0-1 Law for Existential Monadic Second Order Logic: Counter Examples

Meirav Zehavi
301618492
meizeh@cs.technion.ac.il

Outline, I

- Introduction
- 0-1 law fails for MESO
- 0-1 law fails for $M E S O$ on undirected graphs
- Additional remarks
- References

Outline, II

First we give a reminder of the 0-1 law. We define ESO and $M E S O$ and give a simple counter example to prove that the 0-1 law fails for $E S O$.
Next we prove that the 0-1 law still fails for $M E S O$. Afterwards we see how to modify the proof so the failure of $M E S O$ on undirected graphs is established.
Finally we present restrictions that can be considered on $E S O$ (and MESO).

Introduction

- 0-1 law: A reminder
- Definitions: ESO and MESO
- 0-1 law fails for $E S O$

0-1 law: A reminder

Let \mathcal{R} be a vocabulary and \mathcal{P} be a property on the collection of all finite structures over \mathcal{R}.

- $\mu_{n}(\mathcal{P})$ denotes the fraction of finite models with domain $n=\{0, \ldots, n-1\}$.
- $\mu(\mathcal{P})=\lim _{n \rightarrow \infty} \mu_{n}(\mathcal{P})$ is called the asymptotic probability of \mathcal{P}.
- We say that the 0-1 law holds for a logic if the asymptotic probability of any property which is expressible in this logic is either 0 or 1.

Definitions: ESO and MESO

- An existential second-order sentence over a vocabulary \mathcal{R} is an expression ψ of the form $\exists \mathcal{S} \varphi(\mathcal{R} \cup \mathcal{S})$, where \mathcal{S} is a set of relation variables and $\varphi(R \cup S)$ is a first-order sentence over $\mathcal{R} \cup \mathcal{S}$.
- Existential second-order logic, denoted by $E S O$, is the set of such expressions.
- The sentence ψ is said to be monadic when \mathcal{S} is a set of unary relation variables.
- Similarly, MESO, monadic existential second-order logic, denotes the set of such expressions.

0-1 law fails for $E S O$

- We need to find an ESO sentence which has no limit probability (or which is not equal to 0 or 1).
- PARITY is definable in $E S O$ and has no limit probability.
- The following sentence is in ESO and it expresses PARITY:

$$
\exists S \forall x \exists y \forall z(S(x, y) \wedge \neg S(x, x) \wedge S(x, z) \rightarrow y=z \wedge S(x, z) \leftrightarrow S(z, x))
$$

This sentence says that there is a permutation S in which every element has order 2.

- S is not monadic, so this is not a counter example for $M E S O$. However, PARITY is definable in MESO as we will see in the next section.
- We will meet this sentence again in the Additional remarks section.

0-1 law fails for MESO

- Idea of the proof
- Definitions
- Lemmas 1-3
- Main Lemma
- Theorem 1
- Remarks

Idea of the proof

- We will prove that the 0-1 law fails for $M E S O$ by defining PARITY.
- It will be easy to define PARITY once we have a linear order of the universe. This is the Main Lemma.
- The proof of the Main Lemma consists on extending a linear order from a small part of the structure to the whole structure by using several times the lexicographic order.
- This is done by using Lemmas 1-3. We use Lemma 1 to say that the existence of the small part is almost always true (it has limit probability 1). Lemmas 2 and 3 are used to say that it is almost always true that we can extend the linear order.

Definitions

Let A and B be subsets of a structure $(C ; R, \ldots)$, where R is binary.
(i) For $b \in B$, we say that $b R$-codes $\{a \in A:<a, b>\in R\}$ with respect to A.
(ii) We say that B codes distinct subsets of A if no two elements of B code the same subset of A.
(iii) We say that B codes the power set of A if B codes distinct subsets of A and moreover every subset of A is coded by an element of B.

Lemma 1, I

Lemma 1. Let R be an arbitary binary relation on $\{0,1, \ldots, k-1\}$, and let n be an integer greater than $k^{2} \cdot 4^{k}$. Let p be the probability that some substructure of a random model of the form ($\{0, \ldots, n-1\} ; R^{\prime}$) contains an isomorphic copy of $(\{0,1, \ldots, k-1\} ; R$). Then p approaches 1 as k approaches infinity.

Lemma 1, II

Proof:

- We build the requested isomorphic embedding.
- Let $a=k \cdot 4^{k}, A=\{0, \ldots, a \cdot k\} \subseteq\{0, \ldots, n-1\}$.
- Partition A into k pieces each of size a.
- At each step $1 \leq i \leq k$ attemp to extend the embedding by mapping i to some element of the $i^{\text {th }}$ piece of the partition.
- Assume we try to add e at step i. Let $\left\{e_{1}, \ldots, e_{i-1}\right\}$ be the elements that were already chosen. The probability that e lies in the appropriate relation with itself is $\frac{1}{2}$, and for each $e_{j}, 1 \leq j \leq i-1$, it is $\frac{1}{4}$. Thus the probability of failure at step i is $\left(1-\frac{1}{2} \cdot\left(\frac{1}{4}\right)^{i-1}\right)^{a} \leq\left(1-\left(\frac{1}{4}\right)^{k}\right)^{a}$.
- Hence the probability of failure is bounded above by $k \cdot\left(1-\left(\frac{1}{4}\right)^{k}\right)^{a}=$ $k \cdot\left(1-\left(\frac{1}{4}\right)^{k}\right)^{k \cdot 4^{k}}$, which approaches 0 as k approaches infinity.

Lemma 2, I

Lemma 2. If $S \subseteq T \subseteq A$, where ($A ; R, \ldots$) is a finite structure, and if $|T| \geq|S| \cdot 2^{|S|}$ then with limit probability 1 , some subset T^{\prime} of T codes the power set of S.

Lemma 2, II

Proof:

- We show that with limit probability 1 , every subset $S_{i}, 1 \leq i \leq 2^{|S|}$, is coded by (at least) one element, e_{i}, of T. Then $T^{\prime}=\left\{e_{i}: 1 \leq i \leq 2^{|S|}\right\}$.
- Let S^{\prime} be a subset of S.
- For each $t \in T$ the probability it codes S^{\prime} is $\frac{1}{2^{|s|}}$. Thus the probability that S^{\prime} is not coded by an element of T is $\left(1-\frac{1}{2^{|S|}}\right)^{|T|} \leq\left(1-\frac{1}{2^{|s|}}\right)^{|S| \cdot 2^{|S|}}$.
- Hence, using union-bound, the probability that there is a subset of S which is not coded by any element of T is bounded by $2^{|S|} \cdot\left(1-\frac{1}{2^{S \mid}}\right)^{|S| \cdot 2^{|S|}}$.
- The second factor is asymptotic with $\frac{1}{e^{S \mid}}$, so the limit is 0 .

Lemma 3, I

Lemma 3. Suppose that S and T are subsets of a structure ($A ; R, S, T, \ldots$) in which T codes distinct subsets of S and such that there is a first-order definable total order $<$ on S. Then there is a first-order definable total order on T.

Proof: We define a total order \ll on T as follows: $x \ll y$ iff $x \neq y$ and for a equal to the <-least member of the symmetric difference of the sets coded by x and y, a is not in x.

Lemma 3, II

- By its defenition, \ll is not reflexive.
- \ll is total since for distinct $x_{1}, x_{2} \in T, x_{1} \ll x_{2}$ or $x_{2} \ll x_{1}$ (the symmetric difference is not empty because T codes distinct subsets of $S)$. Also the <-least element in the symmetric difference does not belong to x_{1} and x_{2}, so \ll is not symmetric.
- \ll is transitive. For $x, y, z \in T$ s.t. $x \ll y$ and $y \ll z$ we need to prove that $x \ll z$.
Let X, Y and Z be the subsets coded by x, y and z respectively. For $U \subseteq T$ let m_{U} be the <-least element in U.
Assume by contradiction that $z \ll x$, so $m_{X \oplus Z} \in X$.
If $m_{X \oplus Z} \in Y$:
$m_{X \oplus Z} \in Y \oplus Z \Rightarrow m_{Y \oplus Z}<m_{X \oplus Z} \Rightarrow m_{Y \oplus Z} \in X \Rightarrow m_{Y \oplus Z} \in X \oplus Y \Rightarrow m_{X \oplus Y}<$ $m_{Y \oplus Z} \Rightarrow m_{X \oplus Y} \in Z \Rightarrow m_{X \oplus Y} \in X \oplus Z \Rightarrow m_{X \oplus Z}<m_{X \oplus Y} \Rightarrow m_{X \oplus Y}<m_{X \oplus Y}$. Similarly, we can get a contradiction if $m_{X \oplus Z}$ is not in Y.

Main Lemma, I

Main Lemma. There is a first-order formula $\phi(x, y)$ in a vocabulary which includes a sequence of unary relation symbols \bar{P} and binary relation symbols R, R_{0}, R_{1} and R_{2} such that the following sentence has limit probability 1 :
$(\exists \bar{P})^{1 "} \phi(x, y)$ defines a linear order of the universe"
${ }^{1} \forall x y[(\phi(x, y) \wedge \neg \phi(y, x)) \vee(\phi(y, x) \wedge \neg \phi(x, y))] \wedge \forall x y z[(\phi(x, y) \wedge \phi(y, z)) \rightarrow \phi(x, z)]$

Main Lemma, II

Proof:

- Fix a structure $\left(A ; R, R_{0}, R_{1}, R_{2}\right)$, and pick k s.t. $|A| \geq 2^{k} \cdot 2^{2^{k}}=2^{k} \cdot 4^{k}$ and $|A|<2^{k+1} \cdot 2^{2^{k+1}}$.
- $2^{k} \cdot 4^{k}$ exceeds $k^{2} \cdot 4^{k}$ for sufficiently large k. Thus, by Lemma 1 , we choose (with limit probability 1) $P_{0} \subseteq A$ of power k s.t. the restriction of R to P_{0} is a total order.
- By Lemma 2 we choose (with limit probability 1) $P_{1} \subseteq A$ which R_{0}-codes the power set of $P_{0}\left(|A| \geq k \cdot 2^{k}=\left|P_{0}\right| \cdot 2^{\left|P_{0}\right|}\right)$, and then $P_{2} \subseteq A$ which R_{1}-codes the power set of $P_{1}\left(|A| \geq 2^{k} \cdot 2^{2^{k}}=\left|P_{1}\right| \cdot 2^{\left|P_{1}\right|}\right)$.
- Define $P_{3}=A$. Let $\left\{d_{1}, d_{2}\right\}$ be a fixed pair of distinct elements of P_{3}.
- d_{1} and $d_{2} R_{2}$-code the same subset of P_{2} with probability $2^{-\left|P_{2}\right|}=2^{-2^{2^{k}}}$.
- The number of pairs $\left\{d_{1}, d_{2}\right\}$ is less than $n^{2}<2^{2 \cdot(k+1)} \cdot 2^{2^{k+2}}$.

Main Lemma, III

- Thus the probability of having a pair $\left\{d_{1}, d_{2}\right\}$ which R_{2}-codes the same subset of P_{2} is less than $2^{-2^{2^{k}}} \cdot 2^{2 \cdot(k+1)} \cdot 2^{2^{k+2}}=2^{-\left(4^{k}-4 \cdot 2^{k}-2 \cdot(k+1)\right)}$.
- This term goes to 0 as n goes to infinity, so with probability $1 P_{3} R_{2}$-codes distinct subsets of P_{2}.
- $P_{i+1} R_{i}$-codes distinct subsets of P_{i} for $i=0,1,2$. Thus by successive applications of Lemma 2, there is a formula in the vocabulary $\left\{R, R_{0}, R_{1}, R_{2}, P_{0}, P_{1}, P_{2}\right\}$ which defines a total order of the universe, and this is the desired formula $\phi(x, y)$.

Main Lemma, IV

We show how to construct the formula ϕ according to the proof of the Main Lemma:

- $\mathrm{LO}_{0}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right) \triangleq \mathrm{R}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)$

The linear order on P_{0} (according to Lemma 1).

- For $1 \leq i \leq 3$:
$-\mathrm{CS}_{\mathrm{i}}(\mathrm{x}, \mathrm{a}) \triangleq \mathrm{R}_{\mathrm{i}-1}(\mathrm{a}, \mathrm{x}) \wedge \mathrm{P}_{\mathrm{i}-1}(\mathrm{a})$ a belongs to the set that $x R_{i-1}$-codes with respect to P_{i-1}.
$-\operatorname{SYM}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}, \mathrm{a}) \triangleq\left(\mathrm{CS}_{\mathrm{i}}(\mathrm{x}, \mathrm{a}) \wedge \neg \mathrm{CS}_{\mathrm{i}}(\mathrm{y}, \mathrm{a})\right) \vee\left(\mathrm{CS}_{\mathrm{i}}(\mathrm{y}, \mathrm{a}) \wedge \neg \mathrm{CS}_{\mathrm{i}}(\mathrm{x}, \mathrm{a})\right)$ a belongs to the symmetric difference between the sets that x and y R_{i-1}-code with respect to P_{i-1}.
$-\mathrm{LO}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right) \triangleq\left(\mathrm{a}_{\mathrm{i}} \neq \mathrm{b}_{\mathrm{i}}\right) \wedge \forall \mathrm{a}_{\mathrm{i}-1}\left[\left[\mathrm{SYM}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}-1}\right) \wedge \neg \exists \mathrm{b}_{\mathrm{i}-1}\left(\mathrm{SYM}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}-1}\right) \wedge\right.\right.\right.$ $\left.\left.\left.\mathrm{LO}_{\mathrm{i}-1}\left(\mathrm{~b}_{\mathrm{i}-1}, \mathrm{a}_{\mathrm{i}-1}\right)\right)\right] \rightarrow \neg \mathrm{CS}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}-1}\right)\right]$
The linear order on P_{i} (constructed according to Lemma 3).
- $\phi(\mathrm{x}, \mathrm{y}) \triangleq \mathrm{LO}_{3}(\mathrm{x}, \mathrm{y})$

Main Lemma, V

The number of first-order variables:

- $L O_{0}$ uses 2 first-order variables, and for $1 \leq i \leq 3, L O_{i}$ uses $L O_{i-1}$ variables and adds another 2.
- $\phi(x, y)$ uses 8 first-order variables.
- The sentence in the Main Lemma uses 9 first-order variables (it uses $\phi(x, y)$ variables and adds another 1).

Theorem 1

Theorem 1. There is a sentence of $M E S O$ which has no limit probability.
Proof: We use the following sentence, where ϕ is as in the Main Lemma. It says of a finite structure that its universe has an odd number of elements.
$(\exists \bar{P})(\exists Q)[$ " $\phi(x, y)$ defines a linear order of the universe s.t. Q contains every other element, including the first and last'"]

Remarks:

- The formula: $\forall x[(\neg \exists y(\phi(x, y) \vee \phi(y, x))) \rightarrow Q(x)] \wedge \forall x y(\phi(x, y) \rightarrow((Q(x) \vee$ $Q(y)) \wedge \neg(Q(x) \wedge Q(y)))]$
- We use 9 first-order variables.

Remarks, I

- We can get a sentence of limit probability $\frac{1}{2}$ by modifying the previous sentence to say that Q contains every other element of the restriction of this linear order to an arbitry set S (a unary relation symbol of the vocabulary), including the first and last elements of S.
- The number of options to choose a subset S from the universe that has an even power is equal to this number when the subset S we choose has an odd power. The sentence above says that S has an odd power, so its limit probability is indeed $\frac{1}{2}$.
- This idea can be extended to prove the following theorem:

Theorem 2. For every relational number r in the interval $[0,1]$ there is a sentence of MESO which has limit probability r.

Remarks, II

- A universal monadic second-order sentence over a vocabulary \mathcal{R} is an expression ψ of the form $\forall \mathcal{S} \varphi(\mathcal{R} \cup \mathcal{S})$, where \mathcal{S} is a set of unary relation variables and $\varphi(\mathcal{R} \cup \mathcal{S})$ is a first-order sentence over $\mathcal{R} \cup \mathcal{S}$.
- We can get an example of a sentence in this set that has no limit probability by using the sentence in the proof of Theorem 1 :
$(\forall \bar{P})(\forall Q) \neg[$ " $\phi(x, y)$ defines a linear order of the universe s.t. Q contains every other element, including the first and last']
- Hence the 0-1 law fails for the set of such expressions.

0-1 law fails for MESO on undirected graphs

- How to reduce the number of the binary relations
- A counter example on undirected graphs

How to reduce the number of the binary relations

- First of all, we want to reduce the number binary relations since undirected graphs have one binary relation. In the previous section we used four binary relations: R, R_{0}, R_{1} and R_{2}.
- We considered distinct binary relations because of the hypothesis $S \subseteq T$ in Lemma 2. We proved for $i=1,2$ that $P_{i} R_{i-1}$-codes the power set of P_{i-1} and $P_{3} R_{2}$-codes distinct subsets of P_{2}. We had $P_{0} \subset P_{1} \subset P_{2} \subset P_{3}=A$.
- We need $P_{i} 0 \leq i \leq 3$ to be disjoint subsets.
- We change Lemma 2 to Lemma 4 below (with the same proof):

Lemma 4. If S and T are disjoint subsets of A where $(A ; R, \ldots)$ is a finite structure, and if $|T| \geq|S| \cdot 2^{|S|}$ then with limit probability 1 , some subset T^{\prime} of T codes the power set of S.

- The proof of Theorem 1 is similar, we just use Lemma 4 instead of Lemma 2 and define $P_{3}=A \backslash\left(P_{0} \cup P_{1} \cup P_{2}\right)$ (P_{3} codes distinct subsets of P_{2} using the same proof), so the vocabulary $\mathcal{R}=\{R\}$.

A counter example on undirected graphs, I

- Now our \mathcal{R}-structure is an undirected graph $G_{n}=<V_{n}, E_{n}>$.
- The only place in the proof that has to be changed is where we use Lemma 1 in the proof of the Main Lemma.
- E is symmetric, we can't choose (with limit probability 1) $P_{0} \subseteq V$ of power k s.t. the restriction of E to P_{0} is a total order.
- However, we can use Lemma 1 to choose (with limit probability 1) $P_{0} \subseteq V$ of power k s.t. the restriction of E to P_{0} is a graph on which we can easily define a total order.
- We prove the following Lemma 5:

Lemma 5. There is a sequence $H_{m}, m \geq 2$ of undirected graphs of cardinality m and a $M E S O$ sentence $\exists V \exists W \psi(V, W)$, where V and W are unary relation variables, which defines a linear order of the vertices over these graphs.
Thus the graph we need is H_{k}.

A counter example on undirected graphs, II

Proof:

- First we define the sentence $\exists V \exists W \psi(V, W)$ over undirected graphs.
- Let v and v^{\prime} be distinct elements of V and W_{v} and $W_{v^{\prime}}$ be the subsets of $W E$-coded respctively by v and v^{\prime}.
- $\forall w\left((W(w) \wedge E(v, w)) \rightarrow E\left(v^{\prime}, w\right)\right)$ expresses that $W_{v} \subseteq W_{v^{\prime}}$ and $\exists w\left(W(w) \wedge E\left(v^{\prime}, w\right) \wedge\right.$ $\neg E(v, w))$ expresses that this inclusion is strict.
- Let $\varphi_{\prec}\left(W, v, v^{\prime}\right)$ denote the conjuction of this two formulas. By inverting the role of V and W, we define similarly $\varphi_{\prec}\left(V, w, w^{\prime}\right)$, for distinct elements w, w^{\prime} of W.
- Let $\psi(V, W)$ denote a first-order formula which expresses that (V, W) form a partition of the set of vertices and $\varphi_{\prec}\left(W, v, v^{\prime}\right)$ (resp. $\varphi_{\prec}\left(V, w, w^{\prime}\right)$) is a linear order over V (resp. $W)$.
- Provided that an undirected graph satisfies $\exists V \exists W \psi(V, W)$, we obtain a linear order over the whole domain by choosing, for example, $v \prec w$, for $v \in V$ and $w \in W$.

A counter example on undirected graphs, III

- Now we exhibit an undirected bipartite graph H_{m} of cardinality m, for any $m \geq 2$.
- Suppose $m=2 l$, the set of vertices of H_{m} is divided into two sets $V=$ $\left\{v_{1}, \ldots, v_{l}\right\}$ and $W=\left\{w_{1}, \ldots, w_{l}\right\}$ and there is no edge between vertices of V and between vertices of W.
- We add edges between V and W as follows: v_{i} is adjacent to w_{1}, \ldots, w_{l-i+1} for $i=1 \ldots l$. Observe that this construction is symmetric, we obtain the same graph if we invert V with W. (for $1 \leq j, i \leq l$ there is an edge between w_{j} and v_{i} iff $1 \leq j \leq l-i+1$, so we get $1 \leq i \leq l-j+1$).
- Suppose $m=2 l+1$, we build H_{m} from $H_{2 l}$ defined above by adding an isolated vertex v_{l+1} in V.
- For $v_{i}, v_{j} \in V$ s.t. $i<j,\left\{w_{1}, \ldots, w_{l-j+1}\right\}=W_{j} \subset W_{i}=\left\{w_{1}, \ldots, w_{l-i+1}\right\}$, and similarly for two vertices in W.
- $\exists V \exists W \psi(V, W)$ holds for H_{m}.

A counter example on undirected graphs, IV

Remark. The changes in ϕ :

- Instead of R, R_{0}, R_{1}, R_{2} we write E.
- $L O_{0}$ is different:
$L O_{0}(x, y)=(V(x) \wedge W(y)) \vee\left(V(x) \wedge V(y) \wedge \varphi_{\prec}(V, x, y)\right) \vee(W(x) \wedge W(y) \wedge$ $\left.\varphi_{\prec}(W, x, y)\right)$
- ϕ is different (it is not $L O_{3}$):
$\phi(x, y)=\left(P_{0}(x) \wedge \neg P_{0}(y)\right) \vee\left(P_{1}(x) \wedge \neg P_{0}(y) \wedge \neg P_{1}(y)\right) \vee\left(P_{2}(x) \wedge P_{3}(y)\right) \vee$ $\left(P_{0}(x) \wedge P_{0}(y) \wedge L O_{0}(x, y)\right) \vee\left(P_{1}(x) \wedge P_{1}(y) \wedge L O_{1}(x, y)\right) \vee\left(P_{2}(x) \wedge P_{2}(y) \wedge\right.$ $\left.L O_{2}(x, y)\right) \vee\left(P_{3}(x) \wedge P_{3}(y) \wedge L O_{3}(x, y)\right)$

Additional remarks

- Restrictions on the number of first-order variables
- Restrictions on the quatifier prefix of the first-order part

Restrictions on the number of first-order variables

- The counter example we saw (the unmodified one for $M E S O$) requires 9 first-order variables (the modifications add first-order variables).
- Let MESO_{2} be the set of $M E S O$ sentences with at most 2 first-order variables.
- The 0-1 law fails for MESO_{2}.
- It is not proved whether the 0-1 law fails or holds for $M E S O_{2}$ on undirected graphs.

Restrictions on the quatifier prefix of the first-order part, I

- Another possibility is to define fragments of $E S O$ (or $M E S O$) by considering restrictions on the quantifier prefixes of the first-order part. Some nontrivial restrictions of ESO have the 0-1 law.
- An $E S O$ sentence can be written as $\exists X_{1} \ldots \exists X_{n} Q_{1} x_{1} \ldots Q_{m} x_{m} \varphi\left(X_{1}, \ldots, X_{m}, x_{1}, \ldots, x_{m}\right)$ where each Q_{i} is \forall or \exists, and φ is quatifier-free.
- If r is a regular expression over the alphabet $\{\exists, \forall\}$, by $E S O(r)$ we denote the set of all sentences s.t. the string Q_{1}, \ldots, Q_{m} is in the language denoted by r.
- Examples of $E S O$ fragments that have the 0-1 law:
- $\operatorname{ESO}\left(\exists^{*} \forall^{*}\right)$
- $\operatorname{ESO}\left(\exists^{*} \forall \exists^{*}\right)$

Restrictions on the quatifier prefix of the first-order part, II

- Examples of ESO fragments that don't have the 0-1 law:
- ESO $(\forall \forall \exists)$
- $\operatorname{ESO}(\forall \exists \forall)$
- We proved the second example above. The sentence we used to prove that the 0-1 law fails for $E S O$ in the Introduction section is in $E S O(\forall \exists \forall)$.
- Actually both of the examples don't have the 0-1 law even if the firstorder part does not use equality.

References

(i) M. Kaufmann: Counterexample to the 0-1 law for existential monadic second-order logic.
(ii) J-M. Le Bars: The 0-1 law fails for monadic existential second-order logic on undirected graphs.
(iii) Leonid Libkin: Elements of finite model theory, p.243-245.

