊆ A which R0-codes
the power set of P0 (|A| ≥ k · 2k = |P0| · 2|P0|), and then P2 ⊆ A which

R1-codes the power set of P1 (|A| ≥ 2k · 22k = |P1| · 2|P1|).

• Define P3 = A. Let {d1, d2} be a fixed pair of distinct elements of P3.

• d1 and d2 R2-code the same subset of P2 with probability 2−|P2| = 2−22k

.

• The number of pairs {d1, d2} is less than n2 < 22·(k+1) · 22k+2

.
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Main Lemma, III

• Thus the probability of having a pair {d1, d2} which R2-codes the same

subset of P2 is less than 2−22k

· 22·(k+1) · 22k+2

= 2−(4k−4·2k−2·(k+1)).

• This term goes to 0 as n goes to infinity, so with probability 1 P3 R2-codes
distinct subsets of P2.

• Pi+1 Ri-codes distinct subsets of Pi for i = 0,1,2. Thus by succes-
sive applications of Lemma 2, there is a formula in the vocabulary
{R,R0, R1, R2, P0, P1, P2} which defines a total order of the universe, and
this is the desired formula φ(x, y).
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Main Lemma, IV

We show how to construct the formula φ according to the proof of the Main
Lemma:

• LO0(a0,b0) , R(a0,b0)
The linear order on P0 (according to Lemma 1).

• For 1 ≤ i ≤ 3:

– CSi(x, a) , Ri−1(a,x) ∧Pi−1(a)
a belongs to the set that x Ri−1-codes with respect to Pi−1.

– SYMi(x,y, a) , (CSi(x, a) ∧ ¬CSi(y, a)) ∨ (CSi(y, a) ∧ ¬CSi(x, a))
a belongs to the symmetric difference between the sets that x and y
Ri−1-code with respect to Pi−1.

– LOi(ai,bi) , (ai 6= bi)∧∀ai−1[[SYMi(ai,bi, ai−1)∧¬∃bi−1(SYMi(ai,bi,bi−1)∧
LOi−1(bi−1, ai−1))] → ¬CSi(ai, ai−1)]
The linear order on Pi (constructed according to Lemma 3).

• φ(x,y) , LO3(x,y)
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Main Lemma, V

The number of first-order variables:

• LO0 uses 2 first-order variables, and for 1 ≤ i ≤ 3, LOi uses

LOi−1 variables and adds another 2.

• φ(x, y) uses 8 first-order variables.

• The sentence in the Main Lemma uses 9 first-order variables

(it uses φ(x, y) variables and adds another 1).
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Theorem 1

Theorem 1. There is a sentence of MESO which has no limit probability.

Proof: We use the following sentence, where φ is as in the Main Lemma. It
says of a finite structure that its universe has an odd number of elements.

(∃P )(∃Q)[“φ(x, y) defines a linear order of the universe s.t. Q contains every
other element, including the first and last”]

Remarks:

• The formula: ∀x[(¬∃y(φ(x, y)∨φ(y, x))) → Q(x)]∧∀xy(φ(x, y) → ((Q(x)∨
Q(y)) ∧ ¬(Q(x) ∧Q(y)))]

• We use 9 first-order variables.
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Remarks, I

• We can get a sentence of limit probability 1
2

by modifying the previous
sentence to say that Q contains every other element of the restriction
of this linear order to an arbitry set S (a unary relation symbol of the
vocabulary), including the first and last elements of S.

• The number of options to choose a subset S from the universe that has
an even power is equal to this number when the subset S we choose has
an odd power. The sentence above says that S has an odd power, so its
limit probability is indeed 1

2
.

• This idea can be extended to prove the following theorem:

Theorem 2. For every relational number r in the interval [0,1] there is
a sentence of MESO which has limit probability r.
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Remarks, II

• A universal monadic second-order sentence over a vocabulary R is an
expression ψ of the form ∀Sϕ(R ∪ S), where S is a set of unary relation
variables and ϕ(R∪ S) is a first-order sentence over R∪ S.

• We can get an example of a sentence in this set that has no limit prob-
ability by using the sentence in the proof of Theorem 1:

(∀P )(∀Q)¬[“φ(x, y) defines a linear order of the universe s.t. Q contains
every other element, including the first and last”]

• Hence the 0-1 law fails for the set of such expressions.
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0-1 law fails for MESO on undirected graphs

• How to reduce the number of the binary relations

• A counter example on undirected graphs
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How to reduce the number of the binary relations

• First of all, we want to reduce the number binary relations since undi-
rected graphs have one binary relation. In the previous section we used
four binary relations: R,R0, R1 and R2.

• We considered distinct binary relations because of the hypothesis S ⊆ T in
Lemma 2. We proved for i = 1,2 that Pi Ri−1-codes the power set of Pi−1

and P3 R2-codes distinct subsets of P2. We had P0 ⊂ P1 ⊂ P2 ⊂ P3 = A.

• We need Pi 0 ≤ i ≤ 3 to be disjoint subsets.

• We change Lemma 2 to Lemma 4 below (with the same proof):
Lemma 4. If S and T are disjoint subsets of A where (A;R, ...) is a finite
structure, and if |T | ≥ |S| · 2|S| then with limit probability 1, some subset
T ′ of T codes the power set of S.

• The proof of Theorem 1 is similar, we just use Lemma 4 instead of
Lemma 2 and define P3 = A \ (P0 ∪P1 ∪P2) (P3 codes distinct subsets of
P2 using the same proof), so the vocabulary R = {R}.
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A counter example on undirected graphs, I

• Now our R-structure is an undirected graph Gn =< Vn, En >.

• The only place in the proof that has to be changed is where we use
Lemma 1 in the proof of the Main Lemma.

• E is symmetric, we can’t choose (with limit probability 1) P0 ⊆ V of
power k s.t. the restriction of E to P0 is a total order.

• However, we can use Lemma 1 to choose (with limit probability 1) P0 ⊆ V
of power k s.t. the restriction of E to P0 is a graph on which we can
easily define a total order.

• We prove the following Lemma 5:
Lemma 5. There is a sequence Hm, m ≥ 2 of undirected graphs of
cardinality m and a MESO sentence ∃V ∃Wψ(V,W ), where V and W are
unary relation variables, which defines a linear order of the vertices over
these graphs.

Thus the graph we need is Hk.
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A counter example on undirected graphs, II

Proof:

• First we define the sentence ∃V ∃Wψ(V,W ) over undirected graphs.

• Let v and v′ be distinct elements of V and Wv and Wv′ be the subsets of W E-coded
respctively by v and v′.

• ∀w((W (w) ∧ E(v, w)) → E(v′, w)) expresses that Wv ⊆ Wv′ and ∃w(W (w) ∧ E(v′, w) ∧
¬E(v, w)) expresses that this inclusion is strict.

• Let ϕ≺(W, v, v′) denote the conjuction of this two formulas. By inverting the role of V
and W , we define similarly ϕ≺(V,w,w′), for distinct elements w,w′ of W .

• Let ψ(V,W ) denote a first-order formula which expresses that (V,W ) form a partition
of the set of vertices and ϕ≺(W, v, v′) (resp. ϕ≺(V,w,w′)) is a linear order over V (resp.
W ).

• Provided that an undirected graph satisfies ∃V ∃Wψ(V,W ), we obtain a linear order over
the whole domain by choosing, for example, v ≺ w, for v ∈ V and w ∈W .
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A counter example on undirected graphs, III

• Now we exhibit an undirected bipartite graph Hm of cardinality m, for
any m ≥ 2.

• Suppose m = 2l, the set of vertices of Hm is divided into two sets V =
{v1, ..., vl} and W = {w1, ..., wl} and there is no edge between vertices of
V and between vertices of W .

• We add edges between V and W as follows: vi is adjacent to w1, ..., wl−i+1

for i = 1...l. Observe that this construction is symmetric, we obtain the
same graph if we invert V with W . (for 1 ≤ j, i ≤ l there is an edge
between wj and vi iff 1 ≤ j ≤ l − i+1, so we get 1 ≤ i ≤ l − j +1).

• Suppose m = 2l+ 1, we build Hm from H2l defined above by adding an
isolated vertex vl+1 in V .

• For vi, vj ∈ V s.t. i < j, {w1, ..., wl−j+1} = Wj ⊂ Wi = {w1, ..., wl−i+1}, and
similarly for two vertices in W .

• ∃V ∃Wψ(V,W ) holds for Hm.
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A counter example on undirected graphs, IV

Remark. The changes in φ:

• Instead of R,R0, R1, R2 we write E.

• LO0 is different:
LO0(x, y) = (V (x) ∧W (y)) ∨ (V (x) ∧ V (y) ∧ ϕ≺(V, x, y)) ∨ (W (x) ∧W (y) ∧
ϕ≺(W,x, y))

• φ is different (it is not LO3):
φ(x, y) = (P0(x) ∧ ¬P0(y)) ∨ (P1(x) ∧ ¬P0(y) ∧ ¬P1(y)) ∨ (P2(x) ∧ P3(y)) ∨
(P0(x) ∧ P0(y) ∧ LO0(x, y)) ∨ (P1(x) ∧ P1(y) ∧ LO1(x, y)) ∨ (P2(x) ∧ P2(y) ∧
LO2(x, y)) ∨ (P3(x) ∧ P3(y) ∧ LO3(x, y))
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Additional remarks

• Restrictions on the number of first-order variables

• Restrictions on the quatifier prefix of the first-order part
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Restrictions on the number of first-order variables

• The counter example we saw (the unmodified one for MESO) requires
9 first-order variables (the modifications add first-order variables).

• Let MESO2 be the set of MESO sentences with at most 2 first-order
variables.

• The 0-1 law fails for MESO2.

• It is not proved whether the 0-1 law fails or holds for MESO2 on undi-
rected graphs.
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Restrictions on the quatifier prefix of the
first-order part, I

• Another possibility is to define fragments of ESO (or MESO) by consid-
ering restrictions on the quantifier prefixes of the first-order part. Some
nontrivial restrictions of ESO have the 0-1 law.

• An ESO sentence can be written as ∃X1...∃XnQ1x1...Qmxmϕ(X1, ..., Xm, x1, ..., xm)
where each Qi is ∀ or ∃, and ϕ is quatifier-free.

• If r is a regular expression over the alphabet {∃, ∀}, by ESO(r) we denote
the set of all sentences s.t. the string Q1, ..., Qm is in the language denoted
by r.

• Examples of ESO fragments that have the 0-1 law:

– ESO(∃∗∀∗)

– ESO(∃∗∀∃∗)
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Restrictions on the quatifier prefix of the
first-order part, II

• Examples of ESO fragments that don’t have the 0-1 law:

– ESO(∀∀∃)

– ESO(∀∃∀)

• We proved the second example above. The sentence we used to prove
that the 0-1 law fails for ESO in the Introduction section is in ESO(∀∃∀).

• Actually both of the examples don’t have the 0-1 law even if the first-
order part does not use equality.
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