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Partition functions and graph polynomials have found many applications in

combinatorics, physics, biology and even the mathematics of finance. Study-

ing their complexity poses some problems. To capture the complexity of their
combinatorial nature, the Turing model of computation and Valiant’s notion

of counting complexity classes seem most natural. To capture the algebraic

and numeric nature of partition functions as real or complex valued functions,
the Blum-Shub-Smale (BSS) model of computation seems more natural. As a

result many papers use a naive hybrid approach in discussing their complexity
or restrict their considerations to sub-fields of C which can be coded in a way
to allow dealing with Turing computability.

In this paper we propose a unified natural framework for the study of
computability and complexity of partition functions and graph polynomials

and show how classical results can be cast in this framework.
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1. Introduction

The study of graph polynomials and partition functions has become a focal

point in the research linking discrete mathematics to applied mathematics.

Initiated 100 years ago with Birkhoff’s paper on the chromatic polyno-

mial, [1], and extended in W. Tutte’s paper of 1954, [2], graph polynomials

remained for long an exotic subject. However, physicists and chemists in-
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dependently were led to study similar mathematical abstractions, [3,4]. For

recent survey, see [5]. Since the 1980ties many versions of partition functions

(aka Potts models, Ising models, Jones polynomial) found applications in

fields as diverse as statistical mechanics, chemical graph theory, knot theory,

biology and the mathematics of finance.

In their landmark paper [6] F. Jaeger, D.L. Vertigan and D.J.A. Welsh

analyzed the complexity of the Tutte and Jones polynomials. Given a point

in the complex plane a they looked at the complex valued graph parameter

Ta(−) defined by the evaluation T (−; a) of the Tutte polynomial at the

point a.

The Tutte polynomial is a special case of a graph polynomial, a functor

which associates with a graph G = (V,E) a polynomial in a polynomial

ring R which is invariant under graph isomorphisms.

Let R be a sub-field of the complex numbers C. Let P (G;X) be a

graph polynomial in the indeterminates X1, . . . , Xn with coefficients in R.

For a ∈ Rn, P (−; a) is a graph invariant taking values in R. We could

restrict the graphs to be from a class (graph property) C of graphs.

We are interested in the complexity of computing P (−; a) for graphs

from C. If for all graphs G ∈ C the value of P (−; a) is a graph invariant tak-

ing values in N, we can work in the Turing model of computation. Otherwise

we identify the graph G with its adjacency matrix MG, and we work in the

Blum-Shub-Smale (BSS) model of computation, mostly over the complex

numbers C.

We take our inspiration from the classical result of F. Jaeger and D.L.

Vertigan and D.J.A. Welsh on the complexity of evaluations of the Tutte

polynomial, [6]. They show:

• either evaluation at a point (a, b) ∈ C2 is polynomial time com-

putable in the Turing model, and (a, b) lies in some quasi-algebraic

set of dimension 1,

• or some ]P-complete problem is reducible to the evaluation at

(a, b) ∈ C2.

• To stay in the Turing model of computation, they assume that

(a, b) is in some finite dimensional extension of the field Q.

The proof of the second part is hybrid in its nature: The reduction is more

naturally placed in the BSS model of computation, However, although there

are various analogues for ]P in BSS, cf. [7–10] there seemed to be no coun-

terpart for ]P-completeness in the BSS model suitable for graph polynomi-

als. In [7,8] what is proposed as ]P for BSS counts the zeros of a polynomial,
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in case this is finite. Nevertheless, we think it more natural to work entirely

in the BSS model of computation, and we will propose a new framework

based on evaluations of polynomials rather than on counting zeros.

This paper is a first step towards a more general theory. First we for-

mulate the situation described above for the Tutte polynomial entirely in

the BSS model of computation over the complex numbers C.

We use the framework of SOL-polynomials introduced in [11]. SOL-

polynomials form a large class of graph polynomials, which are in a pre-

cise sense definable in Second Order Logic. These are then used to define

the class SOLEVALC of graph parameters which are evaluations of SOL-

polynomials in C. The class SOLEVALC will serve as the previously missing

counterpart for ]P in the BSS model. We then investigate to what extent

the Tutte polynomial is typical and formulate several versions of “Diffi-

cult Evaluation Properties” and “Difficult Point Properties” (DPP). We

examine many cases from the literature where these “Difficult Evaluation

Properties” hold. Finally, we formulate several conjectures.

The value of the paper is mostly conceptual. It puts complexity ques-

tions of graph polynomials into a uniform framework which allows to com-

pare results scattered in the literature. But last but not least, it opens new

avenues of research.

We assume the reader is vaguely familiar with the BSS-model of com-

putation, cf. [12], and with the basic of complexity of counting, cf. [13,14].

2. The complexity of graph parameters with values in C

2.1. Valiant’s counting functions and their Turing

complexity

L. Valiant in [15] introduced the counting complexity class ]P which has

complete problems with respect to polynomial time Turing reductions. Typ-

ical ]P-complete problems are the number of 3-colorings of a graph or the

number of perfect matchings. Degrees are equivalence classes of decision

problems or counting problems with respect to P-time Turing reducibil-

ity. Ladner’s Theorem asserts that, assuming P 6= NP, for every degree

[g] ∈ NP−P there is [g′] ∈ NP−P with [g′] < [g], [16–18]. It seems to be

folklore that the same holds also, if we replace NP by ]P and P by FP.

2.2. Graph parameters in the BSS-model

We define the framework for graph parameters in the BSS model over some

sub-field R of the complex numbers C. When we get more specific R will be
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C. A graph invariant or graph parameter is a function f :
⋃
n{0, 1}n×n → R

which is invariant under permutations of columns and rows of the input ad-

jacency matrix. Graph invariants include decision problems. A graph trans-

formation is a function T :
⋃
n{0, 1}n×n →

⋃
n{0, 1}n×n which is invari-

ant under permutations of columns and rows of the input adjacency ma-

trix. The BSS-P-time computable functions over R, FPR are the functions

f : {0, 1}n×n → R BSS-computable in time O(nc) for some fixed c ∈ N.

Let f1, f2 be graph invariants. f1 is BSS-P-time reducible to f2, f1 ≤P f2
if there are BSS-P-time computable functions T and F such that

(i) T is a graph transformation ;

(ii) For all graphs G with adjacency matrix MG we have

f1(MG) = F (f2(T (MG)))

Two graph invariants f1, f2 are BSS-P-time equivalent over R, f1 ∼R f2,

if f1 ≤R f2 and f2 ≤R f1.

2.3. Cones and degrees

The BSS model over a ring R deals traditionally with decision problems

where the input is an R-vector. A function f maps R-vectors into R. There

is a decision problem associated with f : Given X is it true that f(X) = a.

In the study of graph polynomials decision problems and functions have as

input (0, 1)-matrices and the decision problems and functions have to be

graph invariants.

We denote by FEXPC the set of functions computable in time 2O(nc) in

the BSS-model over C. If c = 1 we write FEC and speak of simple exponen-

tial time. FPC are the functions computable in polynomial time. Let g, g′ be

two graph parameters in FEXPC. We denote by [g]R the equivalence class

(BSS-degree) of all graph parameters g′ ∈ EXPR under the equivalence

relation ∼R. Analogously, [g]T denotes the corresponding equivalence class

in the Turing model of computations. We denote by 〈g〉R the class (BSS-

cone) {g′ ∈ FEXPR : g ≤R g′}. There are BSS-NP-complete problems for

all R under consideration here, and instead of specifying them, we consider

the complete problems in NPR to be a degree (which may vary with the

choice of the Ring R). The cone of an NP-complete problem forms the

NP-hard problems. There is no well developed theory of degrees and cones

for functions, especially for graph parameters, in the BSS model.

G. Malajovich and K. Meer proved an analogue of Ladner’s Theorem

for decision problems in the BSS-model over C. Iterating their argument,
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one gets:

Theorem 2.1. (G. Malajovich and K. Meer) Assume PC 6= NPC.

Then for every degree [g] ∈ NPC − PC there is [g′] ∈ NPC − PC with

[g′] < [g].

Note that the corresponding result over the reals R or any other field R is

not known to hold, cf. [19].

2.4. Discrete counting in BSS

K. Meer in [7] introduced an analogue of ]P for discrete counting in the

BSS model over R. In [20] a first attempt of studying graph polynomials in

the BSS model is discussed.

The definitions from [7] can easily be extended to the BSS model over C.

Let us look at counting functions, i.e., functions f : C∞ → N ∪ {∞}. For a

complexity class of functions FC we denote by FCcount the class of counting

functions in FC. Such a function f is in ]PC if there exists a polynomial

time BSS-machine over C and a polynomial q such that

f(y) = |{z ∈ Cq(size(y) : M(y, z) accepts }|

It is not difficult to see, cf. [7], that

FPcountR ⊆ ]PR ⊆ FER

for every sub-field R of C. Typical examples from [7] over the reals R are

counting zeroes of multivariate polynomials of degree at most 4 (]4−FEAS)

or counting the number of sign changes of a sequence of real numbers (]SC).

Over the complex numbers also the number of k-colorings of a graph is

in ]PC for fixed k. To see this, we associate with a graph G = (V,E) with

V = {1, . . . , n} = [n] the following set Ekcolor(G) of equations:

(i) xki − 1 = 0, i ∈ [n]

(ii)
∑k−1
d=0 x

k−1−d
i xdj = 0, for all (i, j) ∈ E.

Clearly, Ekcolor(G) has at most kn many complex solutions. Now, D.A. Beyer

in his Ph.D. thesis, [21], observed that

Proposition 2.1. (D. Beyer) A graph G is k-colorable iff Ekcolor(G) has a

complex solution, and each solution corresponds exactly to proper k-coloring

of G.
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This also shows that for fixed k deciding k-colorability is in NPC. However,

it seems unlikely that it is NPC-hard, because of the very special form of

the equations involved. For further discussion, cf. [22].

In S. Margulies’ Ph.D. thesis, [23, Chapter 2] the following is shown:

Theorem 2.2. (S. Margulies) Every decision problem in NP (in the

Turing model) can be encoded as solvability problem of sets of equations

over C.

Using the fact that ]SAT is ]P complete we get:

Theorem 2.3. Every function f ∈ ]P (in the Turing model) has an en-

coding in ]PC (in the BSS model).

In particular we can place the permanent and Hamiltonian functions in the

BSS model over C. These functions are usually studied in Valiant’s theory

of algebraic circuits, cf. [24].

Corollary 2.1. The functions per and ham of (0, 1) matrices are in ]PC.

2.5. The difficult counting hypothesis (DCH)

There are very few explicit ]PC-complete problems in the literature. The

paper [25] shows that the computation of the Euler characteristic of an affine

or projective complex variety is complete in this class for Turing reductions

in the BSS-model of computation. But there are no explicit ]PC-complete

problems in graph theory which correspond to problems which are in ]P-

complete problems in the Turing model of computation. This is due to the

fact that counting discrete solution sets of polynomial equations does not

correspond to solvability in a parsimonious way. However, some problems in

]PC are NPC-hard, because a set of polynomial equations is solvable if the

number of solutions in the above sense is different from 0 but may be ∞.

Solvability of systems of polynomial equations is NPC-complete. It might

not be too difficult to construct artificilly problems which are ]PC-complete.

However, k-colorability as expressed by a set of equations is unlikely

to be NPC-hard, because of the special form of the equations. Therefore,

also counting the number of colorings is not known to be NPC-hard in the

BSS-model. On the other hand, it would be truly surprising if counting the

number of k-colorings were in FPcountC .

We therefore formulate the following two complexity hypotheses for the

BSS model over C:
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Strong difficult counting hypothesis (SDCH)

Every counting function in f ∈ ]PC with discrete input which is

]P-hard in the Turing model is NPC-hard in the BSS model over

C.

and

Weak difficult counting hypothesis (WDCH)

A counting function in f ∈ ]PC which is ]P-hard in the Turing

model cannot be in FPcountC .

The following is easy to see:

Proposition 2.2. Assume PC 6= NPC. Then SDCH implies WDCH.

2.6. Evaluations of graph polynomials over C

Let C be a graph property. Let P (G;X) be a graph polynomial with inde-

terminates X1, . . . , Xm. We define

EASYC(P, C) = {a ∈ Cn : P (−; a) ∈ FPC}

and

HARDC(P, C) = {a ∈ Cn : P (−; a) is NPC − hard}

Let f be a counting function not in FPcountC or a decision problem not in

PC.

f −HARDC(P, C) = {a ∈ Cn : P (−; a) ∈ 〈f〉C}

We omit C if C is the class of all finite graphs.

Clearly, if SDCH is true and f is ]P-complete in the Turing model then

f −HARDC(P, C) = HARDC(P, C).

How can we describe EASYC(P, C) and HARDC(P, C)?

3. Case studies: Three graph polynomials

3.1. The chromatic polynomial and its complexity

Let G = (V (G), E(G)) be a graph, and λ ∈ N.

A proper λ-vertex-coloring is a map c : V (G) → [λ] such that (u, v) ∈
E(G) implies that c(u) 6= c(v). Let χ(G,λ) be the number of proper

λ-vertex-colorings. Hundred years ago in 1912, G. Birkhoff showed that

χ(G,λ) is a polynomial in Z[λ]. Henceforth we treat χ(G,λ) as a polynomial
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over C and consider also evaluations of λ for arbitrary complex numbers.

χ(G,λ) is called the chromatic polynomial of G. In 1973, R. Stanley showed

that for simple graphs G, | χ(G,−1) | counts the number of acyclic ori-

entations of G. These classical results can be found in many monographs,

e.g., [26–28].

For fixed a ∈ C we define the graph parameter χa(G) and look at

its complexity as a function of G. We follow [29]. There are three values

a = 0, 1, 2 for which χa(G) can be computed in polynomial time both in

the Turing model and in the BSS-model of computation. Furthermore, for

χ3(G) and χ−1(G) are ]P-complete in the Turing model of computation.

Let G1 ./ G2 denote the join of two graphs. We observe that

χ(G ./ Kn, λ) = (λ)n · χ(G,λ− n) (?)

From this we get

(i) χ(G ./ K1, 4) = 4 · χ(G, 3)

(ii) χ(G ./ Kn, 3 + n) = (n + 3)n · χ(G, 3), hence for n ∈ N with n ≥ 3 it

is ]P-complete.

Here xn = x · (x− 1) · . . . · (x−n+ 1). These reductions work in the Turing

model for λ in some Turing-computable field extending Q. The reductions

also work in BSS if performed directly on the graph parameters, and not

on the equivalent problem of solvability of the equations Ekcolor(G).

If we have an oracle for some q ∈ Q − N which allows us to compute

χq(G) we can compute χ(G, q′) for any q′ ∈ Q as follows:

Algorithm A(q, q′, | V (G) |):

(i) Given G the degree of χ(G, q) is at most n =| V (G) |.
(ii) Use the oracle and (?) to compute n+ 1 values of χ(G,λ).

(iii) Using Lagrange interpolation we can compute χ(G, q′) in polynomial

time.

We note that this algorithm is purely algebraic and works for all graphs G,

q ∈ (F )− N and q′ ∈ F for any field F extending Q.

Hence we get that for all q1, q2 ∈ C − N the graph parameters are

polynomially reducible to each other.

Furthermore, for 3 ≤ i ≤ j ∈ N, χ(G, i) is reducible to χ(G, j). This

now works in the BSS-model over C.

3.2. Dichotomy of the difficulty of evaluations

We summarize the situation for the chromatic polynomial as follows:
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(i) EASYC(χ) = {0, 1, 2}
(ii) The remaining cases can be divided into those points a ∈ C where

χa(G) is both in ]P and ]PC, and into those points a for which there

is no counting interpretation.

(iii) In the Turing model the degrees of χ3(G) and χ−1(G) are the same,

because both are in ]P and they are ]P-complete.

(iv) In BSS over C we only get that [χ3] ≤ [χ−1]

(v) If we had [χ3] = [χ−1] then χ3HARD would consist of all the χa with

a 6= 0, 1, 2. Under SDCH these would indeed be NPC-hard. Under

WDCH it would be different from EASYC(χ).

(vi) Among the graph parameters χa(G) : a ∈ C, either all are in

EASYC(χ) or there is smallest degree, namely [χ3(G)] which is not

easy. In other words, Ladner’s theorem does not hold for the evalua-

tions of the chromatic polynomial, and, assuming that [χ3(G)] 6∈ FPC,

[χ3(G)] is a minimal degree.

(vii) It is conceivable that in BSS over C we have

[χ3(G)] < [χ4(G)] < . . . < [χj(G)] < . . . < [χ−1(G)] = [χa(G) : a ∈ C− N]

We have a Dichotomy Theorem for the evaluations of χ(−, λ):

(i) EASYC(χ) = {0, 1, 2} is a quasi-algebraic set (a finite Boolean com-

bination of algebraic sets) of dimension 0.

(ii) All other evaluations are at least as difficult as χ3(G), which is a

quasi-algebraic set of dimension 1.

(iii) Under the assumption of SDCH we get the dichotomy that all eval-

uations of χ(G, x) are either in EASYC(χ) or in HARDC(χ).

(iv) Under the assumption of WDCH we get the dichotomy that all eval-

uations of χ(G, x) are either in EASYC(χ) or in χ3 −HARDC(χ).

3.3. The complexity of the Tutte and the cover polynomial

The Tutte polynomial T (G,X, Y ) is a bivariate polynomial and χ(G,λ) ≤P
T (G, 1 − λ, 0). For our discussion here the exact definition of the Tutte

polynomial is not needed. A good reference is [30, Chapter 10].

We have the following dichotomy theorem:

(i) EASYC(T ) = H ∪ Except, where H = {(x, y) ∈ C2 : (x − 1)(y −
1) = 1} and Except contains the points (0, 0), (1, 1), (−1,−1), (0,−1),

(−1, 0), (i,−i), (−i, i), (j, j2), (j2, j) where j = e
2πi
3 . This is a quasi-

algebraic set of dimension 1.
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(ii) For all other points a ∈ C2 evaluating the Tutte polynomial is at least

as hard as T (G,−2, 0). This is a quasi-algebraic set of dimension 2.

(iii) Furthermore there is a most difficult evaluation point in Ahard ∈ C2

and most evaluation points are in the degree of Ahard.

(iv) As in the case of the chromatic polynomial, one can use the WDCH

or SDCH to sharpen the dichotomy.

The cover polynomial C(D;X,Y ) is a bivariate graph polynomial for

digraphs D which was introduced by F.R.K. Chung and R.L. Graham, [31].

Its complexity was studied in [32] and again follows the same pattern.

(i) EASYC(C) = {(0, 0), (0,−1), (1,−1)}. This is a quasi-algebraic set of

dimension 0.

(ii) For all other points a ∈ C2 evaluating the cover polynomial is at least

as hard as C(D; 0, 1) or C(D; 1, 0). This is a quasi-algebraic set of

dimension 2.

(iii) Again there is also a hardest evaluation point.

Note that C(D, 0, 1) is the permanent of the adjacency matrix of D and

C(D, 1, 0) counts the number of Hamiltonian paths of D. Both these evalu-

ations are ]P-complete in the Turing model. At the moment it is not clear

to us which of them is reducible to the other in BSS over C.

3.4. Lessons learned from the case study

In the introduction we proposed to study the complexity of graph param-

eters in the framework of BSS. Graph parameters are often integer valued,

but there are many cases which may have values in Q,R or C, in particu-

lar graph parameters of weighted graphs. To include all the cases from the

literature we chose to deal with case of complex valued graph parameters.

In particular our graph parameters are functions in FEXPC. We adapted

the notions of P-time reducibility of BSS to functions in FEXPC and to

graph parameters in particular. The degree structure of FEXPC under P-

time reducibility is not well understood. At the lowest end we have the

functions FPC. A typical NPC-hard problem is the solvability of polyno-

mial equations, which can be coded as a graph parameter of a hyper-edge

weighted hyper-graph which reflects the structure of the polynomial equa-

tions. Therefore some graph parameters are NPC-hard. However, the exact

complexity of most graph parameters in the BSS model over C is not known,

even under the Difficult Counting Hypotheses SDCH and WDCH.

We have shown that ]PC does capture surprisingly well the classical
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counting problems ]SAT and the like. However, it has the disadvantage of

allowing only values in N or the value ∞. What we need is an extension of

]P of the Turing model in BSS over C which takes arbitrary values in C.

S. Toda’s Theorem states that decision problems in P]P contain the whole

polynomial hierarchy PH, cf. [14], or equivalently all the decision problems

definable in Second Order Logic, cf. [33]. These consideration lead us to the

introduction of the class SOLEVALC of graph parameters as a substitute

for ]P of the Turing model.

4. The complexity class SOLEVAL

The class of functions in ]PC has the disadvantage that it counts only the

number of solutions of polynomial equations provided this number is finite.

Evaluating the chromatic polynomial at an irrational point is therefore

not expected to be in ]PC. We now propose a complexity class for graph

parameters, SOLEVALR which is better suited to study the complexity

of graph parameters with real or complex values, than generalizations of

counting complexity classes.

Our class SOLEVALR contains virtually all graph parameters from

standard graph theory books. But it is not difficult to come up with natural

candidates for counting problems not in SOLEVALR: The game of HEX

played on graphs with two disjoint unary predicates on vertices comes to

mind. Deciding winning positions is PSpace-complete, cf. [34,35]. There-

fore counting the winning strategies is not in SOLEVAL unless PSpace

coincides with the polynomial hierarchy in the Turing model.

In [11] the class of graph parameters definable in Second Order Logic

(SOL) was introduced. Roughly speaking these are graph polynomials

where summation and products are allowed to range over first order or

second order variables of formulas in SOL. For the full definition we refer

to [11] but we give a few illustrative examples.

Example 4.1. (The independence polynomial) Let ind(G, i) denote

the number of independent sets of size i of a graph G. The graph polynomial

ind(G,X) =
∑
i ind(G, i) ·Xi, can be written also as

ind(G,X) =
∑

I⊆V (G)

∏
v∈I

X

where I ranges over all independent sets of G and v ranges over all elements

in I. To be an independent set is definable by a formula of SOL in the

vocabulary of graphs.
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Example 4.2. (The chromatic number) The chromatic number χ(G)

of a graph G is the smallest k ∈ N such that χ(G; k) 6= 0. We can represent

χ(G) as the evaluation of the polynomial
∑
v∈C:φ(v,C)X where φ(v, C) is

the formula

C(v) ∧ ψcoloring(C) ∧ (∀C ′(ψcoloring(C ′)→ ψinject(C,C
′)))

where

(i) ψcoloring(C) says that “there is a function f : V (G) → C which is a

proper coloring”.

(ii) ψinject(C,C
′) says that “there is an injective function s : C → C ′”

Here the vocabulary of graphs is augmented by a unary predicate C, but

the polynomial is independent of the the interpretation of C.

A simple SOL-polynomial p(G,X) is a polynomial of the form

p(G,X) =
∑

A:A⊆V (G):φ(A)

∏
v:ψ(v)

X

where A ranges over all subsets of V (G) satisfying φ(A) and v ranges over

all elements of V (G) satisfying ψ. Both formulas φ and ψ are SOL-formulas,

but summation be be over first and second order variables, while products

are only over first order variables.

For the general case

• One allows several indeterminates X1, . . . , Xt.

• One allows summation over relations S ⊆ V (G)k of any fixed arity k

rather than over sets.

• Instead of the standard monomials other bases of monomials can be

used. For example, in the case of one indeterminate Xn could be re-

place by
(
X
n

)
or the falling factorials Xn.

• One gives an inductive definition.

• One allows arbitrary finite relational vocabularies and is not restricted

to the vocabulary of graphs.

• In some applications one looks at graphs with a linear order on the

vertices, but one requires the definition to be invariant under the or-

dering, i.e., different orderings still give the same polynomial.

The general case includes the chromatic polynomial, the Tutte polynomial

and its variations, the cover polynomial, and virtually all graph polynomials

from the literature. We shall see more examples in the sequel.

Proposition 4.1. For every field R we have
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(i) SOLEVALR ⊆ FEXPR.

(ii) If f ∈ ]P in the Turing model, then f ∈ SOLEVALR.

Sketch. (i) is shown by induction on the defining formulas. (ii) follows

from Fagin’s characterization of NP in the Turing model as the problems

definable in existential SOL, cf. [33].

5. Degrees of evaluations

Ultimately one wants to study the structure of the degrees in SOLEVALR
for various sub-fields of C. Is there a maximal degree in SOLEVALR, in

other words, does it have complete graph parameters? Does it contain in-

teresting sub-hierarchies?

Here we set ourselves a more moderate task. We start a general inves-

tigation of the degree structure of the evaluations of a fixed (set of) graph

polynomial(s).

Let P be a family of SOL-polynomials. If P = {F} is a singleton, we

omit the set brackets. For a sub-field R ⊆ C we denote by EVALR(P) the

set of graph parameters which are evaluations of polynomials in P over R.

If P consists of all SOL-polynomials, we denote it by SOLEVALR.

5.1. The partial order of the degrees

If F (G : X) is a a SOL-polynomial in n indeterminates X = (X1, . . . , Xn)

we can partially pre-order its evaluations points a ∈ Cn by the partial

pre-order of the degrees of evaluating F (G, a). So we write [a]F for the

degree of F (G, a). What interest us is the partial order one gets by taking

the quotient of the pre-order with respect to the equivalence relation of

polynomial time bi-reducibility.

Example 5.1. The quotient order on EVAL(χ) of the chromatic polyno-

mial is discrete and linear with FPC as its first element and [χ(G : −1)] as

its last element.

Example 5.2. The quotient order on EVAL(T ) of the Tutte polynomial

consists of one element, or it has a minimal element above FPC and a

maximal element. The case of the cover polynomial is similar.

5.2. Difficult points are dense

Another way of studying the complexity of EVAL(F ) for a particular SOL-

polynomial in n indeterminates is topological.
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Theorem 5.1. Let R be a sub-field of C which is a metric space. Let

F (G;X) be a SOL-polynomial such that for some a ∈ Cn the graph

parameter F (G; a) 6∈ FPR. Then the set of difficult evaluation points

EVAL(F )R − FPR is dense in R.

Sketch. Assume there is a neighborhood U where all evaluation points are

in FPR. So we can compute in polynomial time enough values of F (G, x) to

use multi-dimensional Lagrange interpolation and compute the coefficients

of F (G, x). But then all evaluations of F (G, a) are in FPR.

In the examples so far more is true:

Example 5.3. The evaluations of the maximal degree of EVAL(χ)R are

dense in R.

Example 5.4. The evaluations of the maximal degree of EVAL(T )R are

dense in R2.

Theorem 5.2. Let F be a SOL-polynomial in n indeterminates. Assume

there is an open set U ⊆ Cn and a point A ∈ Cn such that for all b ∈ U
the degree [b]F ≤ [a]F . Then [a]F is a maximal degree in EVAL(F )C.

Sketch. The previous proof still works, since [a]F is closed under polyno-

mial reductions and computations.

6. The difficult point property

Given a graph polynomial F (G,X) in n indeterminates X1, . . . , Xn we are

interested in the set EASYC(F ).

We say that F has the weak difficult point property (WDPP) if

(i) there is a quasi-algebraic subset A ⊂ Cn of dimension ≤ n − 1 which

contains EASYC(F ), and

(ii) there exists finitely many ai : i ≤ α ∈ N such that for each b ∈ Cn −A
the evaluation F (G, b) is F (G, ai)−HARDC for some ai ∈ Cn and for

all i ≤ α the evaluation F (G, ai) is not in FPC.

We say that F has the strong difficult point property (SDPP) if WDPP

holds for F with A = EASYC(F ).

Without the requirement that A has a small dimension the SDPP is a

dichotomy property, in the sense that every evaluation point is either easy

or at least as hard as one of the evaluations at ai, i ≤ α. The two versions,
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WDPP and SDPP, have a quantitative aspect: The set of easy points is

rare in a strong sense: they are in a quasi-algebraic set of lower dimension.

Again the Difficult Counting Hypotheses WDCH and SDCH can be

used to sharpen both Difficult Point Properties.

7. Examples for the WDPP and SDPP

In the discussion of the examples in this section we assume the Weak Diffi-

cult Counting Hypothesis WDCaH. We have seen in the case study, that

the chromatic polynomial χ(G;λ) and the Tutte polynomial T (G;X,Y )

both have the SDPP with α = 1 and the cover polynomial C(D;X,Y ) has

the SDPP with α = 2.

7.1. The Bollobás-Riordan polynomials

The Bollobás-Riordan polynomial is a generalization of the Tutte polyno-

mial for graphs with colored edges colored with k colors, [36]. It has 4k

many indeterminates. Its complexity was studied in [37,38], where it was

shown that it satisfies WDPP.

7.2. The interlace polynomials

The interlace polynomial was introduced and intensively studied in [39–43].

It is a polynomial in two indeterminates. It complexity was studied in [44,45]

where it was shown that it satisfies the WDPP.

7.3. Counting weighted homomorphisms aka partition

functions

Let A ∈ Cn×n be a complex, symmetric matrix, and let G be a graph. Let

ZA(G) =
∑

σ:V (G)→[n]

∏
(v,w)∈E(G)

Aσ(v),σ(w)

ZA is called a partition function.

If X is the matrix (Xi,j)i,j≤n of indeterminates, then ZX is a graph

polynomial in n2 indeterminates, and ZA is an evaluation of ZX. i

Partition functions have their origin in statistical mechanics and have

a very rich literature. In [46] a characterization is given of all multiplica-

tive graph parameters which can be presented as partition functions. The

complexity of partition functions was studied in a series of papers, [47–50].
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Jin-yi Cai, Xi Chen and Pinyan Lu, [50], building on [47] proved a di-

chotomy theorem for ZX where R = C. Analyzing their proofs reveals that

ZX satisfies the SDPP for R = C.

There are various generalizations of this to Hermitian matrices, cf. [51],

and beyond.

7.4. Generalized colorings

Let f : V (G) → [k] be a coloring of the vertices of G = (V (G), E(G)).

We look at variations of coloring properties which have been defined in the

literature, cf. [11].

(i) f is proper if (uv) ∈ E(G) implies that f(u) 6= f(v). In other words

if for every i ∈ [k] the counter-image [f−1(i)] induces an independent

set. These are the usual colorings.

(ii) f is convex if for every i ∈ [k] the counter-image [f−1(i)] induces a

connected graph, cf. [52].

(iii) f is t-improper if for every i ∈ [k] the counter-image [f−1(i)] induces a

graph of maximal degree t. For its origins and history cf. [53].

(iv) f is H-free if for every i ∈ [k] the counter-image [f−1(i)] induces an

H-free graph. For its origins and history cf. [54].

(v) f is acyclic if for every i, j ∈ [k] the union [f−1(i)] ∪ [f−1(i)] induces

an acyclic graph, [55].

The following was shown in [11,56]:

Theorem 7.1. For all the above properties, counting the number of color-

ings is a polynomial in k.

7.5. More cases where SDPP holds

SDPP was verified for

(i) the cover polynomial C(G;x, y) introduced in [31] in [57,58].

(ii) the bivariate matching polynomial for multi-graphs defined first in [4]

in [59,60].

(iii) The first two authors have also verified it for the graph polynomials

for convex colorings, for t-improper colorings (for multi-graphs), for

acyclic colorings, and the bivariate chromatic polynomial introduced

by K. Döhmen, A. Pönitz and P. Tittman in [61].

(iv) More cases can be found in the Ph.D. Theses of I. Averbouch and the

first author [62,63] and in [64,65].
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C. Hoffmann’s PhD thesis [66] contains a general sufficient criterion

which allows to establish the WDPP for a wide class of (artificially

defined) graph polynomials. Unfortunately, this method does not apply

in most concrete cases of generalized chromatic polynomials discovered

using the methods of [11].

Problem 7.1. Characterize the graphs H for which the evaluation of the

graph polynomial of H-free colorings with k colors satisfies SDPP or

WDPP.

8. Conclusion, conjectures and open problems

The purpose of this paper was to promote the study of graph parameters

in BSS over C by formulating and illustrating the framework and formu-

lating some conjectures. In particular we want to renew interest in Meer’s

approach to counting problems over some field. In [7,67,68] the authors

studied definability questions but did not study complexity and the de-

grees of polynomial time reducibility.

It turns out that Meer’s definition of ]P in BSS adapted to the complex

case, is richer than originally assumed. By translating graph properties into

polynomial equations we showed that every problem in ]P in the Turing

model is also in ]PC. However, the degree structure of ]PC remains unclear.

Problem 8.1. Does ]PC have complete problems?

Even the complexity of classically difficult problems seems unresolved.

For example it is not clear whether 3-colorability is NPC-hard or whether

evaluating the chromatic polynomial at the point −1 is really more difficult

than evaluating at the point 3. Similarly, it is not known whether counting

the number of perfect matchings or of Hamiltonian paths are of the same

difficulty or even comparable. The latter is particularly unsettling, since

in Valiant’s theory of algebraic circuits computing the Hamiltonian of a

matrix and computing the permanent are of the same difficulty (namely

VNP-complete).

Problem 8.2. What can we say in BSS over C about the four graph pa-

rameters

(i) χ3(G), χ−1(G),

(ii) ]pm(G), which counts the number of perfect matchings, and

(iii) ]ham(G) which counts the number of Hamiltonian paths?
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Are they NPC hard? Are they mutually equally hard?

As a more suitable complexity class for the study of graph polynomials

and graph parameters we introduced the class SOLEVALC.

Problem 8.3. Does SOLEVALC have complete problems? More generally

what is the structure of the PC-degrees of SOLEVALC?

By translating the results on the complexity of the Tutte polynomial

into the BSS model over C we were able to identify the open problems the

solution of which are needed to draw a complete picture.

Let us conclude with a few conjectures in BSS over C:

Conjecture 8.1. (Difficulty of Counting)

(i) WDCH is true.

(ii) SDCH is false

Conjecture 8.2. (Difficulty Point Property)

For every SOL polynomial F in n indeterminates the following holds:

(i) There is a maximal degree [a]max in EVAL(F )C. Furthermore, the eval-

uation points in [a]max form a quasi-algebraic set of dimension n.

(ii) Either EVAL(F )C − FPC = ∅ or it has a minimal degree.

(iii) EVAL(F )C ∩ FPC is quasi-algebraic of dimension ≤ n− 1.

This conjecture is stronger that SDPP. In SDPP we stipulate that

there are finitely many minimal degrees in EVAL(F )C−FPC . In Conjecture

8.2 we require that there is only one such degree. The Strong Difficult

Counting Hypothesis SDCH would imply that this minimal degree is at

least NPC-hard. We could actually strengthen Conjecture 8.2 by requiring

that there is exactly one degree in EVAL(F )C − FPC . But in the light of

conjecture 8.1 this seems like going too far.
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32. M. Bläser and H. Dell, Complexity of the cover polynomial, in Automata,

Languages and Programming, ICALP 2007 , eds. L. Arge, C. Cachin, T. Ju-
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