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Abstract

Computer Algebra, Combinatorics, and Complexity: Hilbert’s Nullstellensatz and

NP-complete Problems

by

Susan Margulies

Doctor of Philosophy in Computer Science

University of California, Davis

Professor Jesús De Loera, Chair

Systems of polynomial equations over an algebraically-closed fieldK can be used to concisely

represent combinatorial decision problems. In this way, a combinatorial problem is feasible

(e.g., a graph is 3-colorable, Hamiltonian, etc.) if and only if a related system of polynomial

equations has a solution over K. If the system of polynomial equations has no solution, then

Hilbert’s Nullstellensatz yields a certificate that the underlying combinatorial problem is

infeasible. We investigate an algorithm aimed at proving combinatorial infeasibility based

on the experimentally-observed low degree of Hilbert’s Nullstellensatz and large-scale, sparse

linear algebra computations over K.

We explore the Nullstellensatz Linear Algebra algorithm (NulLA) from both a

computational and a theoretical perspective. From the computational perspective, we com-

pare computations over the rationals to computations over finite fields; we discuss mathe-
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matical ideas for optimizing NulLA ranging from the algebraic to the probabilistic, and we

report on experiments proving the non-3-colorability of graphs with almost two thousand

vertices and tens of thousands of edges.

From a theoretical perspective, we observe that if an NP-complete problem (e.g.

graph 3-colorability) is represented as a system of polynomial equations, the resulting infea-

sibility certificate is a coNP certificate. Thus, if P 6= NP and NP 6= coNP, there must exist

an infinite family of instances (e.g. an infinite family of graphs) where the minimum-degree

of the associated Nullstellensatz certificate grows linearly in the input size and the certifi-

cates contain a super-polynomial number of monomials. In the case of graph 3-colorability,

we show that the minimum-degree of a Nullstellensatz certificate (associated with a partic-

ular encoding) follows the sequence 1,4,7,..., etc.. In the case of the independent set decision

problem, we show that a minimum-degree Nullstellensatz certificate (associated with a par-

ticular encoding) proving the non-existence of an independent set of size k is equal to the

size of the largest independent set in the graph. Moreover, such a Nullstellensatz certificate

contains one monomial for each independent set in the graph.

Professor Jesús De Loera
Dissertation Committee Chair
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Chapter 1

Introduction

“If I have the belief that I can do it,
I shall surely acquire the capacity to do it

even if I may not have it at the beginning.”
–Mohandas Karamchand Gandhi,

1869 - 1948 .

“Perplexity is the beginning of knowledge.”
–Kahlil Gibran,

1883-1931 .

It is well-known that systems of polynomial equations over an algebraically-closed

field can yield compact representations of combinatorial problems. This contrasts with the

exponential sizes of systems of linear inequalities that describe the convex hull of incidence

vectors of many combinatorial structures (see [61]).

In [1], N. Alon surveys the use of non-linear polynomials in solving combinatorial

problems. Although this technique is not yet as widely used by combinatorists as polyhedral

or probabilistic techniques, the literature in this subject continues to expand. Prior work

on encoding combinatorial properties includes colorings [2, 38, 19, 24, 41, 43, 44, 49, 39],

independent sets [38, 36, 41, 58, 40], matchings [20], and flows [2, 49, 47].
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While these polynomial system encodings often suggest an algorithmic approach

to solving combinatorial problems (see [1] and therein), they have not yet been widely used

for computation. A key issue that we investigate in this dissertation is the use of such

polynomial systems to efficiently decide whether a graph, or other combinatorial structure,

has a property captured by the polynomial system and its associated ideal. We call this

the combinatorial feasibility problem. We are particularly interested in whether this can

be accomplished in practice for large combinatorial structures, such as graphs with many

vertices.

It is certainly well-known that the combinatorial feasibility problem can be solved

using standard tools in computational algebra such as Gröbner bases. Nevertheless, it

has been experimentally demonstrated that current Gröbner bases implementations often

cannot directly solve polynomial systems with hundreds of equations. This dissertation

proposes the Nullstellensatz Linear Algebra algorithm (NulLA), which instead relies on

the experimentally-observed low degrees of Hilbert’s Nullstellensatz for combinatorial poly-

nomial systems, and on large-scale, sparse linear algebra computations.

For a hard combinatorial problem (e.g., graph 3-colorability), we associate a sys-

tem of polynomial equations J = {f1 = · · · = fs = 0} such that the system J has a solution

if and only if the combinatorial problem has a feasible solution. Hilbert’s Nullstellen-

satz (see e.g.,[13]) states that the system of polynomial equations has no solution over an

algebraically-closed field K if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn]

such that 1 =
∑

βifi. Thus, when the polynomial system J has no solution, there exists a

certificate that J has no solution, and thus a certificate that the combinatorial problem is
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infeasible.

The central idea behind NulLA is to generate a finite sequence of linear alge-

bra systems based on Nullstellensatz certificates of increasing degree. These linear algebra

systems eventually become feasible if and only if the underlying combinatorial problem is

infeasible. Given a system of polynomial equations, we fix a tentative degree k for the

coefficient polynomials βi in the certificates. We decide whether there is a Nullstellensatz

certificate with coefficients of degree ≤ k by solving a system of linear equations over the

field K whose variables are in bijection with the coefficients of the monomials of the polyno-

mials β1, . . . , βs. If this linear system has a solution, we have found a certificate; otherwise,

we repeat and try a higher degree for the polynomials βi. This process is guaranteed to

terminate because, in order for a Nullstellensatz certificate to exist, the degrees of the poly-

nomials βi cannot be more than known bounds (see [30] and references therein). We explain

the details of NulLA in Chapter 3.

Our method can be seen as a general-field variation of work by Lasserre [33],

Laurent [34], Parrilo [53] and many others, who study the problem of minimizing a general

polynomial function f(x) over a real algebraic variety with finitely many points. Laurent

proved that when the variety consists of the solutions to a zero-dimensional radical ideal

I, the optimization problem min{f(x) : x ∈ variety(I)} is equivalent to a finite sequence

of semidefinite programs terminating with the optimal solution (see [34]). There are two

key observations that speed up practical calculations considerably: (1) when dealing with

feasibility, rather than optimization, linear algebra replaces semidefinite programming, and

(2) there are methods for controlling the length of the sequence of linear algebra systems,
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including finite field computations instead of calculations over the reals, and the reduction

of matrix size by symmetries [39]. See Section 5.1 for details.

From commutative algebra, there are well-known upper bounds on the degrees of

the coefficients βi in the Hilbert Nullstellensatz certificates for general systems of polyno-

mials, and they turn out to be sharp (see [30]). For instance, the following well-known

example (due to Mora, Lazard, Masser, Philippon, and Kollár) shows that the degree of β1

is at least dm :

f1 = xd
1, f2 = x1 − xd

2, . . . , fm−1 = xm−2 − xd
m−1, fm = 1− xm−1x

d−1
m .

But polynomial systems for combinatorial optimization problems are not necessarily patho-

logically complicated. In fact, polynomial systems for combinatorial optimization problems

are often extremely symmetric with homogeneous polynomials of similar structure, and we

now know that the upper bounds on their Nullstellensatz certificates are sometimes much

lower. The natural question is: How large are the minimum-degrees of the associated

Nullstellensatz certificates of infeasibility?

There is a fascinating connection between Hilbert’s Nullstellensatz and computa-

tional complexity. As we will see in Section 4.1, unless P = NP , for every hard combina-

torial problem, there must exist an infinite sequence of infeasible instances for which the

minimum-degree of a Nullstellensatz certificate, for the associated system of polynomial

equations, grows arbitrarily large. This was first observed by L. Lovász, who then proposed

the problem of explicitly finding graphs exhibiting such growth (see [41]). A main contri-

bution of this dissertation is to explicitly describe the growth in degree of specific families

of graphs. In particular, we establish the following main theorem (Section 4.2):
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Given a graph G, let α(G) denote the size of the largest independent set

in G. A minimum-degree Nullstellensatz certificate (associated with the Lovász

encoding of Lemma 2.1.1) for the non-existence of an independent set of size

greater than α(G) has degree equal to α(G) and contains at least one monomial

per independent set in G.

This dissertation is organized as follows. In Chapter 2, we describe various en-

codings for an assortment of NP-complete and combinatorial decision problems. We survey

existing encodings for independent set, graph k-colorability and SAT, and present new en-

codings for Hamiltonian cycle, graph k-colorability, max cut, edge chromatic number and

graph planarity. In Chapter 3, we describe the Nullstellensatz Linear Algebra (NulLA)

algorithm. In Chapter 4, we explore the relationship between Nullstellensatz certificates

and complexity theory, touching P vs. NP, NP vs. coNP and NP as a proper or improper

subset of EXPTIME. We also prove a range of theoretical results concerning growth in the

minimum-degree of both non-k-colorability, and non-existence of an independent set of size

k, Nullstellensatz certificates. In Chapter 5, we present our experimental results, and a

variety of mathematical techniques for optimizing NulLA, and in Chapter 6, we presents

our conclusions and suggestions for future directions of research.
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Chapter 2

Encodings

“The formulation of a problem is often more essential
than its solution, which may be merely a matter

of mathematical or experimental skill.”
–Albert Einstein,

1879–1955 .

In this chapter, we demonstrate the ease and simplicity of encoding combinatorial

problems as systems of polynomial equations. Our constant goal throughout this chapter

is computation with algebraic methods; towards that end, we will often present more than

one encoding for the same combinatorial problem. The purpose of these multiple encodings

is not only to demonstrate a variety of encoding techniques, but also to eventually compare

and contrast encodings from a computational perspective (see Chapter 5).

By encoding, we simply mean the following: given an instance of a “yes/no” de-

cision question, we can convert it in polynomial-time (in the input size of the instance) to

a system of polynomial equations such that the system has a solution if and only if the

underlying instance has a “yes” answer. It is important to emphasize the polynomial-time

nature of these conversions; otherwise, we could simply solve the “yes/no” decision ques-
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tion beforehand and represent every “yes” instance as the equation “1=1”, and every “no”

instance as “1=0”. This definition is formalized as follows:

Definition 2.0.1 Given a language L, if there exists a polynomial-time algorithm A that

takes as input a string I, and produces as output a system of polynomial equations such that

the system has a solution if and only if I ∈ L, then we say that the system of polynomial

equations encodes I.

We use the formal terminology of languages (see [59] for relevant background),

instead of the more familiar vocabulary of yes/no decision problems to bypass any technical

difficulties with the “encodings” of the instances themselves (such as adjacency lists vs.

adjacency matrices of graphs). However, since yes/no decision questions are equivalent to

languages, we will often use these terms interchangeably, especially when referring to NP-

complete problems. We also note that, because Definition 2.0.1 stipulates that the algorithm

A constructing the system of equations runs in polynomial time, this means that the system

of equations can be written down in polynomial space. Intuitively, when converting a

problem from the representation stipulated by the language (such as the adjacency matrix

or adjacency list of a graph) to a system of polynomial equations, we must avoid introducing

an exponential number of variables or equations, or introducing degrees or coefficients are

exponentially long in terms of bit-length. However, given a polynomial g(n) where n is the

input size of the instance, by stipulating that the encoding can be constructed in O(g(n))

time, we can be certain of the following bounds: given a system of polynomial equations

f1 = · · · = fs = 0 that encodes an instance I, the number of equations is O(g(n)), the

number of variables is O(g(n)), the bit-size of max{deg(f1), . . . ,deg(fs)} is O(g(n)), the
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maximum number of monomials in any fi is O(g(n)), and bit-size of the largest coefficient

in any fi is O(g(n)). This idea is formalized in the following definition, which we use

extensively in Section 4.1:

Definition 2.0.2 Given a language L and a polynomial g(n), if the algorithm A for encod-

ing a string I of length n runs in O(g(n)) time, then we say that L has an O(g(n))-encoding.

In this chapter, we present encodings for independent set (Section 2.1), graph k-

colorability (Section 2.2), Hamiltonian cycle (Section 2.3), graph planarity (Section 2.4),

edge-chromatic number (Section 2.5), max-cut (Section 2.6), and finally, SAT (Section 2.7).

We note that by displaying an encoding for SAT, we can easily construct encodings

for all NP-complete problems via polynomial reductions to SAT. However, this approach is

not computationally practical because of the increase in the number of variables/equations

in the systems. Furthermore, we will see later that encodings using constraints of the form

xi(xi − 1) seem to behave badly with algebraic methods such as NulLA (see Section 4.2),

but other type of constraints (e.g. root of unity constraints such as in graph 3-colorability)

do behave better in practice (see Chapter 5).

Although the encodings presented in this chapter are not always very interesting

in and of themselves, we explore their value in terms of providing insight into the underlying

problem (Section 5.2.6), or in terms proving bounds on their associated identities (Section

4.2), or most importantly, in terms of being able to compute effectively on large combina-

torial structures, such as graphs. The foremost question for us is the following: how can

we best capture the combinatorial structure of an NP-complete problem with respect to

Hilbert’s Nullstellensatz?
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Before we begin, we clarify our terms and notation: Adj(i) denotes the set of nodes

adjacent to node i; a zero-dimensional system of equations is a system of equations with a

finite number of solutions; every encoding presented is over C (the complex numbers) unless

otherwise specified, and all graphs are assumed to be simple. For all other concepts and

basic definitions from graph theory, we refer to [16].

2.1 Independent Set

Given a graph G, a stable set or independent set in G is a subset of vertices such

that no two vertices in the subset are adjacent. The size of the largest independent set in G

is called the stability number, or independence number, of G, and is denoted by α(G). The

decision question of determining whether a given graph has an independent set of size k is

NP-complete [21], and can be encoded as the following system of polynomial equations:

Lemma 2.1.1 (L. Lovász [41]) A graph G has an independent set of size k if and only

if the following zero-dimensional system of equations

x2
i − xi = 0 , for every node i ∈ V (G) ,

xixj = 0 , for every edge {i, j} ∈ E(G) ,

n∑

i=1

xi − k = 0 ,

has a solution. Moreover, the number of solutions equals the number of distinct independent

sets of size k.

Proof: If the graph G has an independent set I of size k, we simply assign the variables

associated with vertices in I to have value one, and all other variables to have value zero.
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Then, the above system of equations is satisfied. If the above system of equations is satisfied,

the equations x2
i −xi = 0 force every variable to take on 0/1 values. The equations xixk = 0

show that no two vertices assigned the value one are adjacent. The last equation shows that

exactly k variables have the value one: thus, those variables correspond directly to vertices

in an independent set of size k.

We now show that the number of solutions equals the number of distinct indepen-

dent sets of size k. We have previously shown that independent sets correspond to solutions

and solutions correspond to independent sets, but we now show that the map between the

two sets is bijective. Given any independent set of size k, we simply assign every variable

in the independent set to be one and all other variables to be zero. Thus, given two inde-

pendent sets, I1 and I2, if they map to the same solution (the same 0/1 vector), then the

same vertices must have been present in both sets and I1 = I2. Thus, the map is injective,

or one-to-one. Since we have already shown that every solution maps to an independent set

(the map is surjective or onto), we have shown that the map is bijective and the number of

solutions is equal to the number of distinct independent sets of size k. 2

In Section 4.2, we explicitly describe the Nullstellensatz certificates associated with

this system of polynomial equations.

2.2 Graph k-Colorability

The problem of graph k-colorability is as follows: given a graph G and an integer

k, can G be colored with k colors such that no two adjacent vertices have the same color?
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This problem is known to be NP-complete [21]. In addition to being hard, it is also an

interesting practical problem, having applications to fields as varying as compiler optimiza-

tion and scheduling. In this section, we present several encodings for graph k-colorability:

a degree-k encoding over C, a degree-2 encoding over C, and our most computationally

successful encoding, a degree k-encoding over Fp (the algebraic closure of the finite field

with p elements).

We extensively studied the encodings described in this section, both from the

theoretical perspective (Section 4.3), and from the computational perspective (Chapter 5).

We begin with the following remark:

Lemma 2.2.1 Given a graph G with n vertices, let I be the ideal

I =

〈
xk

1 − 1, . . . , xk
n − 1,

k−1∑

d=0

xk−1−d
i xd

j

︸ ︷︷ ︸
{i,j}∈E(G)

〉
.

Then I is a radical ideal. Moreover, dim(C[x1, . . . , xn]/I) is equal to the number of points

in variety(I).

Proof: Recall that a “square-free” polynomial is a polynomial with no repeated factors

(e.g., (x + 3)2(x + 6) is not square-free, whereas (x + 3)(x + 6) is square-free). For every

xi, the ideal I contains the square-free, univariate polynomial x3
i − 1. Thus, I is a radical

ideal by [12], pg. 39-41, Proposition 2.7. Therefore, by [13], pg. 232, Proposition 8 (ii),

dim

(
C[x1, . . . , xn]

I

)
= |V (I)| .

2
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We will see later that |V (I)| is equal to the number of k-colorings of a graph

multiplied by k!. Therefore, Lemma 2.2.1 allows us to compute the number of k-colorings of

a graph by computing the dimension (as a vector space) of the quotient ring C[x1, . . . , xn]/I.

Our first encoding, degree-k over C, is a generalization of an encoding proposed

by Bayer for the case of 3-colorability.

Lemma 2.2.2 (Bayer [5]) A graph G is k-colorable if and only if the following zero-

dimensional system of equations

xk
i − 1 = 0 , for every node i ∈ V (G) ,

k−1∑

d=0

xk−1−d
i xd

j = 0 , for every edge {i, j} ∈ E(G) ,

has a solution. Moreover, the number of solutions equals the number of distinct k-colorings

multiplied by k!.

Proof: Assume that G is k-colorable, and assign the colors to the k roots of unity. Clearly,

the vertex equations (xk
i − 1 = 0) are satisfied. Since the graph is k-colorable, there exists

a coloring such that no two adjacent vertices have the same color. Therefore, given an edge

{i, j} ∈ E(G), the root of unity assigned to xi does not equal the root of unity assigned to

xj , and we see that

xk
i − xk

j

xi − xj
=

k−1∑

d=0

xk−1−d
i xd

j =⇒ xk
i − xk

j = (xi − xj)
k−1∑

d=0

xk−1−d
i xd

j = 0 .

Since xi 6= xj , the factor xi − xj 6= 0. Thus,
∑k−1

d=0 xk−1−d
i xd

j = 0, and the edge equations

are satisfied.

Conversely, assume there exists a solution to the above system of equations. The

vertex equations (xk
i − 1 = 0) force every variable to take on the value of one of the k-th
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roots of unity. We will now show that no two adjacent vertices are assigned the same color.

To prove this, assume the contrary: assume that for some edge {i, j}, xi and xj are both

assigned the same root of unity, β. Then,

0 =
k−1∑

d=0

xk−1−d
i xd

j = kβk−1 6= 0

Thus, every adjacent pair of vertices is assigned a different color.

We now show that the number of solutions equals number of distinct k-colorings

multiplied by k!. We have previously shown that k-colorings correspond to solutions and

solutions correspond to k-colorings, but we now show that the map between the two sets

is bijective. We first explicitly map the k colors to the k roots of unity. For example, in

the case of k = 3, we assign red → e2πi/3, green → e4πi/3, and blue → e2πi = 1. Under

this map, if two colorings of the graph, C1 and C2, map to the same solution, then the two

colorings are the same. Thus, the map is injective, or one-to-one. Since we have already

shown that every solution maps to a coloring (the map is surjective or onto), we have shown

that the map is bijective. Since there are k! ways to assign k colors to the k roots of unity,

the number of solutions is equal to the number of distinct k-colorings multiplied by k!. 2

The following corollary concerning k-colorable subgraphs easily follows from this

result.

Corollary 2.2.3 A graph G has a k-colorable subgraph with R edges if and only if the

following zero-dimensional system of equations has a solution:

∑

{i,j}∈E(G)

yij −R = 0 .
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For every vertex i ∈ V (G):

xk
i − 1 = 0 .

For every edge {i, j} ∈ E(G):

y2
ij − yij = 0, yij

(
xk−1

i + xk−2
i xj + · · ·+ xk−1

j

)
= 0 .

Proof: For a k-colorable subgraph H with R edges, we set yij = 1 if edge {i, j} ∈ E(H)

or 0 otherwise. By Lemma 2.2.2, the resulting subsystem of equations has a solution. Con-

versely, from a solution, the subgraph H in question is described by yij = 1. By Lemma

2.2.2 above, a solution maps to a k-coloring. 2

We now present a new degree two encoding of graph k-colorability, based on the

idea of “partitioning” the graph into k disjoint sets. Thus, every vertex appears in exactly

one partition, and the order of the partitions defines the order of the cycle.

Lemma 2.2.4 Let C[xip], where 1 ≤ i ≤ n and 1 ≤ p ≤ k, be a polynomial ring. A graph

G is k-colorable if and only if the following zero-dimensional system of equations has a

solution.

For every node i ∈ V (G):



k∑

p=1

xip


− 1 = 0 ,

For every edge {i, j} ∈ E(G) and p = 1, . . . , k:

xipxjp = 0 .
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For every node i ∈ V (G) and p = 1, . . . , k:

xip(xip − 1) = 0 .

Proof: If the graph G is k-colorable, then assign xir to be 1 if vertex i has the r-th color,

and all other xip to be 0. Clearly, the first and third equations are satisfied. Furthermore,

since no two adjacent vertices have the same color, no two adjacent vertices are in the same

partition; thus, the second equation is satisfied.

Conversely, assume that there exists a solution to the above system of equations.

By the first and third equations, clearly every vertex appears in only one partition. Fur-

thermore, by the second equation, no two adjacent vertices are in the same partition. Thus,

the vertex/partition mapping corresponds to a k-coloring. 2

Finally, we come to our most computationally successful encoding: graph k-

coloring over Fp, where k and p are relatively prime. Before we describe this encoding,

we introduce a few well-known facts from algebra.

Lemma 2.2.5 The equation xn − 1 = 0 has n distinct roots over Fp, when p is relatively

prime to n.

Proof: The discriminant of a polynomial f(x) = anxn + an−1x
n−1 + · · ·+ a0 is defined to

be

disc(f) =
(−1)n(n−1)/2

an
Res(f, f ′)

When the discriminant is non-zero, f does not have multiple roots. In this case, f(x) =

xn − 1, and f ′(x) = nxn−1. The resultant is the determinant of the Sylvester matrix,
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displayed below:

Syl(f, f ′) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · 0 −1 0 · · · · · · 0

0 1 0 · · · · · · 0 −1 0 · · · 0

...
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 · · · · · · 0 1 0 · · · · · · 0 −1

n 0 · · · · · · · · · · · · · · · · · · · · · 0

0 n 0 · · · · · · · · · · · · · · · · · · 0

...
. . . . . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . . . . 0

0 · · · · · · 0 n 0 · · · · · · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣








n− 1 rows

n rows

Thus, the discriminant is ±nn mod p. This is easy to see by expanding around the last n

rows of the Sylvester matrix when taking the determinant. Since gcd(n, p) = 1, ±nn 6≡ 0

mod p, and because the discriminant is non-zero, the roots of the equation xn − 1 = 0 are

distinct. 2

Lemma 2.2.6 A graph G is k-colorable if and only if the following zero-dimensional system

of equations

xk
i − 1 = 0 , for every node i ∈ V (G) ,

k−1∑

d=0

xk−1−d
i xd

j = 0 , for every edge {i, j} ∈ E(G) ,

has a solution over Fp, where k and p are relatively prime. Moreover, the number of solutions

equals the number of distinct k-colorings multiplied by k!.
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Proof: This proof follows from Lemmas 2.2.2 and 2.2.5. Since the k distinct roots of unity

(in this case, ω, ω2, . . . , ωk−1, 1) can be mapped to the k distinct colors, we see again that

the number of solutions equals the number of distinct k-colorings multiplied by k!. 2

We conclude with an observation that foreshadows a result from our experimental

investigations: although the colorings of a given graph are completely described by a system

of polynomial equations such as Lemma 2.2.6, it may sometimes be computationally useful

to add extra equations to these systems (see Chapter 5, Section 5.1.2). These extra equations

should capture extra combinatorial properties of the underlying graph, which allow us to

simplify our computations. For example, when testing for 3-colorability, it is logical to

search the graph for triangles as a means of reducing computation time. In our case, a

triangle formed by the vertices {i, j, k} forces the variables xi, xj , xk to take on different

colors/roots of unity. In order to formalize the idea of a triangle equation, we need the

following well-known fact from algebra:

Proposition 2.2.7 ([17]) If G is a finite group such that, for all positive integers n divid-

ing its order, G contains at most n elements x satisfying xn − 1 = 0, then G is cyclic.

Therefore, the group formed by the roots of unity of xk−1 = 0 is cyclic, regardless

of whether the field is C or Fp. The roots of unity over C are generated by powers of the

primitive root e2πi/k, while the roots of unity over Fp can be described as powers of a

primitive root ω:

ω, ω2, . . . , ωk−1, 1

This observation leads to the following lemma.
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Lemma 2.2.8 Given a graph G and an integer k, encoded as the system of polynomial

equations from Lemma 2.2.2 or 2.2.6, if G contains a k-clique {xi1 , xi2 , . . . , xik} as a sub-

graph and d is any integer such that d 6 | k, then the following equation

xd
i1 + xd

i2 + · · ·+ xd
ik

= 0 (2.1)

can be added to the system of equations without changing the set of solutions.

Proof: If the system of equations from Lemma 2.2.2 or 2.2.6 has a solution, we must

show that any such solution also satisfies Eq. 2.1. The following proof applies to the

system of equations from either lemma. When the system of equations (either system) has

a solution, no two adjacent vertices are assigned the same color. In particular, the vertices

{i1, i2, . . . , ik} corresponding to the k-clique are each assigned a different color. Therefore,

the corresponding variables xi1 , xi2 , . . . , xik represent the complete set of the k roots of

unity. If the variables xi1 , xi2 , . . . , xik are each raised to the d power, the values of the roots

are simply permuted (since d is not a factor of k); therefore, xd
i1

, xd
i2

, . . . , xd
ik

also represents

the complete set of the k roots of unity. Furthermore, recall

xk − 1 = (x− 1)(xk−1 + xk−2 + · · ·+ x + 1) = 0 .

Therefore, any primitive root satisfies (xk−1 + xk−2 + · · ·+ x + 1) = 0, and the sum of the

complete set of the k roots of unity is zero. Thus, if the system of equations has a solution,

then the system of equations, along with Eq. 2.1, also has a solution. 2

In Chapter 5, Section 5.1.2, we will see the computational advantage of including

these types of subgraph equations, and the advantage of having flexibility in choosing the

degree d.
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2.3 Hamiltonian Cycle

A Hamiltonian cycle is a cycle that passes through every vertex exactly once.

Given a graph G and an integer k, it is NP-complete to determine if G has a Hamiltonian

cycle, or if G has a cycle of length k [21]. In this section, we describe an encoding for

finding a cycle of length k in a graph, and then as a corollary, describe an encoding for

Hamiltonian cycle. We also describe a graph-theoretic application that arises naturally

from these encodings. We conclude by presenting an encoding of Hamiltonian cycle over

Fp, and also demonstrating a degree two encoding similar to the encoding presented for

graph k-colorability.

Lemma 2.3.1 A simple graph G has a cycle of length L if and only if the following zero-

dimensional system of polynomial equations has a solution:

(
n∑

i=1

yi

)
− L = 0 . (2.2)

For every node i = 1, . . . , n:

yi(yi − 1) = 0 ,

n∏

s=1

(xi − s) = 0 , (2.3)

yi

∏

j∈Adj(i)
(xi − yjxj + yj)(xi − yjxj − yj(L− 1)) = 0 . (2.4)

Proof: Suppose that a cycle C of length L exists in the graph G. We set yi = 1 or 0

depending on whether or not node i is in C. Next, starting the numbering at any node of

C, we set xi = j if node i is the j-th node of C. It is easy to check that Eqs. 2.2 and 2.3

are satisfied. Note that if vertex i is not in C, xi can be set to any value between 1 and n.
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To verify Eq. 2.4, note that because C has length L, if vertex i is the j-th node

of the cycle, then one of its neighbors, say k, must be the “follower”, namely the (j + 1)-th

element of the cycle. If j < L, then the factor (xi − xk + 1) = (xi − (xk − 1)) = 0 appears

in the product equation associated with the i-th vertex, and the product is zero. If j = L,

then the factor (xi − xk − (L − 1)) = 0 appears, and the product is again 0. For all other

vertices xi not in C, simply set xi to any value between 1 and n (satisfying Eq. 2.3), and

then “turn them off” by setting yi = 0, which causes Eq. 2.4 to be automatically satisfied.

Thus, every equation in the polynomial system is satisfied.

Conversely, from a solution of the system above, we see that L variables yi are

“turned on”; let these variable be the set C. Furthermore, we see that every variable takes

on a value between 1 and n. We claim that the nodes i ∈ C form a cycle. Because yi 6= 0,

the polynomial of Eq. 2.4 must vanish. Thus, for every j ∈ C,

either (xi − xj + 1) = 0 , or (xi − xj − (L− 1)) = 0 .

Note that Eq. 2.4 reduces to this form when yi and a particular yj equal one. Therefore,

either vertex i is adjacent to a vertex j (with yj = 1) such that xj equals the next integer

value (xi + 1 = xj), or xj = xi − L + 1. Consider the variable xi1 which takes on the

smallest value of any variable in C. For xi1 , Eq. 2.4 cannot cancel by being adjacent

to a variable xj = xi1 − L + 1 (because then xi1 would not be the smallest value in C).

Thus, for variable xi1 , Eq. 2.4 must cancel because it is adjacent to a variable xi2 which

takes on the next highest value. This condition holds for the next L − 2 variables in C:

Eq. 2.4 cancels because each variable is adjacent to a variable taking on the next high-

est value. Thus, the variables in C traverse a consecutive sequence of integers from xi1
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to xiL . Therefore, xiL must take on the largest value of any variable in the set C: thus,

it must be adjacent to a variable taking on the value xj = xiL + L − 1. The only point

in C satisfying that criteria is xi1 . Thus, the points in C describe a cycle of length L in G. 2

We have the following corollary.

Corollary 2.3.2 A graph G has a Hamiltonian cycle if and only if the following zero-

dimensional system of equations has a solution. For every node i ∈ V (G), we have two

equations:

n∏

s=1

(xi − s) = 0 , and
∏

j∈Adj(i)

(xi − xj + 1)(xi − xj − (n− 1)) = 0 .

The number of Hamiltonian cycles in the graph equals the number of solutions of the system

divided by 2n.

Proof: Clearly when L = n we can just fix all yi to 1, thus many of the equations simplify

or become obsolete. We only have to check the last statement on the number of Hamiltonian

cycles. For that, we remark that no solution appears with multiplicity because the ideal is

radical. That the ideal is radical is implied by the fact that every variable appears as the

only variable in a unique square-free polynomial (see page 246 of [31]). Finally, note for

every cycle there are n ways to choose the initial node to be labeled as 1, and then two

possible directions to continue the labeling. 2

These results also apply to directed graphs; thus, we can also consider paths or

cycles with orientation. We can also use the polynomials systems above to investigate the
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distribution of cycle lengths in a graph (similarly for path lengths and cut sizes). This topic

has several outstanding questions. For example, a still unresolved question of Erdös and

Gyárfás [57] asks: If G is a graph with minimum-degree three, is it true that G always

has a cycle having length that is a power of two? We define the cycle-length polynomial

as the square-free univariate polynomial whose roots are the possible cycle lengths of a

graph (same can be done for cuts). Considering L as a variable, the reduced lexicographic

Gröbner basis (with L the last variable) computation provides us with a unique univariate

polynomial on L that is divisible by the cycle-length polynomial of G.

Before we display our encoding over Fp, where p and n are relatively prime, we

recall that there exists a primitive root of unity for xn − 1 = 0, via Proposition 2.2.7 from

Section 2.2.

Lemma 2.3.3 Let G be a connected graph with n vertices. Then G has a Hamiltonian

cycle if and only if the following zero-dimensional system of equations

xn
i + 1 = 0 , for every node i ∈ V (G) ,

∏
j∈Adj(i)(ωxi + xj) = 0 , for every node i ∈ V (G) ,

has a solution over Fp, where p and n are relatively prime, and ω is an n-th primitive root

of unity.

Proof: Suppose there exists a Hamiltonian cycle in the graph G. We can begin the num-

bering at an arbitrary vertex, and assign the vertices to be powers of ω; thus, a Hamiltonian

cycle vi1 , vi2 , . . . , vin implies xi1 = ω, xi2 = ω2, and xin = ωn = 1. Clearly, the vertex equa-

tions xn
i − 1 = 0 are satisfied. The edge equations are also satisfied, because an variable xi
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is adjacent to the next highest power of ω in the cycle. Thus, ωxi1 − xi2 = ω · ω − ω2 = 0.

Therefore, every edge equation is satisfied.

Conversely, from a solution to the system above, we see that every variable is

assigned a root of unity. Consider the lowest power of ω assigned to any variable. Because

the edge equations are satisfied, every variable must be adjacent to a variable taking on the

value of the next highest power of ω. Since there are n variables, we must eventually come

to a variable assigned the value ωn = 1. That variable must be adjacent to the variable

taking on the value ω; thus, the lowest power of ω assigned to any variable is one, and the

order of the powers of ω define a Hamiltonian cycle in G. 2

We observe that this encoding, as is, does not necessarily lend itself to computation.

In order to compute with this encoding, we would have to treat ω as an extra value in our

field, and compute over the splitting field Fp∪ω. This encoding is also easily transferable to

an encoding over C; however, the computational difficulty of computing over the splitting

field Q∪ω is similar. However, by adding a few equations to the encoding, ω can be treated

as a variable and not as a fixed primitive n-th root of unity. For example, if the equation

ωn − 1 = 0, and the set of equations

yk(ωk − 1) = 0 ,

where k is any factor dividing n, are added to the encoding of Lemma 2.3.3, then ω is simply

a variable which can only take on the value of a primitive n-th root of unity, even if n is

not a prime number. Another set of equations which ensures ω is a variable only taking on
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the value of a primitive n-th root of unity is the following:

ωk(n−1) + ωk(n−2) + · · ·+ ωk + 1 , for 1 ≤ k ≤ n .

We can also use the cyclotomic polynomial [17], denoted by Φ(n), which is the polynomial

whose roots are the primitive n-th roots of unity. For example, the first ten cyclotomic

polynomials are as follows:

Φ1(x) = ω − 1 , Φ6(x) = ω2 − ω + 1 ,

Φ2(x) = ω + 1 , Φ7(x) = ω6 + ω5 + ω4 + ω3 + ω2 + ω + 1 ,

Φ3(x) = ω2 + ω + 1 , Φ8(x) = ω4 + 1 ,

Φ4(x) = ω2 + 1 , Φ9(x) = ω6 + ω3 + 1 ,

Φ5(x) = ω4 + ω3 + ω2 + ω + 1 , Φ10(x) = ω4 − ω3 + ω2 − ω + 1 . (2.5)

We conclude by presenting a degree two encoding of Hamiltonian cycle. This

encoding is similar to the one presented for graph k-colorability, and is again based on the

idea of “partitioning” the graph into n disjoint sets. Thus, every vertex appears in exactly

one partition, and the order of the partitions defines the order of the cycle.

Lemma 2.3.4 Let C[xip], where 1 ≤ i, p ≤ n, be a polynomial ring. Given a simple graph

G, then G has a Hamiltonian cycle if and only if the following zero-dimensional system of

equations has a solution.

For every node i ∈ V (G):



n∑

p=1

xip


− 1 = 0 , and

∑

j∈Adj(i)


xinxj1 +

n−1∑

p=1

xipxj(p+1)


− 1 = 0 .
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For every node i ∈ V (G) and p = 1, . . . , n:

xip(xip − 1) = 0 .

Proof: If the graph G has a Hamiltonian cycle, then start the labeling at an arbitrary

vertex in the cycle, and assign xir to be 1 if vertex i is the r-th vertex on the cycle, and all

other xip to be 0. Clearly, the first and third equations are satisfied. The second equation

is satisfied since every vertex i is adjacent to a vertex j which is placed in the next highest

partition, or vertex i is the n-th vertex on the cycle, in which case it is adjacent to the

vertex placed in the first partition.

Conversely, assume that there exists a solution to the above system of equations.

By the first and third equations, clearly every vertex appears in only one partition. Con-

sider a vertex i in the lowest possible partition. That vertex cannot be in the n-th partition,

because, in that case, the second equation is only satisfied if it is adjacent to a vertex j in

the first partition (thus, contradicting the minimality of the partition of i). Thus, vertex i

must be adjacent to a vertex j in the next highest partition. This condition holds for the n

vertices in the graph. Finally, since the vertex in the n-th partition cannot be adjacent a

vertex in a higher partition, it must be adjacent to a vertex in the first partition. Thus, the

vertex in the lowest possible partition must be in the first partition, and the vertex/partition

order defines a Hamiltonian cycle in the graph. 2

We conclude by noting that the encodings presented in this section are not O(g(n))-

encodings for any polynomial g(n). For example, in Lemma 2.3.1, for any vertex i the

equation
∏n

s=1(xi − s) = 0 has 2n terms when expanded. Lemma 2.3.3 is also not an
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O(g(n))-encoding for any polynomial g(n), because, given a graph containing a vertex i with

degree n − 1, the equation
∏

j∈Adj(i)(ωxi − xj) has 2n−1 terms when expanded. However,

it may yet be possible to compute using these encodings because the polynomials can be

represented concisely as the product of linear factors. Algebraic methods exploiting these

linear factors have yet to be developed or investigated. Despite these problems with the

encoding size, we recall that the Hamiltonian cycle problem remains NP-complete even for

k-regular graphs with k ≥ 3 [54]. In this case, when restricted to k-regular graphs for a

fixed k, Lemma 2.3.3 is an O(n)-encoding where n is the number of vertices in the graph.

2.4 Graph Planarity

A planar graph is any graph that can be embedded (or drawn) in the plane in such

a way that no two edges cross (see [16] for details). Although graph planarity is solvable

in polynomial-time, we present an encoding as a system of polynomial equations for two

reasons: 1) we are interested in whether or not this system of polynomial equations is

likewise solvable in polynomial time, and 2) can the techniques displayed in this encoding

be used for other combinatorial problems. The encoding we present here for testing graph

planarity is based on Schnyder’s characterization of planarity in terms of the dimension of

a partially-ordered set or poset [55]: For an n-element poset P , a linear extension is an

order-preserving bijection σ : P → {1, 2, . . . , n}. The poset dimension of P is the smallest

integer t for which there exists a family of t linear extensions σ1, . . . , σt of P such that x < y

in P if and only if σi(x) < σi(y) for all σi. The incidence poset P (G) of a graph G(V, E) is

the partially-ordered set of height two on the union of nodes and edges, where we say x < y
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if x is a node and y is an edge, and y is incident to x.

Example 2.4.1 (Posets and Planar Graphs) Let G be the planar square graph. Here

we display the incidence poset P (G) and its three corresponding linear extensions.

1
 2
 3
 4


(1,2)
 (2,3)
 (3,4)
 (4,1)


(1,2)


(2,3)


(3,4)

(4,1)


3


4


2


1


3


4


1

2


(4,1)

3


(3,4)


(2,3)


2

(1,2)


1

4


(2,3)


(3,4)


(1,2)

(4,1)


1


2


4

3


G = square
 P(G)


linear

extensions


Figure 2.1: Via Schnyder’s theorem, P (G) has dimension at most three.

Lemma 2.4.2 (Schnyder’s theorem [55]) A graph G is planar if and only if the poset

dimension of P (G) is no more than three.

We begin by encoding the decision question of poset dimension as a system of

polynomial equations.

Lemma 2.4.3 Let P = (E, >) be a poset, and C[x{i}k, ∆{ij}k, sk] be a polynomial ring in

p|E|+(|E|2−|E|)+p variables (where i = 1, . . . , |E|, j = 1, . . . , |E|, j 6= i, and k = 1, . . . , p).

Then P has poset dimension at most p if and only if the following system of equations has

a solution:
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For k = 1, . . . , p :

|E|∏

s=1

(x{i}k − s) = 0 , for every i ∈ {1, . . . , |E|} , and

sk


 ∏

1≤i<j≤|E|
x{i}k − x{j}k


− 1 = 0 . (2.6)

For k = 1, . . . , p , and every ordered pair of comparable elements ei > ej in P :

x{i}k − x{j}k −∆{ij}k = 0 . (2.7)

For every ordered pair of incomparable elements of P (i.e., ei 6> ej and ej 6> ei) :

p∏

k=1

(
x{i}k − x{j}k −∆{ij}k

)
= 0 ,

p∏

k=1

(
x{j}k − x{i}k −∆{ji}k

)
= 0 . (2.8)

For k = 1, . . . , p , and for every pair {i, j} ∈ {1, . . . , |E|}:

|E|−1∏

d=1

(∆{ij}k − d) = 0 ,

|E|−1∏

d=1

(∆{ji}k − d) = 0 .

Proof: With Eqs. 2.6 and 2.7, we assign distinct numbers 1 through |E| to the poset

elements, such that the properties of a linear extension are satisfied. Eqs. 2.6 and 2.7 are

repeated p times, so p linear extensions are created. If the intersection of these extensions

is indeed equal to the original poset P , then for every incomparable pair of elements in

P , at least one of the p linear extensions must detect the incomparability. But this is in-

deed the case for Eq. 2.8, which says that for the l-th linear extension, the values assigned

to the incomparable pair ei, ej do not satisfy x{i}l < x{j}l, but instead satisfy x{j}l > x{i}l. 2

We will now use the encoding of poset dimension as a system of polynomial equa-

tions to capture Schnyder’s criterion for graph planarity.
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Lemma 2.4.4 Given a simple graph G(V, E) with n vertices and m edges, let C[zij , x{i}k,

y{ij}k,∆{ij,i},k,∆{ij,uv},k, sk] be a polynomial ring in
(
m + 3(2m + m(m− 1) + m + n + 1)

)

variables (where 1 ≤ i ≤ n, {i, j} ∈ E(G), {u, v} ∈ E(G), and 1 ≤ k ≤ 3). Then G has

a planar subgraph with K edges if and only if the following zero-dimensional system of

equations has a solution:

For every edge {i, j} ∈ E(G):

z2
ij − zij = 0,

∑

{i,j}∈E(G)

zij −K = 0 .

For k = 1, 2, 3 , every node i ∈ V (G) and every edge {i, j} ∈ E(G):

n+m∏

s=1

(x{i}k − s) = 0,
n+m∏

s=1

(y{ij}k − s) = 0 ,

sk




∏

i,j∈V (G)

i<j

(
x{i}k − x{j}k

) ∏

i∈V (G),

{u,v}∈E(G)

(
x{i}k − y{uv}k

) ∏

{i,j},{u,v}∈E(G)

(
y{ij}k − y{uv}k

)

 = 1 .

For k = 1, 2, 3, and for every pair of i ∈ V (G) and incident edge {i, j} ∈ E(G):

zij

(
y{ij}k − x{i}k −∆{ij,i}k

)
= 0 .

For every pair of node i ∈ V (G) and edge {u, v} ∈ E(G) that is not incident on i:

zuv

(
y{uv}1 − x{i}1 −∆{uv,i}1

)(
y{uv}2 − x{i}2 −∆{uv,i}2

)(
y{uv}3 − x{i}3 −∆{uv,i}3

)
= 0 ,

zuv

(
x{i}1 − y{uv}1 −∆{i,uv}1

)(
x{i}2 − y{uv}2 −∆{i,uv}2

)(
x{i}3 − y{uv}3 −∆{i,uv}3

)
= 0 .

For every pair of edges {i, j}, {u, v} ∈ E(G) (regardless of whether or not they

share an endpoint):

zijzuv

(
y{ij}1−y{uv}1−∆{ij,uv}1

)(
y{ij}2−y{uv}2−∆{ij,uv}2

)(
y{ij}3−y{uv}3−∆{ij,uv}3

)
= 0 ,
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zijzuv

(
y{uv}1−y{ij}1−∆{uv,ij}1

)(
y{uv}2−y{ij}2−∆{uv,ij}2

)(
y{uv}3−y{ij}3−∆{uv,ij}3

)
= 0 .

For every pair of nodes i, j ∈ V (G) (regardless of whether or not they are adjacent):

(
x{i}1 − x{j}1 −∆{i,j}1

)(
x{i}2 − x{j}2 −∆{i,j}2

)(
x{i}3 − x{j}3 −∆{i,j}3

)
= 0 ,

(
x{j}1 − x{i}1 −∆{j,i}1

)(
x{j}2 − x{i}2 −∆{j,i}2

)(
x{j}3 − x{i}3 −∆{j,i}3

)
= 0 .

For every ∆index (e.g., ∆{ij,uv}k, ∆{ij,i}k , etc.) variable appearing in the above

system:
n+m−1∏

d=1

(
∆index − d

)
= 0 .

Proof: We simply apply Lemma 2.4.3 to the particular pairs of order relations of the

incidence poset of the graph. Note that in the formulation, we have added variables zij that

have the effect of “turning on or off” an edge of the input graph. 2

2.5 Edge-Chromatic Number

The edge-chromatic number of a graph, denoted by χ′(G), is the minimum number

of colors necessary to color every edge such that no two edges incident on the same vertex

are the same color. It is easy to see that the edge-chromatic number is bounded from below

by ∆(G), the largest vertex degree in the graph. Also, by Vizing’s theorem [16], we know

that any graph can be edge-colored with ∆(G) + 1 colors, and therefore, we see

∆(G) ≤ χ′(G) ≤ ∆(G) + 1 .
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Thus, the question of determining edge-chromatic simplifies to determining whether χ′(G)

is ∆(G) or ∆(G) + 1. This problem is NP-complete [25], and we encode it as the following

system of polynomial equations.

Lemma 2.5.1 Let G be a simple graph with maximum vertex degree ∆. The graph G has

edge-chromatic number ∆ if and only if the following zero-dimensional system of polynomials

has a solution:

For every edge {i, j} ∈ E(G):

x∆
ij − 1 = 0 . (2.9)

For every node i ∈ V (G):

si




∏

j,k∈Adj(i)

j<k

(xij − xik)


− 1 = 0 . (2.10)

Proof: If the system of equations has a solution, then Eq. 2.9 insures that all variables xij

are assigned ∆ roots of unity. Eq. 2.10 insures that no node is incident on two edges of

the same color. Because the graph contains a vertex of degree ∆, the graph cannot have

an edge-chromatic number less than ∆, and because the solution corresponds to an edge-

∆-coloring, this implies that the graph has edge-chromatic number exactly ∆. Conversely,

if the graph has an edge-∆-coloring, simply map the coloring to the ∆ roots of unity and

all equations are satisfied. Because Vizing’s theorem states that any graph with maximum

vertex degree ∆ can be edge-colored with at most ∆ + 1 colors, if there is no solution, then

the graph must have an edge-chromatic number of ∆ + 1. 2
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2.6 Max-Cut

A cut in an undirected graph G(V,E) is a partition of the vertices into two

nonempty sets, S and V − S. The size of the cut (S, V − S) is the number of edges

crossing the cut. The problem of finding the smallest cut in the graph is well-known to

be solvable in polynomial-time via network flow algorithms, but the problem of finding the

largest cut in the graph is NP-hard [52]. We represent the max-cut problem as a system of

polynomial equations as follows:

Lemma 2.6.1 Given a graph G, there is a cut of size K in G if and only if the following

zero-dimensional system of equations has a solution:

x2
i − 1 = 0 , for every i ∈ V (G) ,

(|E| − 2K
)−


 ∑

{i,j}∈E

xixj


 = 0 .

Proof: If G has a cut of size K, we assign every vertex in S to have the value 1 and every

vertex in V −S to have the value −1. Clearly, the vertex equations x2
i − 1 = 0 are satisfied.

For the second equation, we note that every edge in the graph is contained in the sum: edges

that do not span the cut are 1 · 1 = 1 or (−1) · (−1) = 1. However, edges that span the cut

are 1 · (−1) = −1. Thus, the second equation becomes
(|E| − 2K

)− (|E| −K −K
)

= 0.

Conversely, suppose there exists a solution to the system of polynomial equations.

The vertex equations force every variable to be ±1. By the second equation, there are

exactly K edges with one endpoint assigned 1 and one endpoint assigned −1. Thus, a

solution to the system corresponds directly to a cut of size K in the graph. 2



33

2.7 SAT

A Boolean expression is satisfiable if there exists a truth assignment to the vari-

ables such that the expression evaluates to true. A Boolean expression is in conjunctive

normal form if the clauses are separated by ANDs, and every clause is a sequence of literals

separated by ORs. The Boolean satisfiability problem (SAT) is the problem of determining

whether there exists a truth assignment such that a given Boolean expression φ in con-

junctive normal form evaluates to true. SAT was the first decision problem to be proven

NP-complete, via the Cook-Levin theorem of 1971 [21]. As such, encodings of SAT and

their theoretical complexity have been a rich area of research, which we will summarize in

Section 4.4.

The following encoding is most commonly used in research in logic and complexity

(see [8, 26] and references therein).

Lemma 2.7.1 A Boolean expression φ in conjunctive normal form is satisfiable if and only

if the following zero-dimensional system of equations has a solution:

xi(xi − 1) = 0 , for every variable i ∈ φ ,

∏

xi∈C

(xi − 1)
∏

¬xj∈C

xj = 0 , for every clause C in φ .

Proof: If φ is satisfiable, there must exist a truth assignment such that every clause

evaluates to true. Let every variable in the system corresponding to a true variable in φ

equal 1, and every variable in the system corresponding to a false variable in φ equal 0.

Clearly, this assignment of values to variables causes the first equation to be satisfied. Now

consider a clause C in φ. A clause evaluates to true if it contains at least one positive literal
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xi that is true, or it contains at least one negative literal ¬xi that is false. Therefore, either

the literal appears in positive form, and xi = 1, in which case xi − 1 = 0, or the literal

appears in negative form, and ¬xi = true, in which case xi = 0. In either case, the clause

equations are satisfied.

Conversely, suppose there exists a solution to the system of polynomial equations.

The first equation clearly forces every variable to be 0 or 1. The clause equations force every

clause to have either a positive literal that is true, or a negative literal that is false (recall

that when xi is false, ¬xi is true). Thus, a solution to the system of equations corresponds

directly to a satisfying truth assignment. 2

There has also been extensive work on representing SAT as a system of inequalities

and solving as a semidefinite program (see [3] and references therein).
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Chapter 3

Nullstellensatz Linear Algebra

Algorithm (NulLA)

Who among us would not be glad to lift the veil
behind which the future lies hidden; to cast a glance
at the next advances of our science and at the
secrets of its development during future centuries?
What particular goals will there be toward which the
leading mathematical spirits of coming generations
will strive?

–David Hilbert, 1900

The Nullstellensatz Linear Algebra Algorithm (NulLA) takes an input a system of

polynomial equations, and produces as output either yes or no. To be precise, NulLA out-

puts either no, the system of polynomial equations has no solution, along with a certificate

of infeasibility, or yes, the system of polynomial equations has a solution. In Section 3.1, we
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will state and prove Hilbert’s Nullstellensatz, borrowing the proof from [4]. In Section 3.2,

we will thoroughly describe NulLA, providing examples, pseudocode, and briefly discussing

known upper bounds on its running time.

3.1 Hilbert’s Nullstellensatz

David Hilbert (1862 – 1943) proved the Nullstellensatz or theorem of zeros in 1893

[23]. For our purposes, the Nullstellensatz is most conveniently stated in the following way:

Given a system of polynomial equations f1(x) = · · · = fs(x) = 0, where fi ∈ K[x1, . . . , xn]

and K is an algebraically closed field, the system has no solution in Kn if and only if there

exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =
∑

βifi [13]. The proof we display

here, borrowed in its entirety from [4], is known for being almost completely self-contained:

it relies on Noether’s normalization lemma, and very little other external mathematical

background.

Lemma 3.1.1 (Noether’s normalization lemma) If K is an infinite field and f is a

nonconstant polynomial in K[x1, . . . , xn] with n ≥ 2, then it is possible to find λ1, . . . , λn−1

in K such that in

f(x1 + λ1xn, . . . , xn−1 + λn−1xn, xn) ,

the coefficient of xd
n (where d is the total degree of f) is nonzero.

Proof: Let fd be the homogeneous component of f of degree d. In other words, f can

be written as f = fd + frest. Consider the coefficient of xd
n in f(x1 + λ1xn, . . . , xn−1 +

λn−1xn, xn). Let xi1xi2 · · ·xid represent any monomial of degree d in fd, where i1, . . . , id are
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not necessarily distinct. Thus, when f is evaluated at {x1 + λ1xn, . . . , xn−1 + λn−1xn, xn},

we see

xi1xi2 · · ·xid =⇒ (xi1 + λi1xn)(xi2 + λi2xn) · · · (xid + λidxn)

=⇒ the coefficient of xd
n is λi1λi2 · · ·λid .

Since all terms of degree d are collected in fd, the coefficient of xd
n in f(x1+λ1xn, . . . , xn−1+

λn−1xn, xn) is

fd(λ1, . . . , λn−1, 1) .

By induction on n, we can establish that fd(x1, . . . , xn−1, 1) is a nonzero polynomial in

K[x1, . . . , xn−1], and since K is infinite, there is some point at which it does not vanish. Let

this point be (λ1, . . . , λn−1). Therefore, we can be certain that fd(λ1, . . . , λn−1, 1) is nonzero.

Therefore, the coefficient of xd
n in f(x1+λ1xn, . . . , xn−1+λn−1xn, xn) is likewise nonzero. 2

Thus, what we have shown here is that, given any non-constant polynomial f of

degree d in any polynomial ring K[x1, . . . , xn] (with K infinite and n ≥ 2), we can translate

the polynomial in such a way that the coefficient for a particular variable of degree d (for

example, xd
n) is nonzero. This lemma turns out to be critical to the subsequent proof of

Hilbert’s Nullstellensatz.

Theorem 3.1.2 (Hilbert’s Nullstellensatz) Let I be a proper ideal of K[x1, . . . , xn]. If

K is algebraically closed, then there exists (a1, . . . , an) in Kn such that f(a1, . . . , an) = 0 for

all f ∈ I.
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Proof: Let us assume that I 6= 0, since otherwise the result is trivial (the only polynomial

in I is the zero polynomial, and it vanishes on all points). We will prove the Nullstellensatz

by induction on n.

In the case n = 1, any nonzero proper ideal I ∈ K[x] is a principal ideal since

the univariate polynomial ring is a principal ideal domain. Therefore, I is generated by a

single nonconstant polynomial, which must therefore have at least one root a ∈ K, since K

is algebraically closed. Thus, f(a) = 0 for all f ∈ I.

Now assume that the theorem holds for all proper ideals in K[x1, . . . , xn−1]. We

will prove the theorem for a proper ideal I ∈ K[x1, . . . , xn].

From Noether’s normalization lemma (Lemma 3.1.1), we know that for any non-

constant f ∈ I, we can translate it in such a way that the coefficient xd
n is nonzero. There-

fore, by scaling accordingly, we can find a g ∈ I that is monic in xn.

Let I ′ be a proper ideal in K[x1, . . . , xn−1] consisting of all of the polynomials in I

that do not contain the variable xn. Therefore, by the induction hypothesis, there exists a

point (a1, . . . , an−1) such that f(a1, . . . , an−1) = 0 for all f ∈ I ′. Now, consider the following

claim:

• Claim: The set J = {f(a1, . . . , an, xn) | f ∈ I} is a proper ideal of K[xn].

• Proof: Suppose, for the purpose of deriving a contradiction, there exists an f ∈ I

such that f(a1, . . . , an−1, xn) = 1. Then, we can write f as

f = f0 + f1xn + . . . + fdx
d
n
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where fi ∈ K[x1, . . . , xn−1] and

f1(a1, . . . , an−1) = · · · = fd(a1, . . . , an−1) = 0, f0(a1, . . . , an−1) = 1 .

In addition, we can likewise express the monic polynomial g as

g = g0 + g1xn + . . . + ge−1x
e−1
n + xe

n

with gj ∈ K[x1, . . . , xn−1] for j = 0, . . . , (e− 1). Now, consider the resultant of f and

g with respect to the variable xn (see [22] for background exposition on resultants).

In other words, the resultant R is the polynomial in K[x1, . . . , xn−1] given by the

determinant of the following (e + d)× (e + d) square matrix:

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 · · · · · · · · · fd 0 · · · · · · 0

0 f0 f1 · · · · · · fd−1 fd 0 · · · 0

...
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 · · · · · · 0 f0 f1 · · · · · · fd−1 fd

g0 g1 · · · · · · ge−1 1 0 · · · · · · 0

0 g0 g1 · · · · · · ge−1 1 0 · · · 0

...
. . . . . . . . . . . . . . . . . .

...

...
. . . . . . . . . . . . . . . . . . 0

0 · · · · · · · · · 0 g0 g1 · · · ge−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣








e rows

d rows

It is easy to see that R ∈ I by adding the second column times xn to the first column,

and then the third column times x2
n to the first column, etc, repeated xd+e−1

n times.

Since we have performed only column operations, the value of the determinant is
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unchanged, but now we can see that when the determinant is expanded around the

first column, the resulting polynomial is a linear combination of f and g, which are

both in I. Thus, R ∈ I. Furthermore, R ∈ K[x1, . . . , xn−1], and therefore R is also

in I ′ (since I ′ was defined to contain all polynomials in I that do not contain the

variable xn). But R(a1, . . . , an−1) is equivalent to evaluating all of the polynomials

at (a1, . . . , an−1) and then taking the determinant, and that yields a lower triangular

matrix, whose diagonal values are all 1. Therefore,

R(a1, . . . , an−1) = 1

But, according to our induction hypothesis, all polynomials in I ′ vanish on the

point (a1, . . . , an). Thus, R /∈ I ′, and we have reached a contradiction. There-

fore, there cannot exist a polynomial f ∈ J that is identically 1. Therefore, J =

{f(a1, . . . , an, xn)|f ∈ I} is a proper ideal of K[xn].

But since J is a proper ideal of K[xn], it is generated by a single nonconstant polynomial

h(xn) or h = 0. In the former case, since K is algebraically closed, h(xn) has a single

root an. In either case, f(a1, . . . , an−1, an) = 0 for all f ∈ I. Thus, for any proper ideal

I ∈ K[x1, . . . , xn], there exists a point (a1, . . . , an) such that f(a1, . . . , an) for all f ∈ I.

This concludes the proof of Hilbert’s weak Nullstellensatz. 2

It is easy to translate Hilbert’s Nullstellensatz into a form more accessible for

computation. Consider the following corollary:

Corollary 3.1.3 Let K be an algebraically-closed field, and let f1, . . . , fs be polynomials in

K[x1, . . . , xn]. Then the system of equations f1 = f2 = · · · = fs = 0 has no solution if and
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only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that

1 =
∑

βifi . (3.1)

Proof: Let I = 〈f1, . . . , fs〉. By Hilbert’s Nullstellensatz, if the ideal I is proper, there

exists a point (a1, . . . , an) in Kn such that f(a1, . . . , an) = 0 for all f ∈ I. In other

words, the system of polynomial equations f1 = · · · = fs = 0 has a solution. If the ideal

I is not proper, then no such point exists, and the system of polynomial equations has

no solution. In this case, by the definition of an improper ideal, there exist polynomials

β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =
∑

βifi. 2

We refer to Eq. 3.1 as a Nullstellensatz certificate, because it is a certificate that

the system of polynomial equations f1 = · · · = fs = 0 is infeasible.

3.2 NulLA: Examples, Pseudocode and Running Time

Hilbert’s Nullstellensatz states that a system of polynomial equations f1(x) = · · · =

fs(x) = 0, where fi ∈ K[x1, . . . , xn] and K is an algebraically closed field, has no solution in

Kn if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] such that 1 =
∑s

i=1 βifi

[13]. The polynomial identity 1 =
∑s

i=1 βifi is called a Nullstellensatz certificate, and we

say that a given certificate has degree d if max1≤i≤s{deg(βi)} = d.

The Nullstellensatz Linear Algebra (NulLA) algorithm takes as input a system

of polynomial equations and produces as output either yes, if the system of polynomial

equations has a solution, or no, along with a Nullstellensatz certificate of infeasibility, if

the system has no solution. Before stating the algorithm in pseudocode, we clarify the
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connection between certificates and linear algebra computations. Suppose that an input

system of polynomial equations has no solution over K, and suppose further that an oracle

has told us the degree of the corresponding Nullstellensatz certificate. Thus, we know the

polynomial identity 1 =
∑s

i=1 βifi exists and has degree d, but we do not know the structure

and form of the individual βi. If we expand the certificate into monomials, the coefficients of

a given monomial are linear expressions in the coefficients of the βi. Since two polynomials

over a field are identical precisely when the coefficients of corresponding monomials are

identical, from the existence of the degree d certificate 1 =
∑

βifi, we can extract a system

of linear equations whose variables are the coefficients of the βi. Here is an example:

Example 3.2.1 Consider the input system of polynomial equations x2
1 − 1 = 0, x1 + x2 =

0, x1 + x3 = 0, x2 + x3 = 0. This system has no solution. Therefore, it has an associated

Nullstellensatz certificate. We begin by assuming the certificate has degree one (the smallest

non-trivial degree), and we construct the most generalized Nullstellensatz certificate of

degree one possible, with unknowns for coefficients.

1 = (c0x1 + c1x2 + c2x3 + c3)︸ ︷︷ ︸
β1

(x2
1 − 1)︸ ︷︷ ︸
f1

+(c4x1 + c5x2 + c6x3 + c7)︸ ︷︷ ︸
β2

(x1 + x2)︸ ︷︷ ︸
f2

+ (c8x1 + c9x2 + c10x3 + c11)︸ ︷︷ ︸
β3

(x1 + x3)︸ ︷︷ ︸
f3

+ (c12x1 + c13x2 + c14x3 + c15)︸ ︷︷ ︸
β4

(x2 + x3)︸ ︷︷ ︸
f4

.

Expanding the tentative Nullstellensatz certificate into monomials and grouping like terms,

we arrive at the following polynomial equation:

1 = c0x
3
1 + c1x

2
1x2 + c2x

2
1x3 + (c3 + c4 + c8)x2

1 − c3 + (c10 + c14)x2
3 + (c4 + c5 + c9 + c12)x1x2

+ (c5 + c13)x2
2 + (c6 + c8 + c10 + c12)x1x3 + (c6 + c9 + c13 + c14)x2x3 + (c7 + c15 − c1)x2

+ (c11 + c15 − c2)x3 + (c7 + c11 − c0)x1 .
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From this, we extract a system of linear equations. Since a Nullstellensatz certificate is

identically one, all monomials except the constant term must be equal to zero; namely:

c0 = 0 , c1 = 0 , c2 = 0 , c3 + c4 + c8 = 0 , . . . , c7 + c11 − c0 = 0 , − c3 = 1 .

After solving this system of linear equations, if it is consistent, we can reconstruct the

Nullstellensatz certificate from the solution. In this case,

1 =
1
2
x1(x1 + x2)− 1

2
x1(x2 + x3) +

1
2
x1(x1 + x3)− (x2

1 − 1) .

2

In general, the degree of a Nullstellensatz certificate will not be known in advance.

Our approach is to start with the lowest possible degree (almost always one), and construct

the corresponding linear system. If the linear system has a solution, then the solution corre-

sponds directly to a Nullstellensatz certificate, and we have found a proof that the original

input system of polynomial equations does not have a solution (or a common root). Other-

wise, we continue to increment the degree, and construct and solve the corresponding linear

systems, until we have either found a consistent linear system (and thus a Nullstellensatz

certificate), or tested enough degrees that we can be certain no Nullstellensatz certificate

exists. The number of iterations of this incremental approach determines the running time

of NulLA.

There are well-known upper bounds on the degrees of Nullstellensatz certificates.

For example, consider the following:

Lemma 3.2.2 (Kollár [30]) Given polynomials f1, . . . , fs ∈ K[x1, . . . , xn] where K is an

algebraically-closed field and d = max{deg(fi)}, if f1, . . . , fs have no common zeros, then
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1 =
∑s

i=1 βifi where

deg(βi) ≤ max{3, d}n .

Proof: This follows directly from Definitions 1.3 and 1.4 and Theorem 1.5 of [30]. 2

Beyond the very general (and sharp) bounds of Kollár for the Nullstellensatz, we

can still hope for less extreme (e.g., subexponential) bounds for our combinatorial ideals.

Indeed, we are in luck: The solution of linear systems of equations with polynomial coeffi-

cients is an important topic that has received attention, both by algebraic geometers as well

as computer algebraists, and we can profit here from a fundamental result by D. Lazard

[35] that provides ideals like ours with a linear bound.

Lemma 3.2.3 (Lazard [35]) Let f1, . . . , fk be homogeneous polynomials of K[x0, . . . , xn]

that generate an ideal I, let di be the degree of fi and assume that d1 ≥ d2 ≥ · · · ≥ dk ≥ 1

and k ≥ n + 1. Then the following conditions are equivalent:

1) The k projective hypersurfaces defined by f1, . . . , fk have no point in common over the

algebraic closure of K (in particular, they have no point in common at infinity).

2) The ideal I contains a power of the maximal ideal M = 〈x0, x1, . . . , xn〉; namely, for

some power p, xp
i ∈ I for all xi.

3) Mp ⊂ I with p = d1 + d2 + · · ·+ dn+1 − n ≤ (n + 1)(max1≤i≤n+1{di} − 1) + 1.

4) The map φ : (β1, . . . , βk) →
∑

βifi is surjective among all polynomials of degree p,

when, for all i, βi is a homogeneous polynomial of degree p− di.
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The proof of Lemma 3.2.3 relies on advanced techniques in commutative and ho-

mological algebra, and is presented in [35], pg. 169. As a consequence of Lemma 3.2.3,

when given polynomials fi ∈ K[x1, . . . , xn], we can consider their homogenization f̄i, using

an extra variable x0 (e.g., x2 − x can be homogenized to x2 − xx0). If we are able to find a

“projective” Nullstellensatz of the form

xp
0 =

∑
βif̄i ,

then we can substitute x0 = 1 in the above equation and obtain the form of the Nullstel-

lensatz that is more desirable for computation (e.g., 1 =
∑

β′ifi). Furthermore, the degree

of β′i is less than or equal to the degree of βi.

We can summarize the Lazard lemma as follows (see Brownawell [7]):

Corollary 3.2.4 Given polynomials f1, . . . , fs ∈ K[x1, . . . , xn] where K is an algebraically-

closed field and d = max{deg(fi)}, if f1, . . . , fs have no common zeros and f1, . . . , fs have

no common zeros at infinity, then 1 =
∑s

i=1 βifi where

deg(βi) ≤ n(d− 1) .

Therefore, the bound on the Nullstellensatz obtained for the combinatorial ideals

described by Lemmas 2.2.2 and 2.1.1 (the coloring and independent set ideals, respectively)

is 2n and n, respectively. In other words, our combinatorial ideals have a linear bound,

which is a considerable improvement on the exponential bound predicted by Kollár.

Although this linear bound is an improvement, it is still far from being com-

putationally practical. However, we have observed in practice that the degree growth of

polynomial systems for combinatorial problems is often very slow — slow enough to deal

with large graphs or other combinatorial structures.
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We conclude by presenting NulLA in pseudocode:

*******************************************************************************
ALGORITHM: Nullstellensatz Linear Algebra Algorithm (NulLA)

INPUT: A system of polynomial equations F = {f1(x) = 0, . . . , fs(x) = 0}
OUTPUT: yes, if F has solution, else no, along with a

Nullstellensatz certificate of infeasibility.
1 d ← 1.
2 K ← known upper bounds on degree of Nullstellensatz for F (see [30], [7], [35])
3 while d ≤ K do
4 cert ← ∑s

i=1 βifi (where βi are polynomials of degree d, with unknowns
for their coefficients).

5 Extract a system of linear equations from cert with columns corresponding
to unknowns, and rows corresponding to monomials.

6 Solve the linear system.
7 if the linear system is consistent then
8 cert ← ∑s

i=1 βifi (with unknowns in βi replaced with
linear system solution values.)

9 print “The system of equations F is infeasible.”
10 return no, along with cert.

end if
11 d ← d + 1.

end while
12 print “The system of equations F is feasible.”
13 return yes.
*******************************************************************************
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Chapter 4

Theoretical Complexity of NulLA

Into the Valley of Death
Rode the six hundred.

- Alfred, Lord Tennyson
Charge of the Light Brigade

4.1 P, NP and the Nullstellensatz

There is a fascinating connection between Hilbert’s Nullstellensatz and computa-

tional complexity. If the system of polynomial equations given as input to NulLA encodes

an NP-complete problem, the output certificate of infeasibility is a witness certificate for the

complement of the NP-complete problem. For example, when the input system of polyno-

mial equations encodes the independent set problem, the output Nullstellensatz certificate

demonstrates that no independent set of size k exists. When the input system of polynomial

equations encodes graph k-colorability, the output certificate demonstrates that the under-

lying graph is non-k-colorable. Since the belief in certain containments within complexity

classes such as P and NP is so ubiquitous as to be considered fact (in addition to being
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supported by decades of computational evidence), it is logical to characterize growth in the

degree of Nullstellensatz certificates in terms of these expected containments.

In this section, we begin by characterizing Nullstellensatz certificate degree growth

in terms of P 6= NP, then we discuss the growth in terms of the proper containment of

NP within EXPTIME, and finally, we conclude with observations on the density of the

certificates and the relationship between NP and coNP. Throughout this section, we rely

heavily on definitions 2.0.1 and 2.0.2 from Chapter 2.

In terms of the notation regarding O(g(n))-encodings, recall that O(nk) can be

bounded above by O(nk+d) where d is any non-negative integer. In the proofs that follow,

we will often use the largest order of growth to bound every quantity in the system of

polynomial equations. For example, if an encoding has O(n) variables, but O(n2) equations,

we will refer to the encoding as an O(n2)-encoding, and treat the system of equations as

though it has O(n2) variables. This is obviously true, even if a large overestimate.

Lemma 4.1.1 Let L be an NP-complete language and g(n) a polynomial such that L has

a O(g(n))-encoding. Then, if P 6= NP, ∀d ∈ Z≥0, there must exist an instance I of the

language L with I /∈ L such that the minimum-degree of the associated Nullstellensatz

certificate is strictly greater than d.

Proof: Our proof is by contradiction with the hypothesis P 6= NP. Assume that, ∀ I /∈ L,

the minimum-degree of the associated Nullstellensatz certificate has deg(βi) < d for some

constant d. We will show that P = NP by demonstrating a polynomial-time algorithm for

deciding L: (1) Given an instance I of L, encode it (using the given O(g(n))-encoding) as

the system of equations f1 = · · · = fs = 0, (2) Construct and solve the NulLA linear system
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obtained by assuming the degree of the certificate is d, (3) If the system has a solution, a

Nullstellensatz certificate exists, and I /∈ L: return no, (4) If the system does not have a

solution, then there does not exist a Nullstellensatz certificate, and I ∈ L: return yes.

Now we analyze the running time of this algorithm. In Step 1, since L has an

O(g(n))-encoding, we encode I in O(g(n)) time.

For Step 2, we note that by Corollary 3.2b of [56], if a system of linear equations

Ax = b has a solution, then it has a solution polynomially-bounded by the bit-sizes of the

matrix A and the vector b (see [56] for a definition of bit-size). In this case, the vector b

contains only zeros and ones. To calculate the bit-size of A, we recall our assumption that,

for every βi, deg(βi) < d for some constant d. Therefore, an upper bound on the number of

terms in each βi is the total number of monomials in O(g(n)) variables of degree less than

or equal to d. Therefore, the number of terms in each βi is

(
O(g(n)) + d− 1

O(g(n))− 1

)
+

(
O(g(n)) + d− 2

O(g(n))− 1

)
+ · · ·+

(
O(g(n))− 1
O(g(n))− 1

)

= O
((

O(g(n)
)d

)
+ O

((
O(g(n)

)d−1
)

+ · · ·+ O(1) = O
(
nd·deg(g)

)
.

Because there are O(g(n)) equations, there are O(g(n)) · O
(
nd·deg(g)

)
= O

(
n(d+1) deg(g)

)

unknowns in the linear system, and thus, O
(
n(d+1) deg(g)

)
columns in A. Because each

of the O(g(n)) equations has O(g(n)) terms, there are O(g(n)) · O(g(n)) · O
(
nd·deg(g)

)
=

O
(
n(d+2) deg(g)

)
terms in the expanded Nullstellensatz certificate, and thus O

(
n(d+2) deg(g)

)

rows in A. Furthermore, since the coefficient bit-size in every equation is O(g(n)), the

matrix A contains only entries of bit-size O(g(n)). Therefore, the bit-sizes of both A and b

are polynomially-bounded in n, and by Theorem 3.3 of [56], the linear system can be solved
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in polynomial-time.

Therefore, we have demonstrated a polynomial-time algorithm for deciding the

language L, and because L is NP-complete, this implies P = NP, which contradicts our

hypothesis. Therefore, ∀d ∈ Z≥0, there must exist an instance I of L with I /∈ L such that

the minimum-degree of the associated Nullstellensatz certificate is strictly greater than d.2

Lemma 4.1.1 and our encodings from Section 2 immediately give rise to the follow-

ing corollaries for the NP-complete problems of independent set, graph k-colorability and

planar graph k-colorability.

Corollary 4.1.2 If P 6= NP, then there must exist an infinite family of non-k-colorable

graphs such that, ∀d ∈ Z≥0, there is a graph in the family where the minimum-degree of the

associated Lemma 2.2.2 Nullstellensatz certificate has degree strictly greater than d.

Proof: Graph k-coloring is NP-complete [21] for k ≥ 3, and is encoded in Lemma

2.2.2 by the following system of polynomial equations: xk
i − 1 = 0 for i ∈ V (G), and

∑k−1
l=0 xl

ix
k−1− l
j = 0 for {i, j} ∈ E(G). Since the vertex polynomials xk

i − 1 have two terms,

and the edge polynomials
∑k−1

l=0 xl
ix

k−1− l
j have k terms (with k ≤ n), each equation has

O(n) terms. Furthermore, the coefficients within the equations are ±1, and the degree is at

most k. Since there are O(n2) edges in a graph, there are O(n + n2) = O(n2) equations in

the system. Therefore, this is an O(n2)-encoding and, by Lemma 4.1.1, ∀d ∈ Z≥0, there ex-

ists a non-k-colorable graph such that the minimum-degree of the associated Nullstellensatz

certificate is strictly greater than d. This defines the infinite family of graphs. 2
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Corollary 4.1.3 If P 6= NP, then there must exist an infinite family of non-k-colorable

planar graphs such that, ∀d ∈ Z≥0, there is a graph in the family where the minimum-degree

of the associated Lemma 2.2.2 Nullstellensatz certificate has degree strictly greater than d.

Proof: Planar graph k-coloring is also NP-complete [21] for k ≥ 3. Thus, the proof follows

from the proof of Corollary 4.1.2. 2

Corollary 4.1.4 If P 6= NP, then there must exist an infinite family of graphs such that,

∀d ∈ Z≥0, there is a graph in the family where the minimum-degree of the associated

Lemma 2.1.1 Nullstellensatz certificate proving the non-existence of an independent set of

size greater than α(G) has degree strictly greater than d.

Proof: The independent set decision problem is NP-complete [21], and is encoded by

the following system of polynomial equations: x2
i − xi = 0 for i ∈ V (G), xixj = 0 for

{i, j} ∈ E(G), and −(α(G) + r) +
∑n

i=1 xi = 0 (Lemma 2.1.1). Every equation has O(n)

terms, and since there are at most O(n2) edges in a graph, there are at most O(n2) equations

in the system. Furthermore, the coefficients within the equations are ±1, and the degree is

at most two. Therefore, Lemma 2.1.1 provides an O(n2)-encoding, and the existence of an

infinite family of graphs follows from Lemma 4.1.1. 2

In Lemma 4.1.1, we describe growth in the minimum-degree of a Nullstellensatz

certificate in terms of the well-respected belief that P 6= NP. However, we did not char-

acterize the growth as logarithmic, linear or exponential, beyond the observation that the

minimum-degree cannot be bounded from above by a constant. It is logical to expect that

different rates of growth might again be related to certain containments within the tower
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of complexity class inclusions. From complexity theory, we know the following:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME .

It is known via the time hierarchy theorem [52] that P is a proper subset of EXPTIME.

Thus, at least one of these containments must be proper, but it is not known which one;

indeed, it is widely believed that all inclusions are proper [52]. In the following corollary,

we observe that if the minimum-degree grows logarithmically, then NP is a proper subset

of EXPTIME, which is widely believed to be true.

Lemma 4.1.5 Let L be an NP-complete language and g(n) a polynomial such that L has an

O(g(n))-encoding. If the degree of a minimum-degree Nullstellensatz certificate is O(log(n)),

then NP ( EXPTIME.

Proof: By the algorithm described in the proof of Lemma 4.1.1, we know that the time

required to find a Nullstellensatz certificate is at most the time required to solve the as-

sociated linear system. We note that, as in Lemma 4.1.1, because the bit-size of every

entry in the matrix has bit-size O(g(n)), the solution will be polynomially-bounded in the

bit-size of the matrix. Thus, within a polynomial factor, the time required to solve a linear

system is dependent on the size of the linear system, and the size of the linear system is

dependent on the minimum-degree of the Nullstellensatz certificate. Since our encoding is

an O(g(n))-encoding, if the minimum-degree is O(log(n)), the number of rows and columns

in the linear system is given by the number of monomials per equation times the number
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of equations, as shown in Lemma 4.1.1. Thus, we see that the size of the linear system is

(
O

(
g(n)log(n)

)
·O(g(n))

)

︸ ︷︷ ︸
rows

×
(
O

(
g(n)log(n)

)
·O(g(n))

)

︸ ︷︷ ︸
columns

,

O
(
ndeg(g)(log(n)+1)

)

︸ ︷︷ ︸
rows

×O
(
ndeg(g)(log(n)+1)

)

︸ ︷︷ ︸
columns

.

For an N × N matrix, Gaussian Elimination is O(N3) (possibly with another polynomial

factor for the arithmetic). Thus, the time required to find the Nullstellensatz certificate is

O
((

ndeg(g)(log(n)+1)
)3

)
= O

(
n3 deg(g)(log(n)+1)

)

= O
(
n3 deg(g)(log(n)+log(n))

)
= O

(
n6 deg(g) log(n)

)

= O
((

2log(n)
)6 deg(g) log(n)

)
= O

(
26 deg(g) log2(n)

)

= O
(
2log2(n)

)
= O

(
nlog(n)

)
.

Recall the definition:

EXPTIME =
⋃

k∈N
DTIME

(
2nk)

.

Thus, the running time required to find a Nullstellensatz certificate is superpolynomial

but subexponential. Since L is an NP-complete problem, all other problems in NP are

polynomially-reducible to L. Therefore, there exists a superpolynomial but subexponential

time algorithm for every problem in NP. Therefore, NP ( EXPTIME. 2

To summarize Lemma 4.1.5, we note that if the minimum-degree of Nullstellensatz

certificates associated with an NP-complete problem grow linearly with respect to input size,

then the running time of NulLA is O(nn) = O
(
2n log(n)

)
: exponential. In other words, if
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we demonstrate that the minimum-degree of Nullstellensatz certificates associated with an

NP-complete grow linearly in the worst case, then we have simply demonstrated yet another

exponential-time algorithm for an NP-complete problem. However, if the minimum-degree

of Nullstellensatz certificates associated with an NP-complete problem grow logarithmically

with respect to input size, then the running time of NulLA is O
(
nlog(n)

)
= O

(
2log2(n)

)
:

superpolynomial but subexponential. In other words, demonstrating logarithmic growth in

the minimum-degree of Nullstellensatz certificates associated with an NP-complete problem

in the worst case would be a new result; we would have described a superpolynomial but

subexponential time algorithm for an NP-complete problem, and unexpectedly proved that

NP is a proper subset of EXPTIME. The curious point is that the rate of growth in the

minimum-degree of Nullstellensatz certificates is a fixed, algebraic property of the encoding;

we can at times slow down the rate of growth (see Section 5.1.2), but in general, the rate

of growth is simply a property of the encoding. Thus, there is hope that if a particular

encoding captures the combinatorial properties of an NP-complete problem elegantly enough

with respect to the Nullstellensatz, then the rate of growth might be such that a new

complexity result simply reduces to accurately describing an algebraic property of a system

of polynomial equations.

Thus far in this section, we have characterized growth in the degree of the Null-

stellensatz in terms of the commonly-held view of P and NP. However, as observed earlier,

when a system of equations encodes an NP-complete problem, the resulting Nullstellensatz

certificate is a certificate for the complement of the NP-complete problem, or a witness

certificate for a problem in coNP. (Recall that a problem is in coNP if its complement is in
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NP). Thus, it is also logical to characterize Nullstellensatz certificates in terms of the rela-

tionship between NP and coNP. In other words, we are no longer concerned with finding a

Nullstellensatz certificate; we are only concerned with verifying a Nullstellensatz certificate.

These certificates are, after all, polynomial identities that simplify to one. Thus, given a

Nullstellensatz certificate, not only must its degree grow with respect to the input size, but

the number of multiplications/additions/monomial comparisons required to simplify the

certificate must be large; in other words, the certificates must be dense with respect to the

number of monomials contained in the coefficients.

The following lemma was first proposed by Lovász in [41] in terms of specifically-

defined graph identities: we generalize it here to any NP-complete problem with an O(g(n))-

encoding.

Lemma 4.1.6 Let L be an NP-complete language and g(n) a polynomial such that L has

an O(g(n))-encoding. Furthermore, let every instance I of L with I /∈ L have an associated

Nullstellensatz certificate of the form

1 =
s∑

i=1

βifi , (4.1)

where the bit-size of max{deg(β1), . . . , deg(βs)} is O(g(n)). Then, if NP 6= coNP, there

must exist an infinite family of instances I of L with I /∈ L such that the associated Null-

stellensatz certificates contain at least one βi with a superpolynomial number of terms.

Proof: Our proof is by contradiction with the hypothesis NP 6= coNP. Consider an instance

I of L with I /∈ L, and let Eq. 4.1 be its associated Nullstellensatz certificate. Let h(n)

be a polynomial, and assume that the number of terms in any βi is O(h(n)). Without loss
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of generality, assume h(n) = O(g(n)); otherwise, g(n) = O(h(n)), and we can simply use

O(h(n)) to bound the encoding. We will show that NP = coNP by showing that Eq. 4.1

can be simplified or verified in polynomial-time.

Consider the number of operations required to simplify the certificate. We must

expand each individual βifi, sort the resulting monomials and then add/subtract the co-

efficients. This is a lower bound on the number of operations required to simplify the

certificate, since we must determine the final coefficient of each monomial produced by the

product βifi in the expanded certificate. Since f1 = · · · = fs = 0 is an O(g(n))-encoding,

every fi contains O(g(n)) terms, and by assumption, every βi contains h(n) = O(g(n))

terms. Thus, the product βifi requires O(g(n)) · O(g(n)) = O
(
n2 deg(g)

)
multiplications.

Since the number of equations is O(g(n)), the total number of multiplications required to

expand the entire certificate is O(g(n)) · O
(
n2 deg(g)

)
= O

(
n3 deg(g)

)
. Since the bit-size of

every coefficient in any fi is O(g(n)), and because the coefficients in any βi correspond

to the solution of a polynomially-bounded linear system (as shown in the proof of Lemma

4.1.1), each of those multiplications can be performed in polynomial-time.

Next, we sort the terms appearing in the expanded certificate, group the similar

monomials together, and simplify the coefficients. In any given monomial, the number

of variables is O(g(n)) and the bit-size of the degree is O(g(n)). Thus, comparing two

monomials takes polynomial time. Since the number of terms in the expanded certificate

is O
(
n3 deg(g)

)
, sorting the list also takes polynomial time. Finally, since the bit-size of

the coefficients is polynomial (either O(g(n)) or polynomial-bounded via the linear system

solution), calculating the coefficient of any given monomial takes polynomial-time.
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Thus, we have shown that a Nullstellensatz certificate such as Eq. 4.1, where

f1 = · · · fs = 0 represents an O(g(n))-encoding of L, and where each βi has O(g(n)) terms,

can be simplified or verified in polynomial time. But recall the following well-known result

[21], where L denotes the complement of L:

Let L be any NP-complete language. If L is in NP, then NP = coNP.

By showing that a Nullstellensatz certificate like Eq. 4.1 can be simplified in polynomial

time, we have shown that an instance I of L with I /∈ L can be verified in polynomial-time.

In other words, we have demonstrated that L is in NP. Thus, NP = coNP, which contra-

dicts our hypothesis. Therefore, the number of terms in every βi cannot be O(h(n)) for any

polynomial h(n): there must exist at least one βi with a superpolynomial number of terms. 2

The Schwartz-Zippel lemma (see [51], pg. 165) is a probability result which is com-

monly used as the basis of a random algorithm for verifying proposed polynomial identities.

Suppose we are given a polynomial f ∈ K[x1, . . . , xn], and we suspect f is identically zero,

but the act of deterministically expanding and simplifying f takes exponential time (in the

number of variables). Therefore, we are interested in a method for randomly verifying f

in polynomial-time (in the number of variables), and determining whether f is identically

zero within some user-specified, error bound. Note that, since a Nullstellensatz certificate is

identically one, subtracting one from the certificate creates an identically zero polynomial.

The Schwartz-Zippel lemma is as follows:

Lemma 4.1.7 (Schwartz-Zippel) Let f ∈ K[x1, . . . , xn] be a non-zero polynomial of de-

gree d ≥ 0. Let S be a finite subset of K and let r1, . . . , rn be selected randomly from S.
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Then

Pr[f(r1, r2, . . . , rn) = 0] ≤ d

|S| .

The Schwartz-Zippel random polynomial identity verification algorithm is as fol-

lows. We define a “trial” to consist of 1) choosing n values arbitrarily from the set S to

create a point {r1, . . . , rn}, and 2) evaluating f(r1, . . . , rn). If f(r1, . . . , rn) = 0, then the

trial is considered a success. If f(r1, . . . , rn) 6= 0, then we can be certain f is not identically

zero. Thus, if |S| ≥ 2d and we conduct t successful trials, then the probability that f is

identically zero is 1− (1/2)t. However, if f(r1, . . . , rn) fails on even one point, then we are

certain f is not identically zero. Therefore, the Schwartz-Zippel random polynomial iden-

tity verification algorithm is a no-biased Monte Carlo algorithm: a “no” answer is always

correct, but a “yes” answer may be incorrect, within boundable error probability. Thus, if

f(r1, . . . , rn) can be evaluated in polynomial-time, then randomly verifying a polynomial

identify to within a very small error bound can be done in polynomial-time. Therefore,

Lemma 4.1.6 provides the following corollary:

Corollary 4.1.8 Let L be an NP-complete language and g(n) a polynomial such that L has

an O(g(n))-encoding. Furthermore, let every instance I of L with I /∈ L have an associated

Nullstellensatz certificate of the form

1 =
s∑

i=1

βifi ,

where the bit-size of max{deg(β1), . . . , deg(βs)} is O(g(n)). Then, if NP 6= coNP, a

given trial of the Schwartz-Zippel polynomial identify verification algorithm does not run

in polynomial-time in the length of I.
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4.2 Independent Set and the Nullstellensatz

In this section, we explore the Nullstellensatz certificates associated with the in-

dependent set encoding described by Lovász in Lemma 2.1.1. Without using any assump-

tions about complexity theory such as P 6= NP or NP 6= coNP, we prove a clear and

direct relationship between the Nullstellensatz certificates and the underlying graphs: the

minimum-degree is the stability number α(G), or the size of the largest independent set in

G, and there is at least one monomial per independent set in G. In this case, not only do we

demonstrate linear growth in the minimum-degree of the Nullstellensatz certificates, but we

also prove that they are dense. In other words, we arrive at a result predicted by assuming

P 6= NP and NP 6= coNP without any assumptions on complexity class containments. In

[41], Lovász proposed the challenge of explicitly finding a family of graphs with growth in

the minimum-degree of their Nullstellensatz certificates. As an unexpected byproduct of

investigating the theoretical complexity of NulLA, we answer his open question.

This section is structured as follows. We first introduce the idea of a reduced

certificate, which we use throughout this section. Next, we prove that for every graph,

there exists a Nullstellensatz certificate of degree α(G). Then, we prove that α(G) is

indeed the minimum degree. As a corollary that arises from the structure of these proofs,

we demonstrate that there is one monomial per independent set in G, and conclude with

remarks on the computational implications of these results.

Throughout this section, when we say a monomial is supported on the independent

sets of G, we mean that the variables in the monomial correspond to vertices in the graph

that form an independent set. Furthermore, A,Qi, Qij , etc. always denote polynomials in
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C[x1, . . . , xn].

Lemma 4.2.1 For any graph G and a Nullstellensatz certificate

1 = A

(
− (α(G) + r) +

n∑

i=1

xi

)
+

∑

i∈V (G)

Qi(x2
i − xi) +

∑

{i,j}∈E(G)

Qij(xixj) (4.2)

certifying that G has no stable set of size (α(G) + r) (with r ≥ 1), we can construct a

“reduced” Nullstellensatz certificate

1 = A′
(
− (α(G) + r) +

n∑

i=1

xi

)
+

∑

i∈V (G)

Q′
i(x

2
i − xi) +

∑

{i,j}∈E(G)

Q′
ij(xixj) ,

such that

1. The coefficient A′ multiplying −(α(G) + r) +
∑n

i=1 xi has only square-free monomials

supported on independent sets of G, and thus deg(A′) ≤ α(G).

2. max{deg(A), deg(Qi), deg(Qij)} = max{deg(A′), deg(Q′i), deg(Q′ij)}. Thus, if the origi-

nal Nullstellensatz certificate has minimum-degree, the “reduced” certificate also has

minimum-degree.

Proof: Let I be the ideal generated by x2
i − xi (for every node i ∈ V (G)), and xixj (for

every edge {i, j} ∈ E(G)). Furthermore, let B equal

1 = A

(
− (α(G) + r) +

n∑

i=1

xi

)

︸ ︷︷ ︸
B

+
∑

i∈V (G)

Qi(x2
i − xi) +

∑

{i,j}∈E(G)

Qij(xixj) ,

We apply reductions modulo I to Eq. 4.2. If a non-square-free monomial appears in poly-

nomial A, say xα1
i1

xα2
i2
· · ·xαk

ik
with at least one αj > 1, then we can subtract the polynomial

xα1
i1

xα2
i2
· · · , x

αj−2
ij

xαk
ik

B(x2
ij
− xij ) from AB and simultaneously add it to

∑n
i=1 Qi(x2

i − xi).

Thus, eventually we obtain a new certificate that has only square-free monomials in A′.
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Furthermore, if Q′
ij

has new monomials, they are of degree less than or equal to what was

originally in A.

Similarly, if xi1xi2 · · ·xik appears in A, but xi1xi2 · · ·xik contains an edge {i, j} ∈

E(G) (if xixj divides xi1xi2 · · ·xik), then we can again subtract B(xi1xi2 · · ·xik/xixj)(xixj)

from AB, and, at the same time, add it to
∑
{i,j}∈E(G) Qijxixj . Furthermore, the degree is

maintained, and we have reached the form we claim exists for A′. 2

We now show that, for every graph, there exists an explicit Nullstellensatz cer-

tificate of degree α(G). In order to prove this claim, we introduce the following notation.

Let Si be the set of all independent sets of size i in G. For any independent set I ∈ Si,

if I consists of the vertices {c1, c2, . . . , ci}, then xI := xc1xc2 · · ·xci , and we refer to the

monomial xI as a “independent set”. We define S0 := ∅, and x∅ = 1. If we say I ∪k ∈ Si+1,

we explicitly mean that I ∩k = ∅, and that xIxk is a square-free independent set monomial

of degree i+1. If I ∪ k /∈ Si+1, we explicitly mean that I ∩ k = ∅ but I ∪ k contains at least

one edge {k, cj}. In other words, xIxk is a square-free non-independent set monomial of

degree i + 1. In this case, let mink(I) denote the smallest cj ∈ I such that {k, cj} ∈ E(G).

Finally, let

Pi :=
∑

I∈Si

xI , with P0 := 1 , and Li :=
iLi−1

α(G) + r − i
, with L0 :=

1
α(G) + r

.

Theorem 4.2.2 Given a graph G, there exists a Nullstellensatz certificate of degree α(G)

certifying the non-existence of an independent set of size α(G) + r (for r ≥ 1) such that

1 = A

(
− (α(G) + r) +

n∑

i=1

xi

)
+

∑

{u,v}∈E(G)

Quvxuxv +
n∑

k=1

Qk(x2
k − xk) , (4.3)
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where

A = −
α(G)∑

i=0

LiPi , Quv =
α(G)∑

i=1

( ∑

I∈Si:I∪v /∈Si+1and

minv(I)=u

Li+1xI\u

)
and

Qk =
α(G)∑

i=0

( ∑

I∈Si:I∪k∈Si+1

Li+1xI

)
.

Proof: Our proof is the direct verification of Eq. 4.3. Let B, C and D equal

1 = A

(
− (α(G) + r) +

n∑

i=1

xi

)

︸ ︷︷ ︸
B

+
∑

{u,v}∈E(G)

Quvxuxv

︸ ︷︷ ︸
C

+
n∑

k=1

Qk(x2
k − xk)

︸ ︷︷ ︸
D

,

It is easy to see that

−L0P0

(− (α(G) + r)
)

= − 1
α(G) + r

(
− (α(G) + r)

)
= 1 .

We will now show that the coefficient for every other monomial in Eq. 4.3 simplifies to

zero. We begin by observing that every monomial in A,Qk or Quv is an independent set,

and furthermore, that the independent set monomials in Qk do not contain the variable

xk, and the independent set monomials in Quv contain neither xu nor xv. Therefore, in

the expanded certificate AB + C + D, only three types of monomials appear: square-free

independent set monomials, square-free non-independent set monomials, and independent

set monomials with exactly one variable squared.

• square-free independent set: Let I = {c1, c2, . . . , cm} be any independent set of

size m. The monomial xI is created in AB in two ways: xI\ck
xck

(formed m times,

one for each ck), or xI

(− (α(G) + r
)
. Thus, the coefficient for xI in AB is

−mLm−1 − Lm

(− (α(G) + r)
)

= −m
Lm(α(G) + r −m)

m
+ Lm(α(G) + r) = mLm .
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The monomial xI does not appear in C, because xI is an independent set monomial.

However, the monomial xI is produced by xI\ck
(−xck

) in D (formed m times, one for

each ck), and the coefficient for xI in D is −mLm. Therefore, we see that

mLm︸ ︷︷ ︸
from AB

−mLm︸ ︷︷ ︸
from D

= 0 .

• square-free non-independent set: Let I = {c1, c2, . . . , cm−1, u} be any inde-

pendent set of size m, and consider the monomial xIxv where u = minv I and

{u, v} ∈ E(G). Now, consider all
(
m+1

m

)
subsets of {c1, c2, . . . , cm−1, u, v}, and let

M be the number of independent sets among those
(
m+1

m

)
subsets. Each of those

M subsets appears as an independent set monomial in A. Therefore, the monomial

xIxv is created M times in AB, and the coefficient for xIxv in AB is −MLm. The

monomial xIxv does not appear in D, because it is a non-independent set monomial,

and it appears exactly M times in C. Therefore, the coefficient for xIxv in C is MLm,

and we see that

−MLm︸ ︷︷ ︸
from AB

+MLm︸ ︷︷ ︸
from C

= 0 .

• independent set with one variable squared: Let I = {c1, c2, . . . , cm−1, k} be

any independent set of size m, and consider the monomial xI\kx2
k. This monomial is

created in AB by the direct product xIxk, and the coefficient is −Lm. This monomial

is not created in C, because it contains no edges, and it is created in D by xI\kx2
k.

Thus, the coefficient for xIxk in D is Lm, and we see that

−Lm︸ ︷︷ ︸
from AB

+ Lm︸︷︷︸
from D

= 0 .
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Since the constant term in AB +C +D is one, and the coefficient for every other monomial

is zero, Eq. 4.3 is a Nullstellensatz certificate of degree α(G). 2

Example 4.2.3 Figure 4.1 depicts the T (5, 3) Turán graph. It is clear that α(T (5, 3)) = 2.

Therefore, we construct a certificate via Theorem 4.2.2 verifying the non-existence of an

independent set of size 3.

1

2


3
 4


5


Figure 4.1: Turán graph T (5, 3)

1 =
(

1
3
x4 +

1
3
x2 +

1
3

)
x1x3 +

(
1
3
x2 +

1
3

)
x1x4 +

(
1
3
x2 +

1
3

)
x1x5 +

(
1
3
x4 +

1
3

)
x2x3+

(
1
3

)
x2x4 +

(
1
3

)
x2x5 +

(
1
3
x4 +

1
3

)
x3x5 +

(
1
3

)
x4x5 +

(
1
3
x2 +

1
6

)
(x2

1 − x1)+

(
1
3
x1 +

1
6

)
(x2

2 − x2) +
(

1
3
x4 +

1
6

)
(x2

3 − x3) +
(

1
3
x3 +

1
6

)
(x2

4 − x4) +
(

1
6

)
(x2

5 − x5)+

(
− 1

3
(
x1x2 + x3x4

)− 1
6
(
x1 + x2 + x3 + x4 + x5

)− 1
3

)

︸ ︷︷ ︸
A

(x1 + x2 + x3 + x4 + x5 − 3) .

In this example, note that A,Qi, Qij are polynomials in Q[x1, . . . , xn], and furthermore, note

that A contains one monomial for every independent set in T (5, 3). For example, note that

the term −1
3x1x2 corresponds to the independent set formed by vertices 1 and 2 in T (5, 3).

Additionally, every monomial in every coefficient is also an independent set in T (5, 3). 2

We will now prove that the stability number α(G) is the minimum-degree for any

Nullstellensatz certificate for the non-existence of an independent set of size greater than



65

α(G). To prove this, we rely on two lemmas, which represent the base case and the inductive

step in the final inductive proof.

Lemma 4.2.4 Let G be a graph, and let

1 = A′
(
− (α(G) + r) +

n∑

i=1

xi

)
+

∑

{i,j}∈E(G)

Q′
ijxixj +

n∑

i=1

Q′
i(x

2
i − xi) , (4.4)

be a reduced (via Lemma 4.2.1) Nullstellensatz certificate proving the non-existence of a

independent set of size α(G) + r (for r ≥ 1). Then the constant term in A′ is −L0, and the

coefficient for xi in A′ is −L1.

Proof: The certificate presented in Eq. 4.4 must simplify to one. We begin by letting B,C

and D equal

1 = A′
(
− (α(G) + r) +

n∑

i=1

xi

)

︸ ︷︷ ︸
B

+
∑

{i,j}∈E(G)

Q′
ijxixj

︸ ︷︷ ︸
C

+
n∑

i=1

Q′
i(x

2
i − xi)

︸ ︷︷ ︸
D

,

A constant only appears in the expanded certificate A′B + C + D via the product

of a constant term in A′ and the constant term in B. Therefore, letting β0 be the constant

term in A′, we see

−(α(G) + r)β0 = 1 , =⇒ β0 = − 1
α(G) + r

= −L0 .

Now let βi be the coefficient of xi in A′ and let D = deg(Q′
i). Therefore,

Q′
i = MDxD

i + MD−1x
D−1
i + · · ·+ M1xi + M0

+ other terms in Q′
i that are not powers of xi .
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Now consider the coefficients for xi, x
2
i in the expanded certificate A′B+C +D, which must

simplify to zero:

xi : 0 = βi

(− (α(G) + r)
)−M0 − L0 ,

x2
i : 0 = βi + M0 −M1 .

Now consider the coefficients for the monomials xD+2
i , xD+1

i , . . . , x3
i in the expanded certifi-

cate A′B + C + D, which are MD,−MD + MD−1,−MD−1 + MD−2, . . . ,−M2 + M1. Each

of these coefficients must simplify to zero, which implies each of these equations is equal to

zero. When the coefficients for xD+2
i , xD+1

i , . . . , x3
i , x

2
i (note that xi is excluded) are summed

together in one equation, the sum telescopes and the terms cancel yielding βi + M0 = 0.

Therefore, the equation for xi becomes:

βi

(− (α(G) + r)
)

+ βi − L0 = 0 ,

βi(α(G) + r)− βi = −L0 ,

βi = − L0

α(G) + r − 1
,

βi = −L1 .

Thus, we see that coefficient of xi in A′ is equal to −L1. 2

Lemma 4.2.5 Let G be a graph, and let

1 = A′
(
− (α(G) + r) +

n∑

i=1

xi

)
+

∑

{i,j}∈E(G)

Q′
ijxixj +

n∑

i=1

Q′
i(x

2
i − xi) , (4.5)

be a reduced (via Lemma 4.2.1) Nullstellensatz certificate proving the non-existence of an

independent set of size α(G) + r (for r ≥ 1). Let I = {c1, c2, . . . , cm+1} be an independent

set in G. If the coefficient for xI\ci
in A′ is −Lm, then the coefficient for xI in A′ is −Lm+1.
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Proof: As before, let B,C and D equal

1 = A′
(
− (α(G) + r) +

n∑

i=1

xi

)

︸ ︷︷ ︸
B

+
∑

{i,j}∈E(G)

Q′
ijxixj

︸ ︷︷ ︸
C

+
n∑

i=1

Q′
i(x

2
i − xi)

︸ ︷︷ ︸
D

,

Let βI be the coefficient for xI in A′, denote xγ
I := xγ1

c1 · · ·xγm+1
cm+1 by xγ

I , set N =

max{deg(Q′
c1), . . . , deg(Q′

cm+1
)}, and let Nγ be the set of {γ1, . . . , γm+1}-tuples such that

γi ≥ 0 and
∑m+1

i=1 γi ≤ N . Therefore, let

Q′
ci

=
∑

γ∈Nγ

M ci
Iγxγ

I + other terms in Q′
ci

.

Now consider the coefficients for xI , xI\ci
x2

ci
in the expanded certificate A′B + C + D:

• xI: This monomial is formed in two ways in A′B, xI

(−(α(G)+r)
)
, or xI\ci

xci (formed

m+1 times, once for each ci), and formed in one way in D, xI\ci
(−xci) (formed m+1

times, once for each ci), yielding

βI

(− (α(G) + r)
)− (m + 1)Lm −

m+1∑

i=1

M ci

I\ci

︸ ︷︷ ︸
E

= 0 . (4.6)

• xI\ci
x2

ci
: This monomial is formed in one way in A′B, xIxci , and formed in three ways

in D, xI(−xci), xI\ci
x2

ci
, or x2

ci
xI\{ci∪cj}(−xcj ) (formed m times, once for each cj with

j 6= i), yielding

βI −M ci
I + M ci

I\ci
−

m+1∑
j=1

j 6=i

M
cj

I\(ci∪cj)
= 0 . (4.7)

Now we will consider Eq. 4.7 for each individual ci, with i = 1, . . . , m + 1, and sum those

m + 1 equations. This yields

(m + 1)βI −
m+1∑

i=1

M ci
I +

m+1∑

i=1

M ci

I\ci

︸ ︷︷ ︸
E

−
m+1∑

i=1

m+1∑
j=1

j 6=i

M
cj

I\(ci∪cj)
= 0 . (4.8)
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Notice that part E in Eq. 4.8 is equal to part E in Eq. 4.6. Now, as in Lemma 4.2.4, we sum

Eq. 4.8 with the equations for the coefficients of every other monomial xγ
I in Q′

ci
, excluding

xI (and thus, Eq. 4.6). As before, every M ci
Iγ appears in exactly two equations, once with

a positive sign and once with a negative sign, (corresponding to the multiplication x2
ci

and

−xci , respectively). Thus, when Eq. 4.8 is summed with the equations corresponding to

every other monomial excluding xI , the sum will telescope and every M ci
Iγ excluding part

E will cancel. The negative component for part E is contained in Eq. 4.6, which is not

included in this sum, which is why part E does not cancel. Thus, we see

(m + 1)βI = −
m+1∑

i=1

M ci

I\ci

︸ ︷︷ ︸
E

. (4.9)

Substituting Eq. 4.9 into Eq. 4.6, we see

βI

(− (α(G) + r)
)− (m + 1)Lm + (m + 1)βI = 0 ,

βI(α(G) + r)− (m + 1)βI = −(m + 1)Lm ,

βI = − (m + 1)Lm

α(G) + r − (m + 1)
,

βI = −Lm+1 .

Thus, the coefficient of xI in A′ is equal to −Lm. 2

Using Lemmas 4.2.4 and 4.2.5, we can now prove the main theorem of this section.

Theorem 4.2.6 Given a graph G, a Nullstellensatz certificate (associated with the Lovász

encoding of Lemma 2.1.1) for the non-existence of an independent set of size greater than

α(G) has degree at least α(G).



69

Proof: Our proof is by contradiction. Let

1 = A

(
− (α(G) + r) +

n∑

i=1

xi

)
+

∑

{i,j}∈E(G)

Qijxixj +
n∑

i=1

Qi(x2
i − xi)

be any Nullstellensatz certificate for the non-existence of an independent set of size α(G)+r,

with r ≥ 1, such that deg(A),deg(Qi), deg(Qij) < α(G), and let

1 = A′
(
− (α(G) + r) +

n∑

i=1

xi

)

︸ ︷︷ ︸
B

+
∑

{i,j}∈E(G)

Q′
ijxixj

︸ ︷︷ ︸
C

+
n∑

i=1

Q′
i(x

2
i − xi)

︸ ︷︷ ︸
D

(4.10)

be the reduced certificate via Lemma 4.2.1. The proof of Lemma 4.2.1 implies deg(A′) ≤

deg(A) < α(G). Let M = {c1, c2, . . . , cα(G)} be any maximum independent set in G. Via

Lemma 4.2.4, we know that xc1 appears in A′ with coefficient −L1, which implies (via

Lemma 4.2.5) that xc1xc2 appears in A′ with coefficient −L2, which implies that xc1xc2xc3

appears in A′ with coefficient −L3 and so on. In particular, xc1xc2 · · ·xcα(G)
appears in A′

with coefficient −Lα(G). This contradicts our assumption that deg(A′) < α(G). Therefore,

there can be no Nullstellensatz certificate with deg(A) < α(G); thus, the degree of any

Nullstellensatz certificate is at least α(G). 2

Lemmas 4.2.4 and 4.2.5 also give rise to the following corollary.

Corollary 4.2.7 Given a graph G, a Nullstellensatz certificate (associated with the Lovász

encoding of Lemma 2.1.1) for the non-existence of a independent set of size greater than

α(G) contains at least one monomial for every independent set in G.

Proof: Given any Nullstellensatz certificate associated with the Lovász encoding of Lemma

2.1.1, we can create the reduced certificate via Lemma 4.2.1. The proof of the Lemma 4.2.1
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implies that the number of terms in A is equal to the number of terms in A′. Via Lemmas

4.2.4 and 4.2.5, A′ contains one monomial for every independent set in G. Therefore, A

also contains one monomial for every independent set in G. 2

This brings us to the last theorem of this section.

Theorem 4.2.8 Given a graph G, a minimum-degree Nullstellensatz certificate (associated

with the Lovász encoding of Lemma 2.1.1) for the non-existence of an independent set of

size greater than α(G) has degree equal to α(G) and contains at least one term for every

independent set in G.

Proof: This theorem follows directly from Theorems 4.2.2, 4.2.6, and Corollary 4.2.7. 2

Our results establish new lower bounds for the degree and number of terms in

Nullstellensatz certificates. In earlier work, researchers in logic and complexity showed

both logarithmic and linear growth in the degree of Nullstellensatz certificates over finite

fields or for special instances, e.g. Nullstellensatz related to the pigeonhole principle (see

[8], [26] and references therein). Our main complexity result below settles the open question

posed by Lovász [41]:

Corollary 4.2.9 There exist infinite families of graphs Gn, on n vertices, such that the

degree of a minimum-degree Nullstellensatz certificate (associated with the Lovász encoding

of Lemma 2.1.1) grows linearly in n and, at the same time, the number of terms in the

coefficient polynomials of the Nullstellensatz certificate is exponential in n.
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Proof: We describe two infinite families explicitly. First, the disjoint union of n/3 trian-

gles has exactly 4n/3 − 1 independent sets and the minimum-degree of the Nullstellensatz

certificates is α(G) = n/3. Second, graphs with no edges have α(G) = n, and the number

of independent sets is 2n. 2

In this section, we have provided a thorough description of the independent set

coNP certificates provided by NulLA. Although in the process we have shed no new light on

complexity class inclusions, it is somewhat surprising that the polynomial identities provided

by Hilbert’s Nullstellensatz so clearly and directly represent combinatorial properties of the

underlying graph. Furthermore, given a graph, the Nullstellensatz certificate required to

verify a “no” instance of the independent set decision problem contains all of the information

about every “yes” instance for the graph.

From a computational perspective, the density of these certificates represents a se-

rious obstacle. In this case, we have demonstrated that computing Hilbert’s Nullstellensatz

is at least as hard as counting all possible independent sets in a graph, which is known to

be #P -complete, even for graphs with low-degree vertices [18]. Furthermore, we strongly

expect, based on the structure of our proof and the resulting telescopic sums, that any poly-

nomial system containing 0/1 equations (x2
i − xi = 0) will exhibit similar computational

difficulties. This has ramifications for Gröbner bases computations, showing that any such

computation can generate exponentially many intermediate monomials. On the other hand,

it suggests that the natural binary encodings of combinatorial problems are perhaps not

the most desirable for NulLA.
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Finally, we note that, since the degrees of the polynomials from the Lemma 2.1.1

encoding of independent set are less than or equal to two, and because we have demon-

strated linear growth in the minimum-degree of the associated Nullstellensatz certificates,

we have shown that the Lazard bound on projective Nullstellensatz certificates presented

in Corollary 3.2.4 is tight.

4.3 Graph 3-Coloring and the Nullstellensatz

In this section, we explore Nullstellensatz certificates for the NP-complete problem

of graph 3-colorability. We rely on two different encodings, described in Lemmas 2.2.2 and

2.2.6, which are over C and F2 respectively. Although we do not yet have an encompassing

theorem for graph 3-colorability that is comparable to Theorem 4.2.8 for independent set,

there is strong computational and theoretical evidence that non-k-colorability certificates

capture combinatorial properties of underlying non-k-colorable subgraphs. In Subsection

4.3.1, we describe the structure and combinatorial meaning of non-2-colorability certificates.

In Subsection 4.3.2, we explore minimum-degree non-3-colorability certificates, touching on

their growth and structure, and proving lower bounds on their minimum degree (different

for each encoding). In Subsection 4.3.3, we explore two common non-3-colorable subgraphs

(cliques and odd-wheels), and illustrate the somewhat surprising result that as the un-

derlying graphs grow, the degree of the Nullstellensatz certificates remains fixed and the

coefficients remain sparse. We conclude with a few remarks on the theoretical applications

of a deeper understanding of the combinatorial meaning of these certificates.
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4.3.1 NulLA 2-colorability is in P

As we continue to explore the theoretical complexity of NulLA, it is natural to

ask about its performance on systems of polynomial equations representing problems known

to be in P. Unlike graph 3-colorability, graph 2-colorability is easily solvable in linear time.

In this subsection, we show that the Nullstellensatz certificates for non-2-colorability are

likewise sparse and of fixed-degree.

A bipartite graph is any graph whose vertices can be partitioned into two sets,

where no two vertices in a set are adjacent. Two well-known facts from graph theory are:

1) A graph is 2-colorable if and only if the graph is bipartite, and 2) A graph is bipartite

if and only if it does not contain an odd-cycle. Based on this link between odd-cycles and

non-2-colorable graphs, we have the following proposition:

Proposition 4.3.1 Given a non-2-colorable graph containing the odd-cycle {vi1 , vi2 , . . . ,

vik}, there exists a Nullstellensatz certificate for non-2-colorability of the following form:

1 = −(x2
i1 − 1) +

1
2
xi1(xi1 + xi2)−

1
2
xi1(xi2 + xi3) + · · · − 1

2
xi1(xk−1 + xk) +

1
2
xi1(xik

+ xi1)

Proof: By inspection, the certificate simplifies to one because the sum telescopes as it

“follows” the odd-cycle. 2

It is interesting to note that non-2-colorability certificates capture the central,

relevant combinatorial property of the underlying graph. We also note that C is the alge-

braically closed field of this encoding, because (x2
i +1) = 0 does not have two roots of unity

over F2.
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4.3.2 Minimum-degree non-3-colorability Nullstellensatz certificates

In this subsection, we explore the coefficients and degree of non-3-colorability

certificates.

Growth and structure

We begin by bounding the number of necessary monomials appearing in the non-

3-colorability certificates. Although these lemmas do not help with understanding the

combinatorial meaning of the certificates, they are invaluable from a computational per-

spective. We conclude by proving that the minimum-degree is a number of the form 3q + 1

with q ∈ Z≥0. We note that the following results are easily generalizable to k-colorability

(often as simple as changing 3 to k), and apply regardless of which encoding (Lemma 2.2.2

or 2.2.6) is used, although each result is only proven for 3-colorability over C.

Lemma 4.3.2 Given a non-3-colorable graph G, the minimum-degree Nullstellensatz cer-

tificate associated with the Lemma 2.2.2 encoding has degree 3q or 3q + 1, where q ∈ Z≥0.

Proof: Since G is non-3-colorable, there exists a minimum-degree Nullstellensatz certificate

of degree D for some D. Let D = 3q + r for q ∈ Z≥0 and remainder r ∈ {0, 1, 2}, and write

the Nullstellensatz certificate in the following form:

1 =
n∑

i=1

βi(x3
i − 1) +

∑

{i,j}∈E(G)

βij(x2
i + xixj + x2

j ) +
n∑

i=1

β′i(x
3
i − 1)

+
∑

{i,j}∈E(G)

β′ij(x
2
i + xixj + x2

j ) ,

where the βi, βij , β
′
i, β

′
ij have the following properties:

1. βi: contains only monomials of degrees that are 0 mod 3 .
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2. β′i: contains only monomials of degrees that are not 0 mod 3 .

3. βij : contains only monomials of degrees that are 1 mod 3 .

4. β′ij : contains only monomials of degrees that are not 1 mod 3 .

Thus, when expanded, βi(x3
i − 1) and βij(x2

i + xixj + x2
j ) only yield monomials of degrees

0, 3, 6, . . . , 3q + 3, while β′i(x
3
i − 1) and β′ij(x

2
i + xixj + x2

j ) only yield monomials not of

degrees 0, 3, 6, . . . , 3q + 3. Thus, we can see

1 =
n∑

i=1

βi(x3
i − 1) +

∑

{i,j}∈E(G)

βij(x2
i + xixj + x2

j )

︸ ︷︷ ︸
simplifies to 1

+
n∑

i=1

β′i(x
3
i − 1) +

∑

{i,j}∈E(G)

β′ij(x
2
i + xixj + x2

j )

︸ ︷︷ ︸
simplifies to 0

.

Therefore, we can simply set β′i = β′ij = 0 for all β′i, β
′
ij , and the degree of the Nullstellen-

satz certificate is max{deg(βi), deg(βij)}, which is 3q or 3q + 1 (depending on whether the

remainder r = 0, or r ≥ 1). 2

Lemma 4.3.3 Given a non-3-colorable graph G and an integer q ∈ Z≥0, there does not

exist a Nullstellensatz certificate of degree 3q associated with the Lemma 2.2.2 encoding.

Proof: Our proof is by contradiction. Assume there exists a Nullstellensatz certificate of

degree 3q with q ≥ 1 (q = 0 is the trivial case). By the proof of Lemma 4.3.2, we can write

the certificate in the following form:

1 =
n∑

i=1

βi(x3
i − 1) +

∑

{i,j}∈E(G)

βij(x2
i + xixj + x2

j ) ,

where the βi, βij coefficients have the following properties:
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1. βi: contains only monomials of degrees that are 0 mod 3 .

2. βij : contains only monomials of degrees that are 1 mod 3 .

We will show that every monomial of degree 3q in βi must have coefficient zero.

We start by defining a reduced monomial as any monomial in βi where the exponent of

every variable xj , with j < i, is ≤ 2.

Consider a given monomial mxd
j in βi. If j < i and d > 2, the monomial is not

reduced. We will transfer every non-reduced variable xj with exponent > 2 and j < i from

βi into βj , using the following algebraic relation, or syzygy :

mx3
j (x

3
i − 1) = (mx3

i −m)(x3
j − 1) + m(x3

i − 1) .

Note that this syzygy replaces monomials of higher degree (mx3
j ) with monomials of lower

degree (m), by transferring them from one coefficient (βi) to another (βj).

We begin by applying this syzygy to βn, removing variables xn−1, . . . , x1 with

exponents > 2, and then to βn−1, removing variables xn−2, . . . , x1 with exponents > 2, and

continue until every monomial in βi is reduced.

Now we will argue that all monomials of degree 3q cannot cancel in the expanded

certificate, and therefore must have coefficient zero.

Consider a reduced monomial m of degree 3q in βi. The product m(x3
i − 1) pro-

duces a monomial mx3
i where deg(mx3

i ) = 3q +3. This monomial must cancel with another

monomial of degree 3q + 3 in the expanded certificate. However, every other monomial of

degree 3q + 3 is formed by some m′(x3
j − 1). Either the exponent of xj is < 2 in m, or the

exponent of xi is < 2 in m′, because both m and m′ are reduced. Thus, mx3
i cannot cancel
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in the expanded certificate, and the coefficient must be zero. Since this argument applies

to every reduced monomial of degree 3q in βi, and every monomial is reduced, there are no

monomials of degree 3q in βi. Therefore, there cannot exist a certificate of degree 3q. 2

The previous two lemmas together describe the coefficients and degree-growth

in minimum-degree Nullstellensatz certificates. To summarize these lemmas clearly, they

imply that a minimum-degree Nullstellensatz certificate is a number of the form 3q+1 with

q ∈ Z≥0.

The next lemma allows us to further simplify the form of the certificate, in the

special case when the underlying graph is connected. This “special” case is actually the

standard case, because the colorability of a graph is determined by the colorability of its

connected subgraphs.

Lemma 4.3.4 Given a connected non-3-colorable graph, there exists a minimum-degree

Nullstellensatz certificate of degree 3q + 1, with q ∈ Z≥0, of the form

1 = βr(x3
r − 1) +

∑

{i,j}∈E(G)

βij(x2
i + xixj + x2

j ) ,

where r is an arbitrary vertex in the graph.

Proof: Via Lemma 4.3.3, we know that there exists a Nullstellensatz certificate of the

following form

1 =
n∑

i=1

βi(x3
i − 1) +

∑

{i,j}∈E(G)

βij(x2
i + xixj + x2

j ) , (4.11)

where βi, βij contain only monomials of degree that are 0 mod 3, and 1 mod 3, respectively.

Our proof relies on repeated substitutions of the following algebraic relation, or syzygy, into
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Eq. 4.11:

(x3
j − 1) = (x3

i − 1) + (xj − xi)(x2
i + xixj + x2

j ) .

Note that this syzygy holds over F2, as well as being generalizable to the case of k-

colorability. Thus, given the vertex polynomial (x3
j − 1), we can substitute the syzygy

(x3
i − 1) + (xj − xi)(x2

i + xixj + x2
j ) as long as there exists an edge from i to j. Therefore,

since G is a connected graph, we can remove every vertex polynomial except one (arbitrar-

ily x3
r − 1) by tracing paths from some arbitrarily chosen “root” vertex r to every other

vertex, and then substituting the appropriate syzygy working backwards from the end of

the path. For example, given a path {vr, vr2 , vr3 , . . . , vrk
}, we can remove the vertex poly-

nomial (x3
rk
− 1) with the substitution (x3

rk−1
− 1) + (xrk

− xrk−1
)(x2

rk
+ xrk

xrk−1
+ x2

rk−1
),

etc. As long as we are careful about the order in which we remove vertex polynomials,

since G is connected, we can remove every vertex polynomial (except (x3
r−1)), with similar

substitutions. In terms of degree, when a substitution occurs,

βj(x3
j − 1) =⇒ βj(x3

i − 1) + βj(xj − xi)(x2
i + xixj + x2

j ) .

Since deg(βj) ≤ 3q, the new coefficient β′i for vertex polynomial (x3
i−1) becomes βi+βj , and

deg(β′i) is still ≤ 3q. The new coefficient β′ij for edge polynomial (x2
i + xixj + x2

j ) becomes

βi(xj−xi)+βij . Thus, deg(β′ij) ≤ 3q+1. Furthermore, since βi only contains monomials of

degrees that are 0 mod 3, βi(xj−xi) only contains monomials of degrees that are 1 mod 3. 2

The previous lemma allows us to delete vertex polynomials until only one (arbi-

trarily x3
r − 1) remains. We summarize all of the previous lemmas in a final theorem.
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Theorem 4.3.5 A minimum-degree Nullstellensatz certificate associated with the Lemma

2.2.2 encoding for non-3-colorability has degree 3q + 1 with q ∈ Z≥0. Furthermore, there

exists a minimum-degree Nullstellensatz certificate of the form

1 = βr(x3
r − 1) +

∑

{i,j}∈E(G)

βij(x2
i + xixj + x2

j ) ,

with the following properties: 1) βr only contains monomials of degrees 0 mod 3, 2) βij

only contains monomials of degrees 1 mod 3, and 3) r is an arbitrary vertex in a connected,

non-3-colorable subgraph.

The significance of Theorem 4.3.5 with respect to practical computation is imme-

diate. In the generalized description of NulLA (Section 3), if there is no certificate of degree

d, the degree is incremented to d + 1, and the certificate construction process is repeated.

However, Theorem 4.3.5 suggests that a specialized version of NulLA, specifically devoted

to graph 3-colorability, could skip certain degrees such as 2, 3, 5, 6, . . . , etc.. Furthermore,

this specialized version of NulLA could only construct Nullstellensatz certificates with a

specific subset of monomials. This significantly reduces the size of the linear system, which

in turn significantly reduces computation time.

The following table represents the size difference in linear systems before and after

applying Theorem 4.3.5. We choose a graph of 40 vertices and 80 edges, because sparse

graphs are considered more interesting for graph 3-colorability, since denser graphs are more
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likely to contain 4-cliques as a subgraph, and thus be trivially non-3-colorable.

# of # of # of # of unknowns

vertices edges deg unknowns after simplification % savings

40 80 1 4, 920 3, 201 35%

40 80 4 16, 290, 120 9, 872, 802 40%

40 80 7 9, 485, 504, 160 4, 281, 974, 403 55%

We note that the above table displays the savings in terms of the sizes of the

linear systems only; since solving a linear system is cubic in the size of the linear system,

the percentage of savings in terms of computation time will be even more significant.

C vs. F2

In this subsection, we compare the minimum-degree non-3-colorability Nullstellen-

satz certificate over C to the minimum-degree non-3-colorability Nullstellensatz certificate

over F2. In particular, we discover that the minimum-degree non-3-colorability Nullstellen-

satz certificate over C is at least four, while the minimum-degree non-3-colorability Null-

stellensatz certificate over F2 is at least one.

Lemma 4.3.6 Using the encoding over C presented in Lemma 2.2.2, every Nullstellensatz

certificate for non-3-colorability has degree at least four.

Proof: Our proof is by contradiction. Suppose there exists a Nullstellensatz certificate of

degree three or less. Such a certificate has the following form

1 =
n∑

i=1

P{i}(x3
i − 1) +

∑

{i,j}∈E

P{ij}(x2
i + xixj + x2

j ) , (4.12)
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where P{i} and P{ij} represent general polynomials of degree less than or equal to three. To

be precise,

P{i} =
n∑

s=1

a{i}sx3
s +

n∑

s=1

n∑
t=1
t6=s

b{i}stx2
sxt

+
n∑

s=1

n∑

t=s+1

n∑

u=t+1

c{i}stuxsxtxu +
n∑

s=1

n∑

t=1

d{i}stxsxt +
n∑

s=1

e{i}sxs + f{i} ,

and

P{ij} =
n∑

s=1

a{ij}sx3
s +

n∑

s=1

n∑
t=1
t 6=s

b{ij}stx2
sxt

+
n∑

s=1

n∑

t=s+1

n∑

u=t+1

c{ij}stuxsxtxu +
n∑

s=1

n∑

t=1

d{ij}stxsxt +
n∑

s=1

e{ij}sxs + f{ij} .

Because we work with undirected graphs, note that a{ij}s = a{ji}s, and this fact

applies to all coefficients a through f . Note also that when {i, j} is not an edge of the

graph, Pij = 0 and thus a{ij}s = 0. Again, this fact holds for all coefficients a through f .

When P{i} multiplies (x3
i − 1), this generates cross-terms of the form P{i}x3

i and

−P{i}. In particular, this generates monomials of degree six or less. Notice that P{ij}(x2
i +

xixj + x2
j ) does not generate monomials of degree six, only monomials of degree five or

less. We begin the process of deriving a contradiction from Eq. 4.12 by considering all

monomials of the form x3
sx

3
i that appear in the expanded Nullstellensatz certificate. These

monomials are formed in only two ways: Either (1) x3
s(x

3
i − 1), or (2) x3

i (x
3
s − 1). Since the

certificate must simplify to zero, the n2 equations for x3
sx

3
i are either a{i}i = 0 for x6

i , or

a{s}i + a{i}s = 0 for x3
sx

3
i . Summing these equations, we see

0 =
n∑

i=1

n∑

s=1

a{i}s . (4.13)
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Let us now consider monomials of the form x2
sxtx

3
i (with s 6= t). These monomials are

formed in only one way: by multiplying b{i}stx2
sxt by x3

i . Therefore, because the coefficient

for x2
sxtx

3
i must simplify to zero in the expanded Nullstellensatz certificate, b{i}st = 0 for

all b{i}. When we consider monomials of the form xsxtxux3
i (with s < t < u), we see that

c{i}stu = 0 for all c{i}, for the same reasons as above.

As we continue toward our contradiction, we now consider monomials of degree

three in the expanded Nullstellensatz certificate. In particular, we consider the coefficient

for x3
s. The monomial x3

s is generated in three ways: (1) f{s}(x3
s − 1), (2) a{i}sx3

s(x
3
i − 1)

(from the vertex polynomials), and (3) e{st}sxs(x2
s +xsxt +x2

t ) (from the edge polynomials).

The n equations for x3
s are of the following form:

0 = f{s} −
n∑

i=1

a{i}s +
∑

t∈Adj(s)

e{st}s .

Summing these equations, we see

0 =
n∑

i=1

f{i} −
( n∑

i=1

n∑

s=1

a{i}s

)
+

n∑

s=1

n∑

t∈Adj(s)

e{st}s . (4.14)

Because the degree three or less Nullstellensatz certificate (Eq. 4.12) is identically one, the

constant terms must sum to one. Therefore, we know
∑n

i=1 f{i} = − 1 . Furthermore,

recall that e{st}s = 0 if the undirected edge {s, t} does not exist in the graph. Therefore,

applying Eq. 4.13 to Eq. 4.14, we have the following equation

1 =
n∑

s=1

n∑
t=1,

s6=t

e{st}s . (4.15)

To give some intuition for our overall proof strategy, the equations to come will ultimately

show that the right-hand side of Eq. 4.15 also equals zero, which is a contradiction.
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Now we will consider monomials of the form x2
sxt (with s 6= t). We recall that

b{i}st = 0 for all b{i} (where b{i}st is the coefficient for x2
sxt in the i-th vertex polynomial).

Therefore, we do not need to consider b{i}st in the equation for the coefficient of monomial

x2
sxt. In other words, we only need to consider the edge polynomials, which can generate

this monomial in two ways: (1) e{st}sxs · xsxt, and (2) e{si}txt · x2
s. The 2

(
n
2

)
equations for

these coefficients are of the following form:

0 = e{st}s +
∑

i∈Adj(s)

e{si}t .

Summing these equations, we see

n∑

s=1

n∑
t=1,

t6=s

e{st}s +
( n∑

s=1

∑

t∈Adj(s)

e{st}t

)

︸ ︷︷ ︸
partial sum A

+
( n∑

s=1

∑

t∈Adj(s)

n∑
u=1,

u6=s,t

e{st}u

)

︸ ︷︷ ︸
partial sum B

= 0 . (4.16)

However, recall that e{st}u = 0 when {s, t} does not exist in the graph, and also that

e{st}t = e{ts}t. Thus, we can rewrite partial sum A from Eq. 4.16 as

n∑

s=1

∑

t∈Adj(s)

e{st}t =
n∑

s=1

n∑
t=1,

t 6=s

e{st}t =
n∑

s=1

n∑
t=1,

t 6=s

e{ts}t =
n∑

s=1

n∑
t=1,

t6=s

e{st}s .

Substituting the above into Eq. 4.16 yields

2
n∑

s=1

n∑
t=1,

t 6=s

e{st}s +
( n∑

s=1

∑

t∈Adj(s)

n∑
u=1,

u6=s,t

e{st}u

)

︸ ︷︷ ︸
partial sum B

= 0 . (4.17)

Finally, we consider the monomial xsxtxu (with s < t < u). We have already

argued that c{i}stu = 0 for all c{i} (where c{i}stu is the coefficient for xsxtxu in the i-th

vertex polynomial). Therefore, as before, we need only consider the edge polynomials,

which can generate this monomial in three ways: (1) e{st}uxu · xsxt, (2) e{su}txt · xsxu, and
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(3) e{tu}sxs · xtxu. As before, these coefficients must cancel in the expanded certificate,

which yields
(
n
3

)
equations of the following form:

0 = e{st}u + e{su}t + e{tu}s .

Summing these equations, we see

n−2∑

s=1

n−1∑

t=s+1

n∑

u=t+1

(
e{st}u + e{su}t + e{tu}s

)
= 0 . (4.18)

Now we come to the critical argument of the proof. We claim that the following

equation holds:

( n∑

s=1

∑

t∈Adj(s)

n∑
u=1,

u6=s,t

e{st}u

)
= 2

( n−2∑

s=1

n−1∑

t=s+1

n∑

u=t+1

(
e{st}u + e{su}t + e{tu}s

))
. (4.19)

Notice that the left-hand and right-hand sides of this equation consist only of coefficients

e{st}u with s, t, u distinct. Consider any such coefficient e{st}u. Notice that e{st}u appears

exactly once on the right side of the equation. Furthermore, either e{st}u appears exactly

twice on the left side of this equation (because s ∈ Adj(t) implies t ∈ Adj(s)), or e{st}u = 0

(because the edge {s, t} does not exist in the graph). Therefore, Eq. 4.19 is valid. Applying

this result (and Eq. 4.18) to Eq. 4.17 gives us the following:

n∑

s=1

n∑
t=1,

t 6=s

e{st}s = 0 . (4.20)

But Eq. 4.20 contradicts Eq. 4.15 (1 = 0); thus there can be no certificate of degree less

than four. 2
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It is important to note that when we try to construct certificates of degree four or

greater, the equations for the degree six monomials become considerably more complicated.

In this case, the edge polynomials do contribute monomials of degree six, which causes the

above argument to break. It is also important to note that this argument does not hold

over F2; in C, if x + x = 2x = 0, then x = 0. However, over F2, x + x = 2x is always zero,

regardless of whether x = 1 or x = 0. Thus, we have the following theorem:

Theorem 4.3.7 Using the encoding over C presented in Lemma 2.2.2, every Nullstellensatz

certificate for non-3-colorability has degree at least four, and using the encoding over F2

presented in Lemma 2.2.6, every Nullstellensatz certificate for non-3-colorability has degree

at least one.

Curiously enough, as we will see in the chapter detailing our experimental results

(Chapter 5), the minimum-degree possible (e.g., four with respect to C and one with respect

to Fp) is almost always the degree of the certificates returned by NulLA.

4.3.3 Subgraphs

The complexity of determining the non-3-colorablity of a given graph is determined

in part by the complexity of its non-3-colorable subgraphs. For example, if the entire

graph is 4-edge-critical (meaning that the graph has chromatic number four, but if any

edge is removed, the chromatic number drops to three), then every edge must appear in the

Nullstellensatz certificate. However, if the graph contains a less complicated non-3-colorable

subgraph, such as a 4-clique (a 4-complete graph) or an odd-wheel, then we would expect

the complexity of the certificate to reflect the existence of polynomial-time algorithm for
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finding such subgraphs. In this subsection, we describe the relationship between subgraphs

and Nullstellensatz certificate degree complexity (Lemma 4.3.8), and then compare and

contrast the certificates for common non-3-colorable subgraphs (mainly cliques and odd-

wheels) produced via the C and F2 encodings of Lemmas 2.2.2 and 2.2.6, respectively.

We begin with a lemma relating subgraphs to Nullstellensatz certificate degree.

Lemma 4.3.8

1. If H is a subgraph of G, and H has a minimum-degree non-3-colorability Nullstel-

lensatz certificate of degree k, then G also has a minimum-degree non-3-colorability

Nullstellensatz certificate of degree k.

2. Suppose that a non-3-colorable graph G can be transformed to a non-3-colorable graph

H via a sequence of merges of non-adjacent nodes of G. If a minimum-degree non-

3-colorability Nullstellensatz certificate for H has degree k, then a minimum-degree

non-3-colorable Nullstellensatz certificate for G has degree at least k.

Proof of 1: Since H is a subgraph of G, then any Nullstellensatz certificate for non-3-

colorability of H is also a Nullstellensatz certificate for non-3-colorability of G. 2

Proof of 2: Assume that a minimum-degree Nullstellensatz certificate for H has degree

k, but G has a Nullstellensatz certificate for non-3-colorability of degree less than k. The

certificate has the form 1 =
∑

βi(x3
i − 1) +

∑
βij(x2

i + xixj + x2
j ) where both βi and βij

denote polynomials of degree less than k. Since this certificate is an identity, the identity

must hold for all values of the variables. In particular, it must hold for every variable sub-

stitution xi = xj when the nodes are non-adjacent. In this case, the variable reassignment
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(pictorially represented in Figure 4.2) yields a Nullstellensatz certificate of degree less than

k for the transformed graph H. But this is in contradiction with the assumed degree of a
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Figure 4.2: Converting G (the 5-odd-wheel) to H (the 3-odd-wheel) via node merges.

minimum-degree certificate for H. Therefore, any certificate for G must have degree at least

k. Note that the parallel edges displayed in Figure 4.2 are irrelevant to our considerations. 2

The Hadwiger conjecture of 1943 (see [16] and exposition therein) states that,

given an undirected graph G with chromatic number greater than k, then G contains k

disjoint connected subgraphs such that if each subgraph is contracted to a single supervertex,

the vertices form the complete graph Kk. In light of Hadwiger’s conjecture, it might be

interesting to propose a “Nullstellensatz calculus”, and explore the form and structure of

certificates produced via edge contractions or node merges, or even the reverse; to explore

certificates expanded from minors to larger graphs via pre-computed syzygies.

Continuing with our subgraph investigations, if a given graph G contains a 4-clique

as a subgraph, we can simply investigate every
(
n
4

)
subgraphs in four vertices, and check

whether those vertices form a 4-clique. Since this algorithm is O(n4) (polynomial-time), we

would expect that the certificates associated with these graphs are likewise sparse and of

fixed degree.
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Lemma 4.3.9 Using the encoding over C presented in Lemma 2.2.2, the complete graph

Kn with n ≥ 4 has a minimum-degree Nullstellensatz certificate for non-3-colorability of

degree four.

Proof: Since K4 is a subgraph of K5, which is a subgraph of K6, etc., then via Lemma

4.3.8, part 1, if there exists a Nullstellensatz certificate of degree four for K4, then there

exists a Nullstellensatz certificate of degree four for Kn (n ≥ 5). We conclude the proof by

displaying the following degree four certificate for K4:

1 =
(

4
9
x4

1 −
5
9
x3

1x2 − 2
9
x3

1x3 − 4
9
x3

1x0 +
2
9
x2

1x2x0 +
2
9
x2

1x3x0

)
(x2

1 + x2x1 + x2
2)+

(
1
9
x4

1 +
2
9
x3

1x2 − 1
9
x3

1x0 − 2
9
x2

1x2x0

)
(x2

2 + x3x2 + x2
3) +

1
3
x3

1x2(x2
2 + x0x2 + x2

0)+

(
2
9
x4

1 +
1
9
x3

1x2 +
1
9
x3

1x0 +
2
9
x2

1x2x0

)
(x2

1 + x3x1 + x2
3) +

1
3
x4

1(x
2
1 + x0x1 + x2

0)+

(
− 1

3
x4

1 −
1
3
x3

1x2

)
(x2

3 + x0x3 + x2
0) + (−x3

1 − 1)(x3
1 − 1) . (4.21)

2

Lemma 4.3.10 Using the encoding over F2 presented in Lemma 2.2.6, Kn with n ≥ 4 has

a minimum-degree Nullstellensatz certificate for non-3-colorability of degree one.

Proof: Via the proof of Lemma 4.3.9, we conclude by displaying the following degree one

certificate for K4:

1 = (x3
1 + 1) + (x3

2 + 1) + (x3
3 + 1) + x1(x2

1 + x1x2 + x2
2) + x2(x2

2 + x2x3 + x2
3)

+ x3(x2
3 + x3x1 + x2

1) + (x2 + x3)(x2
0 + x0x1 + x2

1) + (x1 + x3)(x2
0 + x0x2 + x2

2)

+ (x1 + x2)(x2
0 + x0x3 + x2

3) .
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2

The 4-clique is the smallest, most trivial non-3-colorable graph. By demonstrating

that the associated Nullstellensatz certificates, regardless of the encoding used, are sparse

and of minimum degree, we are demonstrating our first correlation between complexity of

certificates and hardness of underlying graphs. We will return to this theme in Section

5.2.6 where we describe our experimental investigations on supposed “hard” instances of

3-colorability. For our next result, we demonstrate that there exist infinite families of non-

3-colorable graphs where the certificates remain sparse and of minimum degree, regardless

of the encoding used, even as the underlying graphs grow infinitely large. To do this, we

rely on another canonical example from graph 3-colorability: the odd-wheel.

The odd-wheels consist of an odd-cycle rim, with a center vertex connected to

all other vertices. The (2k + 1)-odd-wheel refers to a rim of length 2k + 1, which implies

that the actual graph contains 2k + 2 vertices, and 4k + 2 edges. It is easy to see that the

odd-wheels form an infinite family of non-3-colorable graphs, by simply attempting to color

the graph and arriving at a contradiction with the edge {1, 2k + 1}.

1


2


3


0


2k+1


2k


2k - 1


Figure 4.3: The odd-wheels are non-3-colorable.
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Lemma 4.3.11 Using the encoding over C presented in Lemma 2.2.2, the (2k + 1)-odd-

wheel has a minimum-degree Nullstellensatz certificate for non-3-colorability of degree four.

Proof: Our proof is by induction on k. We will show that for every k, we can construct a

certificate of degree four with very particular properties. By Theorem 4.3.7, any certificate

of degree four is minimal. Our base case is k = 1. The 3-odd-wheel is isomorphic to K4 (the

4-complete graph), and a certificate of degree four was previously displayed in Eq. 4.21.

Based on that equation, we denote the non-3-colorability certificate for the 3-odd-wheel as

follows:

1 = α1v1 + α{12}e{12} + α{23}e{23} + α̃e{13} + α{20}e{20} + α{10}e{10} + α{30}e{30} ,

where v1 = x3
1 − 1 , and e{ij} = x2

i + xixj + x2
j and α1, α{ij} and α̃ denote polynomials of

degree four in C[x0, x1, x2, x3] . In particular, via Eq. 4.21, we see

α̃ =
2
9
x4

1 +
1
9
x3

1x2 +
1
9
x3

1x0 +
2
9
x2

1x2x0 . (4.22)

For our induction hypothesis, we assume that there exists a degree four certificate for the

(2k + 1)-odd-wheel of the following specific form:

1 = γ1v1 + γ{12}e{12} + · · ·+ γ{2k,2k+1}e{2k,2k+1} + α̃e{1,2k+1} + γ{10}e{10}

+ · · ·+ γ{0,2k+1}e{0,2k+1} , (4.23)

where γ1, γ{ij} denote polynomials of degree four in C[x0, x1, . . . , x2k+1]. Note in particular

that the coefficient for the edge {1, 2k + 1} in the (2k + 1)-odd-wheel certificate is exactly

the same as the coefficient for the {1, 3} edge in the 3-odd-wheel certificate: both are equal

to α̃.
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Now, we will show that there exists a degree four certificate for the
(
2(k +1)+1

)
-

odd-wheel such that the coefficient for the {1, 2(k +1)+1} edge is still α̃. In Figure 4.4, we
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2(k+1)+1
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Figure 4.4: The (2k + 1)-odd-wheel to the (2(k + 1) + 1)-odd-wheel.

can see that the topological difference between the (2k+1)-odd-wheel and the
(
2(k+1)+1

)
-

odd-wheel is that the edge {1, 2k + 1} is lost, and the 2(k + 1), 2(k + 1) + 1 vertices are

gained, along with associated edges

{(
2k + 1, 2(k + 1)

)
,
(
2(k + 1), 2(k + 1) + 1

)
,
(
1, 2(k + 1) + 1

)
,
(
0, 2(k + 1)

)
,
(
0, 2(k + 1) + 1

)}
.

Suppose there exists an algebraic relation or syzygy of the specific form

α̃e{1,2k+1} = α̃e{1,2(k+1)+1} + β{2k+1,2(k+1)}e{2k+1,2(k+1)}

+ β{2(k+1),2(k+1)+1}e{2(k+1),2(k+1)+1} + β{01}e{01} + β{0,2k+1}e{0,2k+1}

+ β{0,2(k+1)}e{0,2k+1} + β{0,2(k+1)+1}e{0,2(k+1)+1} , (4.24)

where β{ij} ∈ C[x0, x1, x2, x2k+1, x2(k+1), x2(k+1)+1] and deg(β{ij}) = 4 . Note that the

coefficients for e{1,2k+1} and e{1,2(k+1)+1} are the same: both are equal to α̃. Therefore, in

order to construct a degree four certificate for the
(
2(k + 1) + 1

)
-odd-wheel, we can simply

substitute Eq. 4.24 for the α̃e{1,2k+1} term in Eq. 4.23. Thus, demonstrating the existence

of a syzygy such as Eq. 4.24 will conclude our proof.

This special syzygy was indeed found explicitly via computer and it is listed below

for the 3-odd-wheel to the 5-odd-wheel. For space considerations we do not list it for
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general k, however it can be easily generalized to match the indices of Eq. 4.24 via the

following variable substitutions: x3 → x2k+1, x4 → x2(k+1), x5 → x2(k+1)+1. Notice that

α̃ ∈ C[x0, x1, x2]. Therefore, α̃ is invariant under this substitution.

0 = −
(

2
9
x4

1 +
1
9
x3

1x2 +
1
9
x3

1x0 +
2
9
x2

1x2x0

)

︸ ︷︷ ︸
α̃

(x2
1 + x3x1 + x2

3)︸ ︷︷ ︸
e{13}

+
(

2
9
x4

1 +
1
9
x3

1x2 +
1
9
x3

1x0 +
2
9
x2

1x2x0

)

︸ ︷︷ ︸
α̃

(x2
1 + x5x1 + x2

5)︸ ︷︷ ︸
e{15}

+
(

2
9
x3

1x0 +
1
9
x1x2x0x5 − 1

9
x1x2x4x5 − 1

9
x1x3x

2
0 −

2
9
x1x3x0x4 − 2

9
x2x

3
0

− 1
9
x2x

2
0x4 +

1
9
x4

4

)
(x2

3 + x3x4 + x2
4)︸ ︷︷ ︸

e{34}

+
(
− 2

9
x4

1 −
2
9
x2

1x2x0 − 1
9
x2

1x2x4 +
1
9
x2

1x0x4 − 1
9
x1x2x3x0 +

1
9
x1x2x3x4 − 1

9
x1x2x

2
0

+
1
9
x1x2x

2
4 −

2
9
x4

0 +
1
9
x3

0x4 − 1
9
x4

4 +
1
9
x3

4x5 − 1
9
x4x

3
5

)
(x2

4 + x4x5 + x2
5)︸ ︷︷ ︸

e{45}

+
(
− 1

3
x1x3x

2
0 −

2
9
x3x0x

2
4 −

5
9
x1x

2
3x0 − 1

3
x2

1x3x0 +
2
9
x2

1x4x5 +
2
9
x2

0x4x5

+
1
9
x2

1x2x3 − 1
9
x2

1x2x5 +
2
9
x3

1x3 − 2
9
x3

1x5 +
1
9
x2

1x0x5 − 2
9
x2

1x
2
0 +

2
9
x2

1x
2
4 −

4
9
x1x

2
3x4

− 5
9
x1x

2
0x4 − 4

9
x1x0x

2
4 −

1
9
x1x0x

2
5 −

1
9
x1x

2
4x5 − 2

9
x1x

3
0 +

2
9
x2x

2
3x0 +

1
9
x2x

2
3x4

− 1
9
x1x4x

2
5 +

2
9
x2

3x0x4 +
2
9
x2x3x

2
4 −

2
3
x1x3x0x4 − 4

9
x1x0x4x5 − 1

9
x2x3x

2
5

+
2
9
x2x0x

2
4 +

1
3
x2x3x0x4 − 1

9
x2x3x0x5 +

1
9
x2x

3
4

− 4
9
x3

3x0 − 1
3
x4

3 −
1
9
x3

3x4 +
2
9
x2

3x
2
4 +

2
9
x2

0x
2
5 −

1
9
x0x

3
4

)
(x2

0 + x0x1 + x2
1)︸ ︷︷ ︸

e{01}
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+
(

2
9
x4

1 +
1
9
x3

1x2 +
4
9
x3

1x0 +
4
9
x3

1x4 − 1
9
x2

1x2x4 +
1
3
x2

1x
2
3 +

1
9
x2

1x3x0 +
1
9
x2

1x3x4 +
5
9
x2

1x
2
0

− 2
9
x1x2x

2
0 −

1
9
x1x2x0x4 − 1

9
x1x2x0x5 +

1
9
x1x2x4x5 +

1
3
x1x

2
3x0 +

2
9
x1x3x

2
0 +

1
3
x1x3x0x4

+
1
3
x2

3x
2
0 +

5
9
x2

1x0x4 +
2
9
x2

1x
2
4 −

1
9
x3x

3
0 −

1
9
x3x

2
0x4 − 2

9
x3x0x

2
4 −

2
9
x4

0 −
2
9
x3

0x4

)
(x2

0 + x0x3 + x2
3)︸ ︷︷ ︸

e{03}

+
(

1
9
x3

1x5 − 2
9
x2

1x2x3 +
1
9
x2

1x2x5 − 4
9
x2

1x
2
3 −

1
9
x1x2x3x4 +

1
9
x1x2x

2
0 −

1
9
x1x2x

2
4 +

1
9
x1x3x

2
0

+
1
3
x1x

3
0 +

1
9
x1x

2
0x4 +

1
9
x1x

2
0x5 +

1
9
x2x3x0x5 +

1
9
x2x3x

2
5 +

2
9
x3

3x0 +
1
9
x2

3x0x4 − 1
9
x2

3x
2
4

+
2
9
x1x3x0x4 +

1
3
x3x

3
0 +

1
9
x3x0x

2
4 −

1
9
x3x

3
4 +

2
9
x4

0

)
(x2

0 + x0x4 + x2
4)︸ ︷︷ ︸

e{04}

+
(
− 1

9
x3

1x2 +
1
9
x3

1x4 +
1
9
x2

1x2x3 +
1
9
x2

1x2x4 − 1
9
x2

1x
2
0 +

2
9
x1x2x3x0 − 1

9
x1x2x3x4

+
1
9
x1x2x

2
0 −

1
9
x1x2x

2
4 −

1
9
x1x

3
0 +

1
9
x1x

2
0x4 − 1

9
x2x3x0x4

− 1
9
x2x3x

2
4 −

1
9
x0x

2
4x5 − 1

9
x0x4x

2
5 +

1
9
x2

4x
2
5 +

1
9
x4x

3
5

)
(x2

0 + x0x5 + x2
5)︸ ︷︷ ︸

e{05}

.

2

Lemma 4.3.12 Using the encoding over F2 presented in Lemma 2.2.6, the (2k + 1)-odd-

wheel has a minimum-degree Nullstellensatz certificate for non-3-colorability of degree one.

Proof: We claim that the (2k+1)-odd-wheel has a Nullstellensatz certificate of the following

form:.

1 = (x3
1 + 1) + (x3

2 + 1) + · · ·+ (x3
2k+1 + 1)

+ x1(x2
1 + x1x2 + x2

2) + x2(x2
2 + x2x3 + x2

3) + · · ·+ x2k+1(x2
2k+1 + x2k+1x1 + x2

1)

+ (x2 + x2k+1)(x2
1 + x1x0 + x2

0) + (x1 + x3)(x2
2 + x2x0 + x2

0)

+ · · ·+ (x2k + x1)(x2
2k+1 + x2k+1x0 + x2

0) . (4.25)
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Our proof is by direct verification. Note that this certificate has degree one, and is therefore

minimal by Theorem 4.3.7. We begin our direct verification by observing that there are

an odd number of polynomials of the form (x3
i + 1): therefore, the sum of these “vertex”

polynomials becomes 1 + x3
1 + x3

2 + · · · + x3
2k+1. The “rim” polynomials tracing the odd-

length cycle yield monomials of the form x3
i , x

2
i xi+1 and xix

2
i+1, except for the last edge,

which yields x3
2k+1, x

2
2k+1x1 and x2k+1x

2
1. Thus, the monomials x3

i have already cancelled.

Finally, the “spokes” of the odd-wheel yield the following monomials: xix
2
0 (formed twice),

x0xixi+1 (formed twice), and x2
i xi+1, xi−1x

2
i (each formed once). The spokes joining the

center and vertices 1 and 2k + 1 are slightly different: they also generate monomials x2
1x2k+1

and x1x
2
2k+1, respectively. Thus, every monomial except the constant term cancels in the

expanded certificate, and Eq. 4.25 simplifies to one. 2

Lemmas 4.3.9, 4.3.10, 4.3.11 and 4.3.12 can be distilled into the following theorem:

Theorem 4.3.13 Using the encodings presented in Lemmas 2.2.2 and 2.2.2 (over C and

F2, respectively), Kn with n ≥ 4 has a minimum-degree Nullstellensatz certificate for non-

3-colorability of degree four or one, respectively, and the (2k+1)-odd-wheel has a minimum-

degree Nullstellensatz certificate for non-3-colorability of degree four or one, respectively.

The importance of Theorem 4.3.13, in terms of computation, is to demonstrate that

subgraphs with short, concise proofs of non-3-colorability can yield sparse, low-degree Null-

stellensatz certificates. Although we do not understand the structure of non-3-colorability

certificates in terms of a clear and direct relationship between the degree/coefficients and

combinatorial properties of the underlying graph, as in the case with independent set (see
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Theorem 4.2.8), we conjecture, based on our experimental results (see Table 5.3), that the

certificates produced by NulLA are certificates for somehow “minimal” 4-edge-critical sub-

graphs. Thus, we believe that the complexity of NulLA for graph 3-colorability is defined

by the complexity of the most trivial 4-edge-critical subgraph within a graph.

We also do not understand the combinatorial differences between non-3-colorable

graphs with Nullstellensatz certificate degrees 1, 4 or 7. The question of whether “hard”

instances of graph 3-colorability have specific, identifiable, and systematically reproducible

properties is an area of active research ([48, 15, 37, 60, 10]). We believe that a deeper under-

standing of these certificates may lead to results exposing concrete combinatorial properties

that are linked to the “hardness” of 3-colorability. Being able to identify a property linked

to hardness may lead to algorithms for creating hard instances of 3-colorability.

The difference between a Nullstellensatz certificate of degree one, and a Nullstel-

lensatz certificate of degree four is stark and clear, whereas other measurements of hardness,

such as running time or memory usage, may be more subtly ambiguous and less sharply

delineated. This view of certificate degree as an indicator of the hardness of a 4-edge-critical

subgraph is explored further in Section 5.2.6.

4.4 SAT and the Nullstellensatz

The polynomial encoding for SAT presented in Section 2.7 is the basis for a rich

area of research on propositional proof systems (see [8, 26] and references therein). The sem-

inal result from this area concerns a very simple Boolean formula known as the “induction”
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principle:

INDn = x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xn−1 ∨ xn) ∧ ¬xn .

By inspection, we can see that this Boolean formula is not satisfiable. It is known as the

“induction” principle because x1 is true and xn is false; therefore, there must exist some

point xi where the variables change from true to false.

Theorem 4.4.1 (Buss and Pitassi [8]) Given the Boolean formula INDn encoded a sys-

tem of polynomial equations via Lemma 2.7.1, the minimum degree d of its Nullstellensatz

certificate is

blog2(n)c − 1 ≤ d ≤ dlog2(n− 1)e .

From a computational perspective, this theorem is further evidence that “binary”

encodings (encodings containing the equations xi(xi−1) = 0 for all xi) perform poorly with

respect to computation with Hilbert’s Nullstellensatz.
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Chapter 5

Experimental Results

“Where a new invention promises to be
useful, it ought to be tried.”

–Thomas Jefferson,
1743–1826 .

5.1 Four Mathematical Ideas to Optimize NulLA

In this section, we explore refinements and variations of NulLA to improve per-

formance on practical computational problems.

The main computational component of NulLA is to construct and solve linear

systems associated with Nullstellensatz certificates of increasing degree. These linear sys-

tems typically have millions of rows and columns, even for reasonably-sized problems with

certificate degrees as low as four (see Section 5.2). Furthermore, the sizes of the linear

systems increase dramatically with the degree of the certificate. In particular, the number

of variables in a linear system associated with a Nullstellensatz certificate of degree d is

precisely s
(
n+d

d

)
where n is the number of variables in the polynomial system and s is the
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number of polynomials. Note that
(
n+d

d

)
is the number of possible monomials of degree d

or less. Also, the number of non-zero entries in the constraint matrix is precisely M
(
n+d

d

)

where M is the sum over the number of monomials in each polynomial of the system.

In this section, we explore mathematical approaches for solving the linear systems

more efficiently, for decreasing the sizes of the linear systems associated with given degree,

and for reducing the minimum degree required to produce a Nullstellensatz certificate.

It is certainly possible to significantly decrease the sizes of the linear systems by

preprocessing, using the methods and techniques outlined in Section 4.3. However, those

methods are specific to graph k-colorability, and cannot necessarily be extended to an

arbitrary polynomial system. Furthermore, preprocessing alone is often not sufficient to

enable us to solve some of the larger polynomial systems.

The mathematical ideas we explain in the rest of this section can be applied to

arbitrary polynomial systems, but in some cases, a careful study of the structure of the

polynomial system is required.

5.1.1 C vs. Q and Fp vs. Fp

In terms of computation and practical implementation, NulLA over C or Fp is

obviously far more difficult to implement and far more time and memory-intensive to run

than NulLA over Q or Fp. Fortunately, even though every encoding from Chapter 2 is

proven with respect to the algebraically closed fields of C or Fp, the following lemma allows

us compute over Q or Fp.

Lemma 5.1.1 Let K be a field and K its algebraic closure. Given f1, . . . , fs ∈ K[x1, . . . , xn],
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there exists a Nullstellensatz certificate 1 =
∑

βifi where βi ∈ K[x1, . . . , xn] if and only if

there exists a Nullstellensatz certificate 1 =
∑

β′ifi where β′i ∈ K[x1, . . . , xn].

Proof: If there exists a Nullstellensatz certificate 1 =
∑

βifi where βi ∈ K[x1, . . . , xn],

then, via NulLA, we can construct the associated linear system of degree max{deg(βi)}

and solve. Since fi ∈ K[x1, . . . , xn], the coefficients in the linear system will consist only

of values in K. Thus, solving the linear system relies only on computations in K. When

the free variables are chosen from K instead of K, the resulting Nullstellensatz certificate

1 =
∑

β′ifi has β′i ∈ K[x1, . . . , xn].

Conversely, if there exists a Nullstellensatz certificate 1 =
∑

β′ifi where β′i ∈

K[x1, . . . , xn], since K ⊆ K, the same certificate is a certificate 1 =
∑

βifi where βi ∈

K[x1, . . . , xn]. 2

Therefore, we have the following corollary:

Corollary 5.1.2 A graph G is non-3-colorable if and only if there exists a Nullstellensatz

certificate 1 =
∑

βifi where βi ∈ F2[x1, . . . , xn] and the polynomials fi ∈ F2[x1, . . . , xn] are

as defined in Lemma 2.2.6.

This corollary enables us to compute non-3-colorability over F2, which is extremely

fast in practice (see Subsections 5.2.4 and 5.2.5).

5.1.2 Subgraph Equations as Degree-cutters

In Section 2.2, Lemma 2.2.8, we described a family of “subgraph equations” that

can be added to the system of polynomial equations encoding graph k-colorability without
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changing the set of solutions. In our experimental investigations, we discovered that ap-

pending these valid but redundant polynomial equations to the original system can reduce

the degree of a minimum-degree Nullstellensatz certificate. A valid but redundant poly-

nomial equation is any polynomial equation g(x) = 0 that is true for all the zeros of the

polynomial system f1 = · · · = fs = 0, i.e., g ∈ √I, the radical ideal of I, where I is the

ideal generated by f1, ..., fs. In fact, we only really require that g(x) = 0 holds for at least

one of zeros of the polynomial system f1 = · · · = fs = 0, if a zero exists. We refer to a

redundant polynomial equation appended to a system of polynomial equations, with the

goal of reducing the degree of a Nullstellensatz certificate, as a degree-cutter.

For example, in the case of graph 3-colorability, we consider a triangle described

by the vertices {x, y, z}. As we described in Lemma 2.2.8, we capture the additional re-

quirement that each of these vertices must have a different color with the equation

x2 + y2 + z2 = 0 , (5.1)

which is satisfied if and only if x 6= y 6= z 6= x. We note that the equation x + y + z = 0

also implies x 6= y 6= z 6= x, but the homogenous of degree two version of this “triangle”

equation closely mirrors the edge polynomials x2
i + xixj + x2

j = 0 from the original system,

which are likewise homogeneous of degree two. In order to reduce the minimum degree of

a Nullstellensatz certificate, our experimental investigations have indicated that we should

try to keep any additional degree-cutter equations added to the system as close as possible

in degree and structure to the original polynomials of the system.

Consider the Koester graph [29] from Figure 5.1, a graph with 40 vertices and

80 edges. This graph has chromatic number four, and a corresponding minimum-degree
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non-3-colorability certificate of degree four over F2. The size of the associated linear system

required by NulLA to produce this certificate was 8, 724, 468× 10, 995, 831 and required 5

hours and 17 minutes of computation time.

Figure 5.1: Koester graph

When we inspect the Koester graph in Figure 5.1, we can see that this graph

contains 25 triangles. When we append these additional 25 triangle equations to the system

of polynomial equations describing the graph, the degree of the Nullstellensatz certificate

drops from four to one. Therefore, despite appending an additional 25 equations to the

system, NulLA only needs to solve a 4, 626× 4, 346 linear system to produce a degree one

certificate, which takes 0.2 seconds of computation time. Note that even though we have

appended equations to the system of polynomial equations, because the degree of the overall

certificate is reduced, the size of the resulting linear system is still much, much smaller.

As we noted in Lemma 2.2.8, these subgraph equations can be extended to k-

colorability, and any degree d can be used as long as d 6 | k. The minimum-degree non-

5-colorability Nullstellensatz certificate of K6 over F2 has degree six. However, in K6,

every subset of five vertices is isomorphic to K5; thus, every subset of five vertices must

have each vertex colored differently. We capture this additional requirement by adding



102

five “K5-equations” of degree four. For example, given the complete subgraph formed by

{x0, x1, x2, x3, x4}, we add the following equation:

x4
0 + x4

1 + x4
2 + x4

3 + x4
4 = 0 .

These “K5-equations” are homogenous of degree four, and they closely match the degree

and structure of the edge polynomials x4
i + x3

i xj + x2
i x

2
j + xix

3
j + x4

j = 0. When these five

equations are appended to the original system, the degree of the Nullstellensatz certificate

drops from six to one.

However, as we will see in Subsection 5.1.3, the triangle degree-cutter equations

for 3-colorability (5.1) are not always sufficient to reduce the degree of the Nullstellensatz.

The difficulty with the generalized degree-cutter approach is in finding candidate degree-

cutter equations, and in determining how many of the candidate degree-cutters to append

to the system. There is an obvious trade-off between the time spent finding degree-cutter

equations (and the increased size of the linear systems involved due to the addition of

the degree-cutter equations), as compared to the benefit of reducing the degree of the

Nullstellensatz certificate.

5.1.3 Alternative Nullstellensätze

A second approach to reducing the minimum degree of a Nullstellensatz certificate

is to find an alternative Nullstellensatz certificate.

Corollary 5.1.3 (Alternative Nullstellensatz) Let K be an algebraically closed field. A

system of polynomial equations f1 = · · · = fs = 0 where fi ∈ K[x1, . . . , xn] has no solution
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in Kn if and only if there exist polynomials β1, . . . , βs ∈ K[x1, . . . , xn] and g ∈ K[x1, ..., xn]

such that g =
∑

βifi and the system f1 = · · · = fs = g = 0 has no solution.

Hilbert’s Nullstellensatz is a special case of this alternative Nullstellensatz when g(x) = 1.

The importance of these alternative Nullstellensatz in terms of practical computation is

that the minimum degree of an alternative Nullstellensatz certificate may be lower than the

minimum degree of an ordinary Nullstellensatz certificate for a given system of polynomial

equations.

Example 5.1.4 When testing for non-3-colorability over F2, the graph in Figure 5.2 has

a minimum degree Nullstellensatz certificate of degree four. This graph also has three tri-

angles: {x1, x2, x6}, {x2, x5, x6} and {x2, x6, x7}. However, in this case, these three triangle

equations were not sufficient to reduce the degree: we appended these equations to the sys-

tem of polynomial equations, and the minimum degree Nullstellensatz certificate remained

four. However, when we searched for a degree one alternative Nullstellensatz certificate, we

were able to find a certificate with g(x) = x1x8x9:

1
 2


3
4


5
 6

7


8


9
10


11


12


Figure 5.2: A graph with a degree four non-3-colorability certificate over F2.
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x1x8x9 = (x1 + x2)(x2
1 + x1x2 + x2

2) + (x4 + x9 + x12)(x2
1 + x1x4 + x2

4)

+ (x1 + x4 + x8)(x2
1 + x1x12 + x2

12) + (x2 + x7 + x8)(x2
2 + x2x3 + x2

3)

+ (x3 + x8)(x2
2 + x2x7 + x2

7) + (x10 + x12)(x2
4 + x4x11 + x2

11)

+ (x1 + x4 + x10)(x2
4 + x4x9 + x2

9) + (x2 + x7 + x8)(x2
3 + x3x8 + x2

8)

+ (x2 + x10)(x2
5 + x5x6 + x2

6) + (x5 + x10)(x2
5 + x5x9 + x2

9)

+ (x2 + x3 + x12)(x2
7 + x7x8 + x2

8) + (x1 + x7 + x8)(x2
8 + x8x12 + x2

12)

+ (x2 + x10)(x2
6 + x6x7 + x2

7) + (x10 + x12)(x2
7 + x7x11 + x2

11)

+ (x5)(x2
2 + x2x5 + x2

5) + (x5 + x7)(x2
6 + x6x10 + x2

10)

+ (x4 + x7)(x2
10 + x10x11 + x2

11) + (x4 + x5)(x2
9 + x9x10 + x2

10)

+ (x1)(x2
8 + x8x9 + x2

9) + (x4 + x7)(x2
11 + x11x12 + x2

12) + (x5 + x7)(x2
2 + x2x6 + x2

6)

+ (x8 + x9) (x2
1 + x2

2 + x2
6)︸ ︷︷ ︸

degree-cutter

+(x9) (x2
2 + x2

5 + x2
6)︸ ︷︷ ︸

degree-cutter

+(x8) (x2
2 + x2

6 + x2
7)︸ ︷︷ ︸

degree-cutter

.

We note g(x) = x1x8x9 was not the only alternative Nullstellensatz certificate that we were

able to find: g(x) = x7x4x9 also produced a certificate. 2

NulLA can easily be adapted to construct alternative Nullstellensatz certificates

if the polynomial g is specified as part of the input. In the case of graph k-colorability,

any non-trivial monomial is a possible g, because the equations x3
i − 1 = 0 force every

xi to assume the value of a root of unity, and g(x) = 0 implies that xi = 0 for some

variable xi. Thus, in the case of graph k-colorability, NulLA can easily be adapted to

search for alternative Nullstellensatz certificates of a given degree, along with ordinary

Hilbert’s Nullstellensatz certificates. For example, for the graph in Figure 5.2, we searched

for alternative Nullstellensatz certificates of degree one by enumerating the set of all possible
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monomials of degree three. Since choosing different g(x) only means changing the constant

terms of the NulLA linear system (the other coefficients remain the same), enumerating a

set of possible g(x) can be accomplished efficiently.

5.1.4 Probabilistic Nullstellensätze

The systems of linear equations produced by NulLA are quite large in practice,

even for degrees as low as four. Subsections 5.1.3 and 5.1.2 describe ideas for reducing

the degree of Nullstellensatz certificates, and thus reducing the size of the NulLA linear

systems, and Section 4.3 describes many lemmas that allow us to eliminate monomials from

non-k-colorability certificates, which reduces the number of unknowns in the associated

linear systems in the case of graph k-colorability. In this section, we describe a probabilistic

approach which applies to arbitrary encodings and further reduces the number of unknowns:

instead of allowing all monomials of degree d to appear in the Nullstellensatz certificate, we

can randomly set coefficients of some monomials to zero— e.g., independently set variables

to zero with probability p. Consider the following example:

Example 5.1.5 As in Example 3.2.1, consider the input system of polynomial equations

x2
1 − 1 = 0, x1 + x2 = 0, x1 + x3 = 0, x2 + x3 = 0. This system has no solution, and in

Example 3.2.1, we discovered that it has a Nullstellensatz certificate of degree one. As

before, we begin by constructing a certificate of degree one, with unknowns for coefficients,
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but this time, we arbitrary set unknowns to zero.

1 = (c0x1 + c1x2 + 0 · x3 + c2)︸ ︷︷ ︸
β1

(x2
1 − 1)︸ ︷︷ ︸
f1

+(c3x1 + 0 · x2 + c4x3 + 0)︸ ︷︷ ︸
β2

(x1 + x2)︸ ︷︷ ︸
f2

+ (c5x1 + 0 · x2 + 0 · x3 + c6)︸ ︷︷ ︸
β3

(x1 + x3)︸ ︷︷ ︸
f3

+(c7x1 + 0 · x2 + c8x3 + 0)︸ ︷︷ ︸
β4

(x2 + x3)︸ ︷︷ ︸
f4

.

Thus, we have reduced the number of unknowns from 16 (in Example 3.2.1) to 9, and the

resulting Nullstellensatz certificate remains unchanged.

1 =
1
2
x1(x1 + x2)− 1

2
x1(x2 + x3) +

1
2
x1(x1 + x3)− (x2

1 − 1) .

2
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Figure 5.3: Probability tests on cliques and odd-wheels over Q.

This heuristic works quite well in the case of graph 3-colorability over Q, where

any minimum degree Nullstellensatz certificate has degree at least four. In Figure 5.3, we
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see the results of a probabilistic search for non-3-colorability Nullstellensatz certificates for

cliques and odd-wheels. The probability p of keeping an unknown in the linear system

appears on the x-axis. Thus, if p = 0.1, 90% of the time we set the unknown to 0, and

10% of the time we keep it in the system. For cliques and odd-wheels, we know that there

is always a certificate of degree four. For every probability 0.1, 0.2, . . . , 1 we performed 100

searches for a degree four certificate. For the cliques and odd-wheels at p = 0.1 and p = 0.2,

we almost never found certificates. But for p = 0.4, we found certificates 95% of the time.

In practice, we can reduce the number of variables in the linear system by 60%, and still

find a Nullstellensatz certificate 90% of the time.

However, the results of graph 3-colorability over F2 are somewhat less favorable.

Figures 5.4 and 5.5 both illustrate the results of probabilistic searches for non-3-colorability

Nullstellensatz certificates over F2 for odd-wheels, Kneser, flowers and cat-ear graphs (all

graphs are described in Subsection 5.2.2). The odd-wheel and Kneser graphs tested both

have certificates of degree one. However, the flower and cat-ear graphs tested have no degree

one certificates unless degree-cutter triangle equations are applied; thus, the certificates

tested for these graphs are degree four without degree-cutter equations.

There is an interesting discrepancy between the probabilistic results of the degree

four and degree one certificates. For the odd-wheels and their degree one certificates,

the linear systems are quite dense. When p = .9 (90% of the unknowns are present),

the probability of success is only about 50%. By contrast, for the cat-ears graphs and

their degree four certificates, when p = .5, the probability of success is over 80%. The

Kneser graphs (also with degree one certificates) have an 80% success rate when p = .7,
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and the flowers (degree four certificates) have an 80% success rate when p = .4. The

probability results for the degree four certificates are consistent with the results reported

over Q. However, the F2 degree one certificates seem to reliably require somewhat more

dense linear systems.

5.2 Graph 3-colorability Experimental Results

In this section, we present our experimental results for graph 3-colorability. We

describe our software and testing platform (Subsection 5.2.1), our test cases (Subsection

5.2.2), and then we present our results over both Q and F2 (Subsections 5.2.3 and 5.2.4,

respectively). We also compare NulLA to other algebraic methods (Subsection 5.2.5), and

explore supposed “hard instances” of 3-colorability (Subsection 5.2.6).

Our experiments over F2 were surprisingly successful. We were able to compute

the non-3-colorability of graphs with almost 2000 vertices and tens of thousands of edges.

5.2.1 Methods

The computationally-intensive aspect of NulLA is constructing and solving the

linear systems associated with a given degree. Towards that end, we implemented an exact-

arithmetic linear system solver in C++ that works over Q and Fp. Early on, we observed that

the systems of linear equations were numerically unstable in floating point arithmetic, and

we were thus forced to write our own back-end solver. Our computations were performed

on machines with dual Opteron nodes, 2 GHz clock speed, and 12 GB of RAM. No degree-

cutter equations or alternative Nullstellensatz certificates were used, and we preprocessed
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the linear systems according to the lemmas presented in Section 4.3. However, when testing

over Q, we extensively used probabilistic Nullstellensätze; thus, the value p appearing in

the tables is the probability (most often .4, as described in Subsection 5.1.4).

5.2.2 Test Cases

We tested the following graphs:

1. DIMACS: The graphs from the DIMACS Computational Challenge (1993, 2002) are

described in detail at http://mat.gsia.cmu.edu/COLORING02/. This set of graphs

is the standard benchmark for graph coloring algorithms. We tested every DIMACS

graph whose associated NulLA matrix could be instantiated within 12 GB of RAM.

For example, we did not test C4000.5.clq, which has 4,000 vertices and 4,000,268

edges, yielding a degree one NulLA matrix of 758 million non-zero entries and 1

trillion columns.

2. Mycielski: The Mycielski graphs are known for the gap between their clique and

chromatic number. The Mycielski graph of order k is a triangle-free graph with

chromatic number k. The first few instances and the algorithm for their construction

can be seen at http://mathworld.wolfram.com/MycielskiGraph.html.

3. Kneser: The nodes of the Kneser-(t, r) graph are represented by the
(

t
r

)
r-subsets of

{1, . . . , t}. Two nodes are adjacent if and only if their subsets are disjoint.

4. Flowers: These graphs are pictured in Figure 5.6. Note that the 3-flower is 3-

colorable, whereas the 4 and 5 flowers are non-3-colorable. It is easy to see that
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(0 mod 3)-flowers are 3-colorable, whereas the (1 mod 3) or (2 mod 3)-flowers are non-

3-colorable.

5. Cat-ears: These graphs are pictured in Figure 5.7. They are an infinite family

of connected near-4-cliques (K4 with one edge removed), and each graph is non-3-

colorable.

6. Random: We tested random graphs in 16 nodes with an edge probability of .27. This

probability was experimentally selected based on the boundary between 3-colorable

and non-3-colorable graphs and is explained in detail in Section 5.2.4.

7. Other graphs: We also tested many, many other graphs, simply because they were

non-3-colorable. For example, a uniquely 3-colorable graph is a graph that can be

colored with three colors in only one way, up to permutation of the color labels.

Figure 5.8 displays a uniquely 3-colorable, triangle-free graph [9]. Because the graph

is uniquely 3-colorable, the addition of a single edge between two similarly-colored

vertices will result in a new non-3-colorable graph. Also pictured in Figure 5.8 are the

Grötzch graph and the Jin graph [28], both of which have chromatic number four.

5.2.3 Experimental Results over Q

Our graph 3-colorability experiments over Q were motivated by trying to find the

infinite family of non-3-colorable graphs with growth in the degree of their associated Null-

stellensatz certificates: in particular, the infinite family of graphs proposed in Corollary

4.1.2. At this stage in our project, our goal was not an efficient algorithm for practical

computation; rather, it was an attempt to explore the degree and structure of Nullstellen-
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satz certificates. We tested hundreds of non-3-colorable graphs, hoping to find an explicit

example with growth in the certificate degree. However, every graph that we tested had a

Nullstellensatz certificate of degree four. In Table 5.1, we present a sampling of the many

graphs we tried during this stage of our computational experiments. Note that the graph

UNQ-3-CLR is the uniquely 3-colorable graph from Figure 5.8, with various edges added.

We also tested every non-3-colorable graph with six vertices or less: every graph had a

Nullstellensatz certificate of degree four.

Our experimental investigations over Q led us to the following conclusion: not

only was growth in the degree of non-3-colorability Nullstellensatz certificates rare for small

graphs, but low-degree certificates were common. This caused us to reconsider the possi-

bility of using NulLA for practical computation.

5.2.4 Experimental Results over F2

In this subsection, we describe our experimental investigations of graph 3-colorabil-

ity over F2. To summarize, almost all of the graphs tested by NulLA over F2 had degree one

certificates. This algebraic property, coupled with our ability to compute over F2, allowed

us to prove the non-3-colorability of graphs with almost two thousand nodes.

Although testing for graph 3-colorability is well-known to be NP-complete, there

exist many efficient (and even trivial), polynomial-time algorithms for finding 4-cliques in

a graph. Because we are now interested in practical computation, we break our compu-

tational investigations into two tables: Table 5.2 contains graphs without 4-cliques, and

Table 5.4 contains graphs with 4-cliques (considered “easy” instances of 3-colorability). For

space considerations, we only display representative results for graphs of various sizes for
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Graph vertices edges row col p deg
flower 8 16 32 51,819 49,516 .4 4
flower 10 20 40 178,571 362,705 1 4
flower 11 22 44 278,737 278,844 .5 4
flower 13 26 52 629,666 495,051 .4 4
flower 14 28 56 923,580 705,536 .4 4
flower 16 32 64 1,979,584 1,674,379 .4 4
flower 17 34 68 2,719,979 2,246,535 .4 4
flower 19 38 76 4,862,753 3,850,300 .5 4

kneser-(6,2) 15 45 39,059 68,811 .5 4
kneser-(7,2) 21 105 230,861 558,484 .5 4
kneser-(8,2) 28 210 1,107,881 3,307,971 .5 4
kneser-(9,2) 36 378 1,107,955 3,304,966 .5 4
kneser-(10,2) 45 630 15,567,791 36,785,283 .5 4

jin graph 12 24 12,168 13,150 .4 4
Grötzsch 11 20 7,903 8,109 .4 4

UNQ-3-CLR + {(3, 4)} 12 24 12,257 13,091 .4 4
UNQ-3-CLR + {(7, 12)} 12 24 12,201 13,085 .4 4
UNQ-3-CLR + {(1, 8)} 12 24 12,180 13,124 .4 4

UNQ-3-CLR + {(3, 4), (12, 7)} 12 25 12,286 13,804 .4 4

Table 5.1: Experimental investigations of graph 3-colorability over Q.

each family. We also point out certain properties of NulLA-constructed certificates, and

conclude with tests on random graphs. Surprisingly, all but four of the DIMACS, Mycielski

and Kneser graphs tested with NulLA have degree one certificates.

Not all of the DIMACS challenge graphs had degree one certificates. We were

not able to produce certificates for mug88 1, mug88 25, mug100 1 or mug100 25, even when

using degree-cutters and searching for alternative Nullstellensatz certificates. When testing

for a degree four certificate, the smallest of these graphs (mug88 1 with 88 vertices and

146 edges) yielded a linear system with 1,170,902,966 non-zero entries and 390,340,149

columns. A matrix of this size is not computationally tractable at this time because it

cannot be instantiated within available memory.
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Graph vertices edges rows cols deg sec
m7 (Mycielski 7) 95 755 64,281 71,726 1 .46
m9 (Mycielski 9) 383 7,271 2,477,931 2,784,794 1 268.78

m10 (Mycielski 10) 767 22,196 15,270,943 17,024,333 1 14835
(8, 3)-Kneser 56 280 15,737 15,681 1 .07
(10, 4)-Kneser 210 1,575 349,651 330,751 1 3.92
(12, 5)-Kneser 792 8,316 7,030,585 6,586,273 1 466.47
(13, 5)-Kneser 1,287 36,036 45,980,650 46,378,333 1 216105

ash331GPIA.col 662 4,185 3,147,007 2,770,471 1 13.71
ash608GPIA.col 1,216 7,844 10,904,642 9,538,305 1 34.65
ash958GPIA.col 1,916 12,506 27,450,965 23,961,497 1 90.41
1-Insertions 5.col 202 1,227 268,049 247,855 1 1.69
2-Insertions 5.col 597 3,936 2,628,805 2,349,793 1 18.23
3-Insertions 5.col 1,406 9,695 15,392,209 13,631,171 1 83.45

Table 5.2: Graphs without 4-cliques over F2.

Recall that the Nullstellensatz certificates returned by NulLA consist of a single

vertex polynomial (via preprocessing), and edge polynomials describing either the original

graph in its entirety, or a non-3-colorable subgraph of the original graph. For example, if

the graph contains a 4-clique as a subgraph, often the Nullstellensatz certificate will only

display the edges contained in the 4-clique. In this case, we say that NulLA isolates a non-

3-colorable subgraph from the original graph. The size difference between these subgraphs

and the input graphs is often dramatic, as shown in Table 5.3.

An overall analysis of these computational experiments shows that NulLA per-

forms best on sparse graphs. For example, the 3-Insertions 5.col graph (with 1,406

nodes and 9,695 edges) runs in 83 seconds, while the 3-FullIns 5.col graph (with 2,030

nodes and 33,751 edges) runs in 15027 seconds. Another example is p hat700-2.clq

(with 700 nodes and 121,728 edges) and will199GPIA.col (with 701 nodes and 7,065

edges). NulLA proved the non-3-colorability of will199GPIA.col in 35 seconds, while



114

Graph vertices edges
subgraph
vertices

subgraph

edges
miles1500.col 128 10,396 6 10

hamming8-4.clq 256 20,864 19 33
m10 (Mycielski 10) 767 22,196 11 20

(12, 5)-Kneser 792 8,316 53 102
dsjc1000.1.col 1,000 49,629 15 24

ash608GPIA.col 1,216 7,844 23 44
3-Insertions 5.col 1,406 9,695 56 110
ash958GPIA.col 1,916 12,506 24 45

Table 5.3: Original graph vs. non-3-colorable subgraph.

p hat700-2.clq took 30115 seconds.

Finally, as an informal measure of the distribution of degree one certificates, we

generated random graphs of 16 nodes with edge probability .27. We selected this probability

because it lies on the boundary between feasible and infeasible instances. In other words,

graphs with edge probability less than .27 were almost always 3-colorable, and graphs with

edge probability greater than .27 were almost always non-3-colorable. However, we ex-

perimentally found that an edge probability of .27 created a distribution that was almost

exactly half and half. Of 100 trials, 48 were infeasible. Of those 48 graphs, 40 had degree

one certificates and 8 had degree four certificates. Of these remaining 8 instances, we were

able to find degree one certificates for all 8 by appending degree-cutters or by finding alter-

native Nullstellensatz certificates. This tentative measure indicates that non-3-colorability

certificates of degrees greater than one may be rare.
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Graph vertices edges rows cols deg sec
miles500.col 128 2,340 143,640 299,521 1 1.35
miles1000.col 128 6,432 284,042 823,297 1 7.52
miles1500.col 128 10,396 349,806 1,330,689 1 24.23
mulsol.i.5.col 197 3,925 606,959 773,226 1 6
zeroin.i.1.col 211 4,100 643,114 865,101 1 6

queen16 16.col 256 12,640 1,397,473 3,235,841 1 106
hamming8-4.clq 256 20,864 2,657,025 5,341,185 1 621.1
school1 nsh.col 352 14,612 4,051,202 5,143,425 1 210.74
MANN a27.clq 378 70,551 9,073,144 26,668,279 1 9809.22
brock400 4.clq 400 59,765 10,579,085 23,906,001 1 4548.59

gen400 p0.9 65.clq 400 71,820 10,735,248 28,728,001 1 9608.85
le450 5d.col 450 9,757 4,168,276 4,390,651 1 304.84
fpsol2.i.1.col 496 11,654 4,640,279 57,803,85 1 93.8
C500.9.clq 500 112,332 20,938,304 56,166,001 1 72752
homer.col 561 3,258 1,189,065 1,827,739 1 8

p hat700-2.clq 700 121,728 48,301,632 85,209,601 1 30115
will199GPIA.col 701 7,065 5,093,201 4,952,566 1 35

inithx.i.1.col 864 18,707 13,834,511 16,162,849 1 1021.76
qg.order30.col 900 26,100 23,003,701 23,490,001 1 13043

wap06a.col 947 43,571 37,703,503 41,261,738 1 1428
dsjc1000.1.col 1,000 49,629 45,771,027 49,629,001 1 2981.91
5-FullIns 4.col 1,085 11,395 13,149,910 12,363,576 1 200.09
3-FullIns 5.col 2,030 33,751 70,680,086 68,514,531 1 15027.9

Table 5.4: Graphs with 4-cliques over F2.

5.2.5 NulLA over F2 vs. other graph coloring algorithms

In this subsection, we compare NulLA over F2 to two other methods for detect-

ing 3-colorability; the Alon-Tarsi (AT) method, and the Gröbner basis (GB) method. We

also briefly compare NulLA to the two well-known graph coloring heuristics DSATUR

and Branch-and-Cut [46]. We implemented the Alon-Tarsi method in C++, and used

CoCoA Lib [11] to test the Gröbner basis method. For brevity, we do not record any “in-

ternal data” about the various algorithmic runs, such as the size of the underlying linear

systems solved by NulLA or the maximum number of monomials in the normal forms pro-
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duced by the Alon-Tarsi method. In the tables below, all certificates have degree one and

a “–” signifies that the method was terminated after four hours of computation.

The Gröbner basis method simply refers to taking the Gröbner basis of the ideal

defined in Lemma 2.2.6. By Hilbert’s Nullstellensatz, the Gröbner basis is a constant if and

only if the graph is non-3-colorable.

The Alon-Tarsi method is based on the following (see Section 7 of [1] and references

therein):

Theorem 5.2.1 Given a graph G with n vertices, let IG = 〈x3
1−1, . . . , x3

n−1〉. Additionally,

let

PG =
∏

{i,j}∈E(G)

(xi − xj)

Then PG ∈ IG if and only if G is non-3-colorable

In order to compute with the Alon-Tarsi method, we note that the set B = {x3
1 −

1, . . . , x3
n − 1} is a Gröbner basis for IG. Thus, we simply take the normal form of PG with

respect to B. If the normal form is zero, PG ∈ IG, and the graph is non-3-colorable. The

efficiency of the Alon-Tarsi method can be increased by incrementally constructing PG [24]:

we order the edges, and then find the normal form of (xi1 − xj1) with respect to B, and

then the normal form of (xi1 − xj1)(xi2 − xj2) with respect to B, etc.

We compared NulLA to the Gröbner basis and Alon-Tarsi methods on graphs

with and without 4-cliques; results are displayed in Tables 5.7 and 5.8, respectively.

NulLA consistently out-performed the Gröbner basis method. For example, on

zeroin.i.1, NulLA ran in 6 seconds, while CoCoA Lib took almost one hour. These ex-
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perimental results indicate that NulLA scales more efficiently with respect to input size

than the Gröbner basis method.

NulLA also compared extremely favorably with the Alon-Tarsi method, which

usually did not terminate within the requisite time bounds. However, in the special case

when the first few vertices and edges of the graph happen to describe a non-3-colorable sub-

graph (such as a 4-clique, or the Grötzch graph), the Alon-Tarsi method ran very quickly,

because of the iterative approach incorporated during implementation. Consider the ex-

ample of the ninth Mycielski graph (383 vertices and 7,271 edges): the Alon-Tarsi method

terminated in .24 seconds. However, after we permuted the vertices and edges, the method

did not terminate. Indeed, after consuming 9 GB of RAM over 4 hours of computation, the

method had only processed 30 out of 7,271 edges. This example shows that the Alon-Tarsi

method is extremely sensitive to the vertex and edge ordering. If a similar iterative ap-

proach was incorporated either into NulLA or the Gröbner basis method, these algorithms

would likewise terminate early in this special case.

As another example of the draw-backs of the Alon-Tarsi method, we considered

edge-critical graphs, where the entire input must be read. For example, the odd-wheels

form a trivial family of edge-critical non-3-colorable graphs. The Alon-Tarsi method was

unable to determine the non-3-colorability of the 17-odd-wheel (18 vertices and 34 edges):

after two hours of computation, the normal form contained over 19 million monomials, and

had consumed over 8 GB of RAM. The experimental results are displayed in Table 5.5.

We conclude with a short comment comparing NulLA to DSATUR and Branch-

and-Cut [46]. These heuristics return bounds on the chromatic number. In Table 5.6 (data
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odd-wheels vertices edges NulLA GB AT
9 10 18 0 0 .05
11 12 22 0 0 .74
13 14 26 0 0 8.47
15 16 30 0 0 369.45
17 18 34 0 0 –
151 152 302 .21 2.21 –
501 502 1,002 15.58 126.83 –
1001 1,002 2,002 622.73 1706.69 –
2001 2,002 4,002 12905.6 – –

Table 5.5: NulLA, GB and AT on odd-wheel graphs.

taken from [46]), we display the bounds returned by Branch-and-Cut (B&C) and DSATUR,

respectively. We do not include running times for B&C and DSATUR, because the authors

did not report running times in [46]; both algorithms exceeded the two hour computation

time limit set by the authors. By contrast, in the case of these graphs, NulLA determined

non-3-colorability very rapidly (establishing a lower bound of four), while the two heuristics

returned lower bounds of three and two, respectively. Thus, NulLA returned a tighter

lower bound on the chromatic number than B&C or DSATUR.

B&C DSATUR NulLA
Graph vertices edges lb up lb up sec

4-Insertions 3 79 156 3 4 2 4 0
3-Insertions 4 281 1,046 3 5 2 5 1
4-Insertions 4 475 1,795 3 5 2 5 3
2-Insertions 5 597 3,936 3 6 2 6 12
3-Insertions 5 1,406 9,695 3 6 2 6 83

Table 5.6: NulLA vs. Branch-and-Cut and DSATUR.
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Graph vertices edges NulLA GB AT
miles500 128 2,340 1.35 133.91 .07
miles1000 128 6,432 7.52 802.23 0
miles1500 128 10,396 24.23 2598.84 .01
mulsol.i.5 197 3,925 6 18804.5 0
zeroin.i.1 211 4,100 6 2753.37 0

queen16 16 256 12,640 106 59466.9 0
hamming8-4 256 20,864 621.1 – –

le450 5d 450 9,757 304.84 – –
homer 561 3,258 8 – –

dsjc1000.1 1,000 49,629 2981.91 – –
5-FullIns 4 1,085 11,395 200.09 – 557.12
3-FullIns 5 2,030 33,751 15027.9 – 3.97

Table 5.7: NulLA, GB, AT on graphs with 4-cliques.

Graph vertices edges NulLA GB AT
Mycielski 4 11 20 0 .01 .22
Mycielski 5 23 71 0 .08 .23
Mycielski 6 47 236 .04 3.99 .22
Mycielski 7 95 755 .46 179.94 .23
Mycielski 8 191 2,360 7.72 9015.06 .23
Mycielski 9 383 7,271 268.78 – .22
Mycielski 9
permuted 383 7,271 497.47 – –

(6, 2)-Kneser 15 45 0 .03 1.87
(8, 3)-Kneser 56 280 .07 18.39 –
(10, 4)-Kneser 210 1,575 3.92 9771.76 –
(12, 5)-Kneser 792 8,316 466.47 – –
ash331GPIA 662 4,185 13.71 – –
1-Insertions 4 67 232 .04 3.71 –
2-Insertions 4 149 541 .26 32.42 –
1-Insertions 5 202 1,227 1.69 940.7 –
3-Insertions 4 281 1,046 .97 237.69 –
4-Insertions 4 475 1,795 3.02 1596.35 –
2-Insertions 5 597 3,936 18.23 – –

Table 5.8: NulLA, GB, AT on graphs without 4-cliques.
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5.2.6 Hard Instances of 3-colorability

The question of whether “hard” instances of graph 3-colorability have specific,

identifiable, and systematically reproducible properties is an area of active research. Exam-

ples of graph-theoretic properties proposed as order parameters separating “easy” instances

from “hard” include 3-paths [60], minimal unsolvable subproblems [42] and frozen devel-

opments [15]. Some of these proposed order parameters have resulted in algorithms [60]

[48] [37] for generating infinite families of non-3-colorable graphs conjectured (and often

computationally verified) to be “hard”. In this section, we investigate a link between Null-

stellensatz certificate degree and “hard” non-3-colorable graphs.

We begin by describing the algorithms generating the “hard” instances that we

tested, which were the minimum unsolvable graphs (MUGs) from [48], and the 4-critical

graph units (4-CGUs) from [37]. We then display our experimental results, comparing

NulLA with the Gröbner basis method, and conclude with comments about the relationship

between Nullstellensatz certificate degree and “hard” instances of 3-colorability.

Minimal Unsolvable (non-3-colorable) Subgraphs (MUGs)

In [48], a randomized algorithm for generating infinitely large instances of quasi-

regular, 4-critical graphs is described. These quasi-regular, 4-critical graphs are referred to

by the authors as minimal unsolvable subgraphs, where the term “unsolvable” refers to the

non-3-colorability of the graph. In this case, quasi-regular refers to graphs containing only

vertices of degree three or four, and 4-critical refers to graphs with chromatic number four

such that the removal of any edge decreases the chromatic number to three. The MUG
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generation algorithm relies on five core 4-critical, quasi-regular minimal unsolvable graphs,

which are randomly chosen and then iteratively constructed using the Hajós calculus, cre-

ating larger and larger 4-critical graphs. The five core 4-critical, quasi-regular MUGs used

in the algorithm are displayed in Figure 5.9.

The algorithm for generating a sequence of Mizuno-Nishihara MUGs is as follows:

********************************************************************
ALGORITHM: MUG Hard Instance Generation Algorithm
INPUT: An integer k
OUTPUT: A sequence G0, G1, . . . , Gk of near-4-clique-free, 4-critical graphs
1 G0 ← a random MUG
2 for i = 0 to k do
3 Gjoin ← a random MUG
4 Select an edge {u, v} at random from Gi, and an edge {x, y} at random

from Gjoin, such that deg(u) and deg(x) are ≤ 3.
5 Remove the edges {u, v} and {x, y} from Gi, Gjoin, respectively.
6 Gi+1 ← Gi ∪Gjoin, with an additional edge {v, y},

and where x and u are merged.
7 end for
8 return G0, G1, . . . , Gk

********************************************************************

The Hajós calculus is the technique used in merging Gi and Gjoin. This con-

struction can be used to generated the entire class of non-3-colorable graphs (see [27] and

references therein).

Proposition 5.2.2 Every graph in the sequence G0, G1, . . . , Gk produced by the MUG in-

stance generation algorithm is 4-critical.

Proof: Since Gi and Gjoin are 4-critical graphs, when the edges {u, v} and {x, y} are re-

moved from Gi and Gjoin, respectively, the resulting graphs are 3-colorable. This implies

that there exists a proper 3-coloring of each graph where the colors assigned to vertices

u and j, and to vertices x and y are the same. Without loss of generality, let the colors
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assigned to u, v, x and y be the same. Thus, when the edge {v, y} is added, and the vertices

x and u are merged, the resulting graph is 4-critical. 2

4-critical graph units (4-CGUs)

In [37], a randomized algorithm for generating infinitely large instances of triangle-

free, 4-critical graphs is described. The 4-CGU algorithm constructs a particular 4-critical

core, which is than joined to the previous graph in the sequence using the Hajós construction.

An example of a 4-CGU is displayed in Figure 5.10, and the algorithm for generating a

sequence of 4-CGUs follows below.

******************************************************************************
ALGORITHM: Liu-Zhang CGU Hard Instance Generation Algorithm
INPUT: An integer n
OUTPUT: A 4-critical graph in bn

3 c vertices
Step 1: Let n = 3m + r with both m and r non-negative integers, and r < 3.
Step 2: Construct a triangle ∆ABC and a circle with 3(m− 1) vertices

denoted as a1, b1, c1, a2, b2, c2, . . . , am−1, bm−1, cm−1 successively.
Step 3: Connect A with all ai (i = 1, . . . , m− 1);

Connect B with all bi (i = 1, . . . , m− 1);
Connect C with all ci (i = 1, . . . , m− 1).

Step 4: (a) if r = 0 then choose two vertices ak, al from ai ( i = 1, . . . ,m− 1),
connect ak and al;

(b) if r = 1 then choose a vertex ak from ai ( i = 1, . . . , m− 1), a vertex
bl from bi (i = 1, . . . , m− 1) and a vertex cm from (i = 1, . . . , m− 1),
introduce a new vertex O, connect O with ak, O with bl, O with cm;

(c) if r = 2 then choose two vertices ak1 , ak2 from ai ( i = 1, . . . , m− 1),
choose two vertices bl1 , bl2 from bi from bi (i = 1, . . . ,m− 1), introduce
two vertices O1, O2, connect O1 with ak1 , O1 with bl1 , O2 with ak2 ,
O2 with bl2 , O1 with O2;

Step 4: Stop.
******************************************************************************

An infinite family of 4-critical, triangle-free graphs is generated by (1) choosing

the Grötzch graph (4-critical and triangle free) as the initial graph, (2) choosing a random
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number ≥ 9 with r > 0, and generating a 4-CGU of that size, (3) merging the two graphs

by choosing the edge {i, j} randomly from the Grötzch graph, and the edge {x, y} as one

of the edges in the triangle ∆ABC. If non-adjacent vertices are chosen during the 4-CGU

construction step, the resulting graph is triangle-free and 4-critical.

Experimental Results on Hard Instances of 3-colorability

We implemented both the MUG hard instance generation algorithm, and the 4-

CGU hard instance generation algorithm. We tested both families with NulLA over F2,

and also with the Gröbner basis method using CoCoA Lib . In [48], the MUG instances were

tested with the Smallk [14] and Brélaz heuristics [6], as well as with six major constraint

satisfaction problem (CSP) solvers. In each case, exponential growth in the runtimes were

reported by the authors. When we tested the MUG random instances using NulLA, we

immediately saw corresponding growth in the degree of the Nullstellensatz. We report on

these results in Table 5.9.

Graph vertices edges rows cols deg terms sec GB sec
G0 10 18 198 181 1 3 0 0
G1 20 37 178,012 329,916 4 563 6.33 .05
G2 30 55 1,571,328 2,257,211 4 1,961 52.83 .46
G3 39 72 6,481,224 8,072,429 4 2,272 201.96 5.5
G4 49 90 22,054,196 24,390,486 ≥ 7 – 773.16 150.47
G5 60 110 – – – – – 1718.62
G6 69 127 – – – – – 3806.17
G7 78 144 – – – – – 19837.4

Table 5.9: Hard instances of graph 3-colorability: MUGs.

In Table 5.9, we record both the minimum-degree of the Nullstellensatz certificates,

and also the maximum number of monomials in any coefficient (as a measure of density).
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For G4, we record the degree as ≥ 7, since we are certain the degree is not equal to four;

thus, by Lemma 4.3.3, the degree must be seven or larger. We were only able to compute

the degrees of the first few certificates in the sequence; thus, it is impossible to infer a precise

rate of growth for the MUG family. Furthermore, the use of triangle equations as degree-

cutters did not reduce the degree, and we were also unable to find alternative Nullstellensatz

certificates of lower degree for these graphs. Thus, these graphs appear to be “hard” for

NulLA, although in order to prove a result about the growth in these certificates, a far

more thorough understanding of the certificate structure is needed. We also note that the

Gröbner basis method outperformed NulLA on these instances. Since the complexity of

finding a Nullstellensatz certificate and the complexity of finding a Gröbner basis are closely

related, this suggests that there may be further simplifications to NulLA that we have not

yet discovered.

Graph vertices edges rows cols deg terms sec GB sec
G0 11 20 247 221 1 3 0 0
G1 20 37 177,760 329,916 4 655 7.35 .1
G2 29 54 1,306,695 1,947,902 4 1,636 82.77 .75
G3 38 71 5,621,140 7,202,749 4 3,204 364.23 1.65
G4 47 88 17,629,974 20,288,961 ≥ 7 – 688.35 10.46
G5 56 105 – – ≥ 7 – – 13.41
G6 65 122 – – ≥ 7 – – 20.82
G7 74 139 – – ≥ 7 – – 75.02
G8 83 156 – – ≥ 7 – – 570.96

Table 5.10: Hard instances of graph 3-colorability: 4-CGUs.

In Table 5.10, we report the results of the NulLA experiments on the 4-CGU hard

instances of graph 3-colorability. The 4-CGU instance generation algorithm has not been

tested as thoroughly with multiple graph coloring algorithms as compared to the MUGs
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in [48]. However, the 4-CGUs were tested with Smallk, and exponential running times

were reported in [37]. When we tested the 4-CGU algorithm with NulLA over F2, we

immediately found corresponding growth in the degree of the Nullstellensatz certificates, at

a rate of growth very similar to the rate of growth in the MUG family. For example, G0

in both families has degree one, G1, G2 and G3 in both families all have degree four, and

G4 is both families has degree ≥ 7. We also note that the 4-CGUs are triangle-free. Thus,

no reductions in degree via degree-cutter equations are possible. Furthermore, as in the

case of the MUGs, we could not find alternative Nullstellensatz certificates for the 4-CGUs.

However, the running times returned by CoCoA Lib in the Gröbner basis experiments were

very different between the two families: for example, CoCoA Lib found a Gröbner basis for

the 4-CGU G7 in 75.02 seconds, as compared with 19837.4 seconds for the MUG G7. This

dramatic difference between the Gröbner basis runtimes suggests that MUGS are somehow

“algebraically” harder than the 4-CGU’s, although a rigorous characterization of “algebraic

hardness” has yet to be developed.

The underlying cause in the degree growth of graph 3-colorability certificates

remains an open question. It is possible that a thorough understanding of the non-3-

colorability certificates will illuminate properties in the underlying graphs that force growth

in the certificate degree; and perhaps, those same properties will cause exponential growth

in runtimes with respect to other heuristics and solvers. It is interesting to note that of the

hundreds of graphs present in the DIMACS computational challenge, the only graphs with

degrees greater than one were the MUG graphs, specifically proposed as “hard” instances

of graph 3-colorability. The advantage of NulLA is that the difference between “hard” and
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“easy” instances is stark and clear; graphs with degrees one, four and seven are “easy”,

“hard” and “harder”. Our goal to use NulLA not only as a tool for practical computation,

but also as a means of exposing structural properties in the underlying graphs that lead to

differences in complexity.

5.3 Beyond 3-colorability

In this section, we briefly explore minimum-degree non-k-colorability certificates

for k > 3. The complete graphs Kn are non-(n− 1)-colorable. It can be shown that when

the n degree-cutter equations capturing the (n − 1)-cliques in Kn are applied, the degree

of the non-(n− 1)-colorability certificate drops to one. However, in Table 5.11, we explore

the minimum-degree non-(n−1)-colorability certificates without degree-cutter equations, or

alternative Nullstellensatz certificates, to gain an intuitive sense about the minimum-degree

of “hard” k-colorability instances. Since Kn is the most trivial non-(n− 1)-colorable graph,

its minimum-degree is an indicator of the complexity of the (n − 1)-colorability problem

with respect to NulLA.

Graph k vertices edges rows cols deg sec
K4 3 4 6 39 35 1 (F2) 0
K5 4 5 10 1,413 2,772 5 (F3) .02
K6 5 6 15 8,464 14,784 6 (F2) .17
K7 6 7 21 507,831 1,705,440 13 (F5) 16385.8
K8 7 8 28 310,367 373,230 8 (F2) 304.39
K9 8 9 36 1,835,286 1,798,940 ≥ 17 (F3) 1410.74
K10 9 10 45 10,699,214 8,498,776 ≥ 19 (F2) 192358

Table 5.11: Kn: minimum-degrees for non-(n− 1)-colorability certificates.

In Table 5.11, we display the minimum-degrees of non-(n − 1)-colorability cer-
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tificates of Kn. Note that certificate degrees are with respect to different finite fields Fp,

where p is relatively prime to k = n− 1. Only 4-colorability over F3 has a computationally-

tractable certificate degree of one. The other Kn graphs have minimum-degrees such as 5, 6

and even 13. We were not able to find a certificate for K9, a graph with 9 vertices and 36

edges; we were only able to determine that the certificate has minimum-degree ≥ 17. This

suggests that NulLA may not be effective for chromatic numbers higher than three, unless

degree-cutter equations or alternative Nullstellensatz certificates can be found.
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Figure 5.4: Probability tests on odd-wheels and cat-ear graphs over F2.
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Figure 5.5: Probability tests on Kneser and flower graphs over F2.
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Figure 5.6: 3, 4 and 5 flowers.

Figure 5.7: 2, 3 and 4 cat-ears.
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Figure 5.8: A uniquely 3-colorable graph, the Grötzsch graph, and the Jin graph.
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Figure 5.9: 4-critical, near-4-clique-free minimum unsolvable graphs (MUGs).
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Figure 5.10: An example of a Liu-Zhang 4-CGU.
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Chapter 6

Summary and Future Work

“This is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”

–Sir Winston Churchill,
1874-1965 .

6.1 Summary

In this dissertation, we described the Nullstellensatz Linear Algebra algorithm

(NulLA), explored various links between NulLA and complexity theory, investigated theo-

retical lower bounds on the degrees of Nullstellensatz certificates associated with particular

encodings, and reported on experimental results. In terms of complexity theory, we demon-

strated links between Nullstellensatz certificate bit-size complexity, and the questions of P

vs. NP, NP vs. coNP, and NP as a proper or improper set of EXPTIME. Additionally, we

proved that the minimum-degree of a Nullstellensatz certificate associated with the Lovász

encoding of the independent set problem from Lemma 2.1.1 is α(G), or the size of the largest

independent set in the graph, and moreover, we proved that these certificates contain one
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monomial for every independent set in the graph. This answered an open question posed

by Lovász in [41]. As a by product of this result, we demonstrated that the Lazard bound

on projective Nullstellensatz certificates described in Lemma 3.2.3 is tight.

In terms of non-3-colorability, we proved that the minimum-degree of a non-3-

colorability Nullstellensatz certificate associated with the encodings of Lemma 2.2.2 or 2.2.6

follows the sequence 1, 4, 7, . . . , etc.. We also proved that the minimum-degree of a non-3-

colorability Nullstellensatz certificate associated with Lemma 2.2.2 (the encoding over C)

is at least four, and the minimum-degree of a non-3-colorability Nullstellensatz certificate

associated with Lemma 2.2.6 (the encoding over F2) is at least one. Additionally, we

demonstrated that any graph containing K4 has a Nullstellensatz certificate of degree four

or one (for the encodings of Lemmas 2.2.2 and 2.2.6, C and F2, respectively). Furthermore,

there are infinite families of graphs that do not exhibit any growth at all: the n-th odd-

wheel has a minimum-degree non-3-colorability Nullstellensatz certificate of degree four or

one (for the encodings of Lemmas 2.2.2 and 2.2.6, C and F2, respectively).

Using the encoding of Lemma 2.2.6 and our own C++ implementation of NulLA,

we computationally proved the non-3-colorability of graphs with almost 2,000 vertices and

over 10,000 edges. We also described two infinite families of graphs that exhibit growth

in their minimum-degree non-3-colorability certificates using the encoding of Lemma 2.2.6;

their first few terms followed the sequence 1, 4, 7, . . . , etc..
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6.2 Future Work

The Nullstellensatz Linear Algebra (NulLA) algorithm requires efficient large-

scale linear algebra computations, intersects with aspects of complexity and graph theory,

and relies on the development of a library of decision problem encodings that are particularly

well-suited to computations with Hilbert’s Nullstellensatz. It is exciting that at the close

of this dissertation, there are still many open questions and directions for future research

still remaining. In this section, we present some of these open questions with respect to

computation, complexity theory and encodings.

• primal/dual:

NulLA is an algorithm currently used for detecting combinatorial infeasibility ; R.

Weismantel has suggested developing a “primal/dual” approach, where NulLA is

combined with another algorithmic approach used for detecting combinatorial feasi-

bility.

For example, the central idea behind degree-cutter equations is that, by appending

equations to a system of polynomial equations, we can reduce the minimum-degree of

the associated Nullstellensatz certificates. It is natural to ask if it is possible to develop

a systematic methodology for generating degree-cutter equations. Such a method

proposed by P. Malkin for generating degree-cutter equations is to simultaneously

solve a low-degree NulLA linear system, and compute the Gröbner basis for the ideal.

If the low-degree NulLA linear system has no solution, than we can append one of the

intermediate polynomials calculated during the parallel Gröbner basis computation

to the system of polynomial equations. Then, we can construct the NulLA linear
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system associated with the new system of equations (the original system with the new

intermediate polynomial added). Essentially, we can use these intermediate Gröbner

basis polynomials as a possible degree-cutter equations. Such a “primal/dual” method

has yet to be investigated or implemented.

• Farkas’ lemma and solution reconstructions:

Via Farkas’ lemma, if a linear system Ax = b has no solution, then there exists a

witness vector u such that uA = 0 and ub 6= 0. Thus, the existence of such a vector

u is a certificate of infeasibility of the linear system. In terms of NulLA, if the linear

system has no solution, then there may or may not exist a Nullstellensatz certificate;

we must increment the degree and try again. However, it is worth investigating if the

Farkas’ certificate of infeasibility yields information about an actual solution to the

system of polynomial equations. For example, in terms of graph 3-colorability, if the

linear system has no solution, could the Farkas’ witness certificate somehow contain

information about an actual 3-coloring of the graph? B. Sturmfels has observed that

ideas of Laurent, Lasserre and Rostalski [32] can be modified to yield explicit solutions.

• Improving the NulLA linear system solver:

The current version of NulLA constructs the linear system associated with a given

degree d. If the degree d linear system has no solution, then NulLA constructs the

linear system associated with degree d + 1. In the current implementation, the linear

system associated with degree d and the linear system associated with degree d + 1

are treated as two completely independent objects. But it seems reasonable that a

careful study of the d and d + 1 linear systems might yield a method for reusing the
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degree d linear algebra computations in the solution for the degree d+1 linear system.

Another example of a strategy for reusing work comes from the Alon-Tarsi method

discussed in Section 5.2.5. The Alon-Tarsi method uses an edge-by-edge incremental

approach that sometimes allows the method to quickly isolate a non-3-colorable sub-

graph. An incremental, edge-by-edge approach might also be very useful with NulLA.

For example, we could start by constructing the linear system associated with the first

ten edges. If the linear system is infeasible, another ten edges could be added, and a

method could be devised to reuse the work from the first incremental solution.

Finally, the algorithm used to solve the back-end NulLA linear systems is simply an

efficient Gaussian Elimination optimized for extremely sparse matrices. However, it-

erative algorithms, such as the block Lanczos algorithm proposed in [50], are known to

be much faster than Gaussian Elimination. Therefore, a future release of NulLA could

include an implementation of a more sophisticated linear system solver algorithm.

• Gröbner bases and Faugère’s F5 algorithm:

The complexity of computing Hilbert’s Nullstellensatz provides a lower bound on the

complexity of computing a Gröbner basis, since a Gröbner basis for an infeasible poly-

nomial system is eventually only a constant (such as one). Although it is known that

computing a Gröbner basis is EXPSPACE-complete (see [22] and references therein),

it is reasonable to expect that our combinatorial ideals, such as the graph coloring ide-

als described by Lemmas 2.2.2 and 2.2.6, might have significantly less extreme upper

bounds. It is an open question to determine the upper bounds on these comparatively

simple NP-complete combinatorial ideals.



136

Additionally, we have only compared NulLA to the Gröbner basis algorithm im-

plemented in CoCoA Lib . Faugère’s F5 algorithm for computing a Gröbner basis is

widely considered to be more efficient than Buchberger’s algorithm for computing a

Gröbner basis. Since there are no efficient implementations of Faugère’s algorithm,

we should eventually write our own implementation to compare with NulLA.

• Developing a library of encodings:

The success of NulLA as an algorithm for practical computation depends not only on

the efficiency of the actual implementation, but also on the “algebraic compatibility”

of the input encoding with Hilbert’s Nullstellensatz. In Section 4.2, we demonstrated

that the binary encoding of the independent set problem yielded certificates where

at least one coefficient is basically an enumeration of the independent sets in the

graph. Furthermore, there are families where the minimum-degree of the associated

certificates is O(n): we therefore conclude that the binary encoding of the independent

set decision problem poorly captures the combinatorial properties of independent sets

with respect to computation with the Nullstellensatz.

An example of an encoding that seems to be “algebraically compatible” with NulLA is

graph 3-colorability. However, at the conclusion of this project, we have yet to discover

another encoding that is as well-suited for NulLA-style computation as this one. In

order to promote NulLA as an algorithm that is useful for practical computation, we

must develop a library of encodings that capture decision problems of interest with

encodings that are compatible with Hilbert’s Nullstellensatz. Towards this end, we

recommend low degree, homogenous polynomials.
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• Hamiltonian cycle:

Here, we briefly explore the Hamiltonian cycle encoding of Lemma 2.3.3 and offer

suggestions for future research directions. In order to use this encoding for compu-

tation over finite fields, we add the cyclotomic polynomials from Eq. 2.5 to force ω

to take on the value of a primitive root of unity. Our test cases are the line graphs,

pictured in Figure 6.1. The 3-line has three vertices and two edges, and the n-line has

n vertices and n− 1 edges, etc..

1
 2
 3
 n


Figure 6.1: The line graphs.

Graph rows cols deg sec
3-line 128 120 2 (F2) 0
4-line 1,140 1,260 4 (F3) 0
5-line 5,363 5,544 5 (F2) .01
6-line 22,874 24,024 6 (F5) .09
7-line 332,386 388,960 9 (F2) 3.22
8-line 392,577 437,580 8 (F3) 8.47
9-line 5,838,769 7,054,320 11 (F2) 2469.24

Table 6.1: Line graphs: minimum-degrees for non-hamiltonicity

In Table 6.1, we display the results for testing the line graphs for non-hamiltonicity.

Lemma 2.3.3 is a relatively simple encoding with n + 1 variables and n + m equa-

tions. However, the line graphs are a trivial non-Hamiltonian graph example, and

they exhibit linear growth in their corresponding Nullstellensatz certificate degrees.

Thus, despite its simplicity, this encoding with the use of the cyclotomic polynomial
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does not appear to be promising for NulLA. However, we believe it is the addition

of the cyclotomic polynomial in particular that causes the linear growth in degree.

Thus, we are very interested in trying this encoding over Fp ∪ ω, and seeing if the

minimum-degrees are reduced. This is an experiment that must be performed before

the computational usefulness of this encoding is understood.

• SAT:

Here, we explore minimum-degree Nullstellensatz certificates for the “induction” prin-

ciple, which is at the heart of research in logic and propositional proof systems [8, 26].

From Section 4.4, recall that the induction principle is the Boolean formula in n

variables:

INDn = x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xn−1 ∨ xn) ∧ ¬xn ,

and that via Theorem 4.4.1 from [8], and via the encoding over Q from Lemma

2.7.1, we have the following lower and upper bounds on the associated Nullstellensatz

certificate degrees:

blog2(n)c − 1 ≤ d ≤ dlog2(n− 1)e .

In Table 6.2, we display our experimental results testing the “induction” principle

encoded via Lemma 2.7.1. We note that this table only displays the values of n

where the associated Nullstellensatz certificates increased in degree. For example,

from Table 6.2, we can infer that IND3 through IND5 have degree two, and IND6

through IND13 have degree three, etc.. By inspection of the table, we can see that
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INDn rows cols sec deg lb ub
3 20 28 0 1 0 1
5 55 66 0 1 1 2
6 210 364 0 2 1 3
13 2,170 2,835 .02 2 2 4
14 11,376 19,720 .16 3 2 4
29 225,126 292,640 4.48 3 3 5
30 1,770,692 2,828,936 585.57 4 3 5
32 2,464,671 3,828,825 952.86 4 4 5

Table 6.2: Minimum-degrees for INDn

the minimum-degree of the Nullstellensatz does indeed always sit between the lower

and upper bounds. However, it is not always tight with either bound, and it remains

an open question to determine the precise sequence of the degrees, and to determine

the combinatorial meaning of the values of n where the degree increments.

• Minimum 4-critical subgraphs:

The Jin graph from Figure 6.2 is the first graph in an infinite family of triangle-

free, 4-chromatic graphs proposed in [28]. However, the Jin graph is not 4-critical,

which is a reasonable requirement for a “hard” instance of 3-colorability. In Figure
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Figure 6.2: The Jin graph and a 4-critical subgraph.
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6.2, we see two graphs: the Jin graph, and the subgraph produced by removing

the 8-th vertex and all incident edges. This particular subgraph was the subgraph

isolated by NulLA in the non-3-colorability certificate. We experimentally verified

that this subgraph was 4-critical. We also saw similar results in the non-3-colorability

certificates for the Kneser graphs. When we inspected the certificates, many vertices

and edges were missing.

We conjecture that the subgraph isolated by the non-3-colorability Nullstellensatz

certificates produced by NulLA is always the minimal (with respect to number of

edges) 4-critical subgraph in the graph. Thus, we propose to use NulLA as a graph-

theoretic tool to help isolate 4-critical non-3-colorable subgraphs, and we hope that

NulLA can facilitate development of infinite families of 4-critical graphs, which are

essential to deepening our understanding of “hard” instances of 3-colorability.

• Growth in the minimum-degree of non-3-colorability certificates:

In Subsection 5.2.6, we described two families of graphs, proposed in [48] and [37],

where the first few graphs in the family exhibited growth in the minimum-degree

of their non-3-colorability certificates. However, we were unable to prove that the

minimum-degree continues to grow, or to explicitly describe the rate of growth.

NulLA may be able to provide a first step in identifying systematically reproducible

graph-theoretic properties shared by “hard” instances of graph 3-colorability. If

we could understand the combinatorial meaning of the coefficients in the non-3-

colorability certificates, we could potentially gain insight into why certain graphs are

non-3-colorable when a combinatorial explanation is not readily apparent. Further-
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more, understanding the combinatorial meaning of the certificate coefficients would

allow us to understand why certain graphs have higher-degree non-3-colorability cer-

tificates than others; or why, with respect to NulLA, the non-3-colorability of certain

4-critical graphs is harder to determine than others. A central open question remain-

ing in this dissertation is to explicitly describe an infinite family of non-3-colorable

graphs where the minimum-degree of the associated Nullstellensatz certificates grows

(either linearly or logarithmically) with respect to n. Finding such a family would lead

immediately to a second, and perhaps more interesting, question: Would such a fam-

ily of NulLA “hard” instances be a family of “hard” instances for other algorithms,

or are the algebraic properties of graphs that are problematic for NulLA easily sur-

mountable by other algorithms? Finally, is it possible that NulLA could contribute to

the development of a rigorous mathematical criteria for identifying universally “hard”

instances of graph 3-colorability? In terms of NulLA, it is our belief that these goals

are inseparable from finding a combinatorial interpretation of the Nullstellensatz cer-

tificate coefficients.
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