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Preface

This is a very preliminary and incomplete draft of the forthcoming textbook
on tropical geometry by Diane Maclagan and Bernd Sturmfels. Besides the
visible gaps, there are certainly still plenty of mistakes. We will greatly
appreciate all of your comments and questions. Please send us an e-mail to
D.Maclagan@warwick.ac.uk with a copy to bernd@math.berkeley.edu. In
your e-mail, please include the date you see on the title page of this version.

Tropical geometry is a rapidly expanding field, and only a small selection
of topics can be covered in an introductory book. In this text we focus on the
study of tropical varieties that arise from classical algebraic varieties. Our
approach is primarily algebraic and combinatorial. The study of tropical ge-
ometry as an intrinsic geometry in its own right will appear in the book by
Grisha Mikhalkin [Mik]. We also give less coverage to those topics that have
already received a book exposition elsewhere, such as the use of tropical meth-
ods in enumerative and real algebraic geometry [IMS07], and applications of
the min-plus semiring in the sciences and engineering [BCOQ92, PS05].

This book is intended to be suitable for a class on tropical geometry for
beginning graduate students in mathematics. We have attempted to make
the first part of the book (Chapters 1–5) accessible to readers with a minimal
background in algebraic geometry, say, at the level of the undergraduate text
book Ideals, Varieties, and Algorithms by Cox, Little, and O’Shea [CLO07].

Later chapters will demand more mathematical maturity and expertise.
For instance, Chapter 6 relates tropical geometry to toric geometry, and it
will help to have acquaintance with toric varieties, for instance, from having
read Fulton’s book [Ful93]. Likewise, readers of Chapter 7 will benefit from
having had plenty of hands-on experience with Gröbner bases and resultants.

A one-semester course could be based on the first four chapters, plus se-
lected topics from the later chapters. Covering the entire book would require
a two semester course, or an exceptionally well-prepared group of students.
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Chapter 1

Introduction

In tropical algebra, the sum of two numbers is their minimum and the product
of two number is their product. This algebraic structure is known as the
tropical semiring or as the min-plus algebra. With minimum replaced by
maximum we get the isomorphic max-plus algebra. The adjective “tropical”
was coined by French mathematicians, notably Jean-Eric Pin [Pin98], to
honor their Brazilian colleague Imre Simon [Sim88], who pioneered the use
of min-plus algebra in optimization theory. There is no deeper meaning in
the adjective “tropical”. It simply stands for the French view of Brazil.

The origins of algebraic geometry lie in the study of zero sets of sys-
tems of multivariate polynomials. These objects are algebraic varieties, and
they include familiar examples such as plane curves and surfaces in three-
dimensional space. It makes perfect sense to define polynomials and rational
functions over the tropical semiring. The functions they define are piecewise-
linear. Also, algebraic varieties can be defined in the tropical setting. They
are now subsets of Rn that are composed of convex polyhedra. Thus, tropical
algebraic geometry is a piecewise-linear version of algebraic geometry.

This introductory chapter offers an invitation to tropical mathematics.
We present the basic concepts concerning the tropical semiring, we discuss
some of the historical origins of tropical geometry, and we show by way of
elementary examples how tropical methods can be used to solve problems
in algebra, geometry and combinatorics. Proofs, precise definitions, and the
general theory will be postponed to later chapters. Our primary objective
here is to show the reader that the tropical approach is both useful and fun.

9
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1.1 Arithmetic

Our basic object of study is the tropical semiring (R ∪ {∞},⊕,�). As
a set this is just the real numbers R, together with an extra element ∞
which represents infinity. In this semiring, the basic arithmetic operations of
addition and multiplication of real numbers are redefined as follows:

x ⊕ y := min(x, y) and x � y := x+ y.

In words, the tropical sum of two numbers is their minimum, and the tropical
product of two numbers is their usual sum. Here are some examples of how
to do arithmetic in this exotic number system. The tropical sum of 4 and 9
is 4. The tropical product of 4 and 9 equals 13. We write this as follows:

4 ⊕ 9 = 4 and 4 � 9 = 13.

Many of the familiar axioms of arithmetic remain valid in tropical math-
ematics. For instance, both addition and multiplication are commutative:

x ⊕ y = y ⊕ x and x � y = y � x.

These two arithmetic operations are also associative, and the times operator
� takes precedence when plus ⊕ and times � occur in the same expression.

The distributive law holds for tropical addition and multiplication:

x � (y ⊕ z) = x � y ⊕ x� z.

Here is a numerical example to show distributivity:

3 � (7 ⊕ 11) = 3� 7 = 10,

3 � 7 ⊕ 3 � 11 = 10 ⊕ 14 = 10.

Both arithmetic operations have a neutral element. Infinity is the neutral
element for addition and zero is the neutral element for multiplication:

x ⊕ ∞ = x and x � 0 = 0.

We also note the following identities involving the two neutral elements:

x � ∞ = ∞ and x ⊕ 0 =

{
0 if x ≥ 0,

x if x < 0.
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Elementary school students tend to prefer tropical arithmetic because the
multiplication table is easier to memorize, and even long division becomes
easy. Here is a tropical addition table and a tropical multiplication table:

⊕ 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 2 2 2 2 2 2
3 1 2 3 3 3 3 3
4 1 2 3 4 4 4 4
5 1 2 3 4 5 5 5
6 1 2 3 4 5 6 6
7 1 2 3 4 5 6 7

� 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12
6 7 8 9 10 11 12 13
7 8 9 10 11 12 13 14

An essential feature of tropical arithmetic is that there is no subtraction.
There is no real number x which we can call “13 minus 4” because the
equation 4 ⊕ x = 13 has no solution x at all. Tropical division is defined
to be classical subtraction, so (R ∪ {∞},⊕,⊗) satisfies all ring (and indeed
field) axioms except the existence of additive inverse. Such objects are called
semirings, whence the name tropical semiring.

It is extremely important to remember that “0” is the multiplicatively
neutral element. For instance, the tropical Pascal’s triangle looks like this:

0
0 0

0 0 0
0 0 0 0

0 0 0 0 0
· · · · · · · · · · · · · · · · · ·

The rows of Pascal’s triangle are the coefficients appearing in the Binomial
Theorem. For instance, the third row in the triangle represents the identity

(x⊕ y)3 = (x⊕ y)� (x⊕ y)� (x⊕ y)

= 0� x3 ⊕ 0� x2y ⊕ 0� xy2 ⊕ 0� y3.

Of course, the zero coefficients can be dropped in this identity:

(x⊕ y)3 = x3 ⊕ x2y ⊕ xy2 ⊕ y3.

Moreover, the Freshman’s Dream holds for all powers in tropical arithmetic:

(x⊕ y)3 = x3 ⊕ y3.
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The validity of the three displayed identities is easily verified by noting that
the following equations hold in classical arithmetic for all x, y ∈ R:

3 ·min{x, y} = min{3x, 2x+ y, x+ 2y, 3y} = min{3x, 3y}.

The linear algebra operations of adding and multiplying vectors and ma-
trices make perfect sense over the tropical semiring. For instance, the tropical
scalar product in R3 of a row vector with a column vector is the scalar

(u1, u2, u3)� (v1, v2, v3)
T = u1 � v1 ⊕ u2 � v2 ⊕ u3 � v3

= min
{
u1 + v1, u2 + v2, u3 + v3

}
.

Here is the product of a column vector and a row vector of length three:

(u1, u2, u3)
T � (v1, v2, v3)

=

u1 � v1 u1 � v2 u1 � v3

u2 � v1 u2 � v2 u2 � v3

u3 � v1 u3 � v2 u3 � v3

 =

u1 + v1 u1 + v2 u1 + v3

u2 + v1 u2 + v2 u2 + v3

u3 + v1 u3 + v2 u3 + v3

.
Any matrix which can be expressed as such a product has tropical rank one.

Here are a few more examples of arithmetic with vectors and matrices:

2� (3,−7, 6) = (5,−5, 8) , (∞, 0, 1)� (0, 1,∞)T = 1 ,(
3 3
0 7

)
⊕

(
4 1
5 2

)
=

(
3 1
0 2

)
and

(
3 3
0 7

)
�

(
4 1
5 2

)
=

(
7 4
4 1

)
.

If we are given a d×n-matrix A, then we might be interested in computing
its image, i.e. the set {A � x : x ∈ Rn}, and in solving the linear systems
A�x = b for various right hand sides b. We will discuss the relevant geometry
in Chapter 5. For an introduction to solving tropical linear systems, and to
engineering applications thereof, we recommend the book on Synchronization
and Linearity by Baccelli, Cohen, Olsder and Quadrat [BCOQ92].

Students of computer science and discrete mathematics may encounter
tropical matrix multiplication in algorithms for finding shortest paths in
graphs and networks. The general framework for such algorithms is known as
dynamic programming. We shall explore this connection in the next section.

Let x1, x2, . . . , xn be variables which represent elements in the tropical
semiring (R ∪ {∞},⊕,�). A monomial is any product of these variables,
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where repetition is allowed. Throughout this book, we generally allow nega-
tive integer exponents. By commutativity, we can sort the product and write
monomials in the usual notation, with the variables raised to exponents:

x2 � x1 � x3 � x1 � x4 � x2 � x3 � x2 = x2
1x

3
2x

2
3x4.

A monomial represents a function from Rn to R. When evaluating this
function in classical arithmetic, what we get is a linear function:

x2 + x1 + x3 + x1 + x4 + x2 + x3 + x2 = 2x1 + 3x2 + 2x3 + x4.

Remark 1.1.1. Every linear function with integer coefficients arises in this
way, so tropical monomials are precisely the linear functions with integer
coefficients.

A tropical polynomial is a finite linear combination of tropical monomials:

p(x1, . . . , xn) = a� xi1
1 x

i2
2 · · ·xin

n ⊕ b� xj1
1 x

j2
2 · · ·xjn

n ⊕ · · ·

Here the coefficients a, b, . . . are real numbers and the exponents i1, j1, . . . are
integers. Every tropical polynomial represents a function Rn → R. When
evaluating this function in classical arithmetic, what we get is the minimum
of a finite collection of linear functions, namely

p(x1, . . . , xn) = min
(
a+ i1x1 + · · ·+ inxn , b+ j1x1 + · · ·+ jnxn , . . .

)
This function p : Rn → R has the following three important properties:

• p is continuous,

• p is piecewise-linear, where the number of pieces is finite, and

• p is concave, i.e., p(x+y
2

) ≥ 1
2
(p(x) + p(y)) for all x, y ∈ Rn.

Every function which satisfies these three properties can be represented as the
minimum of a finite set of linear functions; see Exercise 1.10.1. We conclude:

Lemma 1.1.2. The tropical polynomials in n variables x1, . . . , xn are pre-
cisely the piecewise-linear concave functions on Rn with integer coefficients.
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It is instructive to examine tropical polynomials and the functions they
define even for polynomials of one variable. For instance, consider the general
cubic polynomial in one variable x:

p(x) = a� x3 ⊕ b� x2 ⊕ c� x ⊕ d. (1.1)

To graph this function we draw four lines in the (x, y) plane: y = 3x + a,
y = 2x+ b, y = x+ c and the horizontal line y = d. The value of p(x) is the
smallest y-value such that (x, y) is on one of these four lines, i.e., the graph
of p(x) is the lower envelope of the lines. All four lines actually contribute if

b− a ≤ c− b ≤ d− c. (1.2)

These three values of x are the breakpoints where p(x) fails to be linear, and
the cubic has a corresponding factorization into three linear factors:

p(x) = a� (x ⊕ (b− a))� (x ⊕ (c− b))� (x ⊕ (d− c)).

The three breakpoints (1.2) of the graph are called the roots of the cubic
polynomial p(x). The graph and its breakpoints are shown in Figure 1.1.

Every tropical polynomial function can be written uniquely as a tropical
product of tropical linear functions (i.e., the Fundamental Theorem of Alge-
bra holds tropically). In this statement we must underline the word “func-
tion”. Distinct polynomials can represent the same function p : Rn → R. We
are not claiming that every polynomial factors into linear functions. What
we are claiming is that every polynomial can be replaced by an equivalent
polynomial, representing the same function, that can be factored into linear
factors. Here is an example of a quadratic polynomial function and its unique
factorization into linear polynomial functions:

x2 ⊕ 17� x ⊕ 2 = x2 ⊕ 1� x ⊕ 2 = (x ⊕ 1)2.

Unique factorization of tropical polynomials holds in one variable, but it
no longer holds in two or more variables. What follows is a simple example
of a bivariate polynomial that has two distinct irreducible factorizations:

(x ⊕ 0) � (y ⊕ 0) � (x� y ⊕ 0)

= (x� y ⊕ x ⊕ 0) � (x� y ⊕ y ⊕ 0).

Here is a geometric way of interpreting this identity. The Newton polygon of a
polynomial f(x, y) is the convex hull of all points (i, j) such that xiyj appears
in f(x, y). The Newton polygon of the polynomial above is a hexagon. It is
expressed as the sum of two triangles and as the sum of three line segments.
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b!a c!b d!c

y

x

Figure 1.1: The graph of a cubic polynomial and its roots

1.2 Dynamic Programming

To see why tropical arithmetic might be relevant for computer science, let us
consider the problem of finding shortest paths in a weighted directed graph.
We fix a directed graph G with n nodes that are labeled by 1, 2, . . . , n. Every
directed edge (i, j) in G has an associated length dij which is a non-negative
real number. If (i, j) is not an edge of G then we set dij = +∞.

We represent the weighted directed graph G by its n×n adjacency matrix
DG =

(
dij

)
whose off-diagonal entries are the edge lengths dij. The diagonal

entries of DG are zero, i.e., dii = 0 for all i. The matrix DG need not be
a symmetric matrix, i.e., it may well happen that dij 6= dji for some i, j.
However, if G is an undirected graph with edge lengths, then we represent G
as a directed graph with two directed edges (i, j) and (j, i) for each undirected
edge {i, j}. In that special case, DG is a symmetric matrix, and we can think
of dij = dji as the distance between node i and node j. For a general
directed graph G, the adjacency matrix DG will not be symmetric.

Consider the n×n-matrix with entries in R≥0 ∪ {∞} that results from
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tropically multiplying the given adjacency matrix DG with itself n−1 times:

D�n−1
G = DG �DG � · · · �DG. (1.3)

Proposition 1.2.1. Let G be a weighted directed graph on n nodes with
n × n adjacency matrix DG. Then the entry of the matrix D�n−1

G in row i
and column j equals the length of a shortest path from node i to node j in G.

Proof. Let d
(r)
ij denote the minimum length of any path from node i to node j

which uses at most r edges in G. We have d
(1)
ij = dij for any two nodes i and

j. Since the edge weights dij were assumed to be non-negative, a shortest
path from node i to node j visits each node of G at most once. In particular,
any such shortest path in the directed graph G uses at most n − 1 directed
edges. Hence the length of a shortest path from i to j equals d

(n−1)
ij .

For r ≥ 2 we have the following recursive formula for the lengths of these
shortest paths:

d
(r)
ij = min

{
d

(r−1)
ik + dkj : k = 1, 2, . . . , n

}
. (1.4)

Using tropical arithmetic, this formula can be rewritten as follows:

d
(r)
ij = d

(r−1)
i1 � d1j ⊕ d

(r−1)
i2 � d2j ⊕ · · · ⊕ d

(r−1)
in � dnj.

= (d
(r−1)
i1 , d

(r−1)
i2 , . . . , d

(r−1)
in )� (d1j, d2j, . . . , dnj)

T .

From this it follows, by induction on r, that d
(r)
ij coincides with the entry in

row i and column j of the n× n matrix D�r
G . Indeed, the right hand side of

the recursive formula is the tropical product of row i of D�r−1
G and column j

of DG, which is the (i, j) entry of D�r
G . In particular, d

(n−1)
ij coincides with

the entry in row i and column j of D�n−1
G . This proves the claim.

The iterative evaluation of the formula (1.4) is known as the Floyd–
Warshall algorithm for finding shortest paths in a weighted digraph. This
algorithm and its running time are featured in most standard undergraduate
text books on Discrete Mathematics, and it also has a nice Wikipedia page.

For us, running the algorithm means performing the matrix multiplication

D�r
G = D�r−1

G �DG for r = 2, . . . , n− 1.
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Example 1.2.2. Let G be the complete bidirected graph on n=4 nodes with

DG =


0 1 3 7
2 0 1 3
4 5 0 1
6 3 1 0

 .

The first and second tropical power of this matrix are found to be

D�2
G =


0 1 2 4
2 0 1 2
4 4 0 1
5 3 1 0

 and D�3
G =


0 1 2 3
2 0 1 2
4 4 0 1
5 3 1 0

 .

The entries in D�3
G are the lengths of the shortest paths in the graph G.

The tropical computation mirrors the following matrix computation in
ordinary arithmetic. Let ε denote an indeterminate that represents a very
small positive real number, and let AG(ε) be the n × n matrix whose entry
in row i and column j is the monomial εdij . In our example we have

AG(ε) =


1 ε1 ε3 ε7

ε2 1 ε1 ε3

ε4 ε5 1 ε1

ε6 ε3 ε1 1

 .

Now, we compute the third power of this matrix in ordinary arithmetic:

AG(ε)3 =


1 + 3ε3 + · · · 3ε+ ε4 + · · · 3ε2+3ε3+· · · ε3+6ε4 + · · ·

3ε2 + 4ε5 + · · · 1 + 3ε3 + · · · 3ε+ ε3 + · · · 3ε2+3ε3+· · ·
3ε4 + 2ε6 + · · · 3ε4+6ε5+· · · 1 + 3ε2 + · · · 3ε+ ε3 + · · ·
6ε5 + 3ε6 + · · · 3ε3 + ε5 + · · · 3ε+ ε3 + · · · 1 + 3ε2 + · · ·

.
The entry of the classical matrix power AG(ε)3 in row i and column j is
a polynomial in ε which represents the lengths of all paths from node i to
node j using at most three edges. The lowest exponent appearing in this
polynomial is the (i, j)-entry in the tropical matrix power D�3

G .
This is a general phenomenon, summarized informally as follows:

tropical = limε→0 logε

(
classical(ε)

)
(1.5)

This process of passing from classical arithmetic to tropical arithmetic is
referred to as tropicalization. Equation (1.5) is not a mathematical statement.
To make this rigorous we use the algebraic notion of valuations which will be
developed in the subsequent chapters.
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We shall give two more examples of how tropical arithmetic ties in nat-
urally with algorithms in discrete mathematics. The first example concerns
the dynamic programming approach to integer linear programming. The in-
teger linear programming problem can be stated as follows. Let A = (aij) be
a d×n matrix of non-negative integers, let w = (w1, . . . , wn) be a row vector
with real entries, and let b = (b1, . . . , bd)

T be a column vector with non-
negative integer entries. Our task is to find a non-negative integer column
vector u = (u1, . . . , un) which solves the following optimization problem:

Minimize w · u subject to u ∈ Nn and Au = b. (1.6)

Let us further assume that all columns of the matrix A sum to the same
number α and that b1+· · ·+bd = mα. This assumption is convenient because
it ensures that all feasible solutions u ∈ Nn of (1.6) satisfy u1 + · · ·+un = m.

We can solve the integer programming problem (1.6) using tropical arith-
metic as follows. Let x1, . . . , xd be indeterminates and consider the expression

w1 � xa11
1 � xa21

2 � · · · � xad1
d ⊕ · · · ⊕ wn � xa1n

1 � xa2n
2 � · · · � xadn

d . (1.7)

Proposition 1.2.3. The optimal value of (1.6) is the coefficient of the mono-
mial xb1

1 x
b2
2 · · ·x

bd
d in the mth power of the tropical polynomial (1.7).

The proof of this proposition is not difficult and is similar to that of Propo-
sition 1.2.1. The process of taking the mth power of the tropical polynomial
(1.7) can be regarded as solving the shortest path problem in a certain graph.
This is precisely the dynamic programming approach to integer linear pro-
gramming. This approach furnishes a polynomial-time algorithm for integer
programming under the assumption that the integers in A are bounded.

Example 1.2.4. Let d = 2, n = 5 and consider the instance of (1.6) with

A =

(
4 3 2 1 0
0 1 2 3 4

)
, b =

(
5
7

)
and w = (2, 5, 11, 7, 3).

Here we have α = 4 and m = 3. The matrix A and the cost vector w are
encoded by a tropical polynomial as in (1.7):

f = 2x4
1 ⊕ 5x3

1x2 ⊕ 11x2
1x

2
2 ⊕ 7x1x

3
2 ⊕ 3x4

2.

The third power of this polynomial, evaluated tropically, is equal to

f � f � f = 6x12
1 ⊕ 9x11

1 x2 ⊕ 12x10
1 x

2
2 ⊕ 11x9

1x
3
2 ⊕ 7x8

1x
4
2 ⊕ 10x7

1x
5
2 ⊕ 13x6

1x
6
2

⊕12x5
1x

7
2 ⊕ 8x4

1x
8
2 ⊕ 11x3

1x
9
2 ⊕ 17x2

1x
10
2 ⊕ 13x1x

11
2 ⊕ 9x12

2 .
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The coefficient 12 of x5
1x

7
2 in this tropical polynomial is the optimal value.

An optimal solution to this integer programming problem is u = (1, 0, 0, 1, 1)T.

Our final example concerns the notion of the determinant of an n × n
matrix X = (xij). As there is no negation in tropical arithmetic, the tropical
determinant is the same as the tropical permanent, namely, the sum over the
diagonal products obtained by taking all n! permutations π of {1, 2, . . . , n}:

tropdet(X) :=
⊕
π∈Sn

x1π(1) � x2π(2) � · · · � xnπ(n). (1.8)

Here Sn is the symmetric group of permutations of {1, 2, . . . , n}. Evaluating
the tropical determinant means solving the classical assignment problem of
combinatorial optimization. Consider a company which has n jobs and n
workers, and each job needs to be assigned to exactly one of the workers.
Let xij be the cost of assigning job i to worker j. The company wishes to
find the cheapest assignment π ∈ Sn. The optimal total cost is the minimum:

min
{
x1π(1) + x2π(2) + · · ·+ xnπ(n) : π ∈ Sn

}
.

This number is precisely the tropical determinant of the matrix Q = (xij);

Proposition 1.2.5. The tropical determinant solves the assignment problem.

In the assignment problem we need to find the minimum over n! quanti-
ties, which appears to require exponentially many operations. However, there
is a well-known polynomial-time algorithm for solving this problem. It was
developed by Harold Kuhn in 1955 who called it the Hungarian Assignment
Method [Kuh55]. This algorithm maintains a price for each job and an (in-
complete) assignment of workers and jobs. At each iteration, an unassigned
worker is chosen and a shortest augmenting path from this person to the set
of jobs is chosen. The total number of arithmetic operations is O(n3).

In classical arithmetic, the evaluation of determinants and the evaluation
of permanents are in different complexity classes. The determinant of an n×n
matrix can be computed in O(n3) steps, namely by Gaussian elimination,
while computing the permanent of an n×n matrix is a fundamentally harder
problem. A famous theorem due to Leslie Valiant says that computing the
(classical) permanent is #P -complete. In tropical arithmetic, computing the
permanent is easier, thanks to the Hungarian Assignment Method. We can
think of that method as a certain tropicalization of Gaussian Elimination.
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For an example, consider a 3×3 matrix A(ε) whose entries are polynomials
in the indeterminate ε. For each entry we list the term of lowest order:

A(ε) =

 a11ε
x11 + · · · a12ε

x12 + · · · a13ε
x13 + · · ·

a21ε
x21 + · · · a22ε

x22 + · · · a23ε
x23 + · · ·

a31ε
x31 + · · · a32ε

x32 + · · · a33ε
x33 + · · ·

 .

Suppose that the aij are sufficiently general non-zero integers, so that no
cancellation occurs in the lowest-order coefficient when we expand the deter-
minant of A(ε). Writing X for the 3× 3 matrix with entries xij, we have

det(A(ε)) = α · εtropdet(X) + · · · for some α ∈ R\{0}.

Thus the tropical determinant of X can be computed from this expression
by taking the logarithm and letting ε tend to zero, as suggested by (1.5).

The material in this section is extracted from Chapter 2 in the book
Algebraic Statistics for Computational Biology by Lior Pachter and Bernd
Sturmfels [PS05]. Algorithms in computational biology that are based on
dynamic programming, such as sequence alignment and gene prediction, can
be interpreted as evaluating a tropical polynomial. The book [PS05], and
the paper [PS04] that preceeds it, argue that the tropical interpretation of
dynamic programming algorithms makes sense in the framework of statistics.

1.3 Plane Curves

A tropical polynomial function p : Rn → R is given as the minimum of a
finite set of linear functions. We define the hypersurface V (p) of p to be the
set of all points x ∈ Rn at which this minimum is attained at least twice.
Equivalently, a point x ∈ Rn lies in V (p) if and only if p is not linear at x.

For instance, let n = 1 and let p be the univariate cubic polynomial in
(1.1). If the assumption (1.2) holds then

V (p) =
{
b− a, c− b, d− c

}
.

Thus the hypersurface V (p) is the set of “roots” of the polynomial p(x).
For an example of a tropical polynomial in many variables consider the

determinant function p = tropdet in (1.8). Its hypersurface V (p) consists of
all n× n-matrices that are tropically singular. A square matrix being tropi-
cally singular means that the optimal solution to the assignment problem is
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not unique, so among all n! ways of assigning the n workers to the n jobs,
there are at least two assignments both of which minimize the total cost.

In this section we study the geometry of a polynomial in two variables:

p(x, y) =
⊕
(i,j)

cij � xi � yj.

The corresponding tropical hypersurface V (p) is a plane tropical curve. The
following proposition summarizes the salient features of such a tropical curve.

Proposition 1.3.1. The curve V (p) is a finite graph which is embedded in
the plane R2. It has both bounded and unbounded edges, all edge slopes are
rational, and this graph satisfies a zero tension condition around each node.

The zero tension condition is the following geometric condition. Consider
any node (x, y) of the graph and suppose it is the origin, i.e., (x, y) = (0, 0).
Then the edges adjacent to this node lie on lines with rational slopes. On
each such ray emanating from the origin consider the first non-zero lattice
vector. Zero tension at (x, y) means that the sum of these vectors is zero.

Our first example is a line in the plane. It is defined by a polynomial:

p(x, y) = a� x ⊕ b� y ⊕ c where a, b, c ∈ R.

The tropical curve V (p) consists of all points (x, y) where the function

p : R2 → R , (x, y) 7→ min
(
a+ x, b+ y, c

)
is not linear. It consists of three half-rays emanating from the point (x, y) =
(c− a, c− b) into northern, eastern and southwestern direction.

Two lines in the tropical plane will always meet in one point. This is
shown in Figure 1.2. When the lines are in special position, it can happen
that the set-theoretic intersection is a halfray, and in that case the notion of
stable intersection discussed below is used to get a unique intersection point.

Let p be any tropical polynomial in x and y and consider any term γ�xi�
yj appearing in p. In classical arithmetic this represents the linear function
(x, y) 7→ γ + ix + jy, and the tropical polynomial function p : R2 → R is
given by the minimum of these linear functions. The graph of p is concave
and piecewise linear. It looks like a tent over the plane R2. The tropical
curve V (p) is the set of all points in R2 over which the graph is not smooth.
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O

Figure 1.2: Two lines in the tropical plane meet in one point

e

d+y
f+x

c+2y
a+2x b+x+y

Figure 1.3: The graph and the curve defined by a quadratic polynomial
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Figure 1.4: Two subdivisions of the Newton polygon of a biquadratic curve

As an example we consider the general quadratic polynomial

p(x, y) = a� x2 ⊕ b� xy ⊕ c� y2 ⊕ d� y ⊕ e ⊕ f � x.

Suppose that the coefficients a, b, c, d, e, f ∈ R satisfy the inequalities

2b < a+ c , 2d < a+ f , 2e < c+ f.

Then the graph of p : R2 → R is the lower envelope of six planes in R3. This
is shown in Figure 1.3, where each linear piece of the graph is labeled by the
corresponding linear function. Below this “tent” lies the tropical quadratic
curve V (p) ⊂ R2. This curve has four vertices, three bounded edges and six
half-rays (two northern, two eastern and two southwestern).

If p is a tropical polynomial then its curve V (p) is a planar graph dual
to the graph of a regular subdivision of its Newton polygon Newt(p). Such
a subdivision is a unimodular triangulation if each cell is a lattice triangle of
unit area 1/2. In this case we call V (p) a smooth tropical curve.

The unbounded rays of a tropical curve V (p) are perpendicular to the
edges of the Newton polygon. For example, if p is a biquadratic polynomial
then Newt(p) is the square with vertices (0, 0), (0, 2), (2, 0), (2, 2), and V (p)
has two unbounded rays for each of the four edges of the square. Figure
1.4 shows two subdivisions. The corresponding tropical curves are shown
in Figure 1.5. The curve on the left is smooth, and it has genus one. The
unique cycle corresponds to the interior lattice point of Newt(p). This is an
example of a tropical elliptic curve. The curve on the right is not smooth.

If we draw tropical curves in the plane, then we discover that they inter-
sect and interpolate just like algebraic curves do. In particular, we observe:
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Figure 1.5: Two tropical biquadratic curves. The curve on the left is smooth.

• Two general lines meet in one points (Figure 1.2).

• Two general points lie on a unique line.

• A line and a quadric meet in two points (Figure 1.7).

• Two quadrics meet in four points (Figures 1.6 and 1.8).

• Five general points lie on a unique quadric (Exercise 1.4).

A classical result from algebraic geometry, known as Bézout’s Theorem,
holds in tropical algebraic geometry as well. In order to state this theorem,
we need to introduce multiplicities. First of all, every edge of a tropical curve
comes with an attached multiplicity which is a positive integer. For any point
(x, y) in the relative interior of any edge, consider the terms γ�xi�yj which
attain the minimum. The sum of these terms is effectively a polynomial in
one variable, and the number of nonzero roots of that polynomial equals
the lattice length of the edge in question. Next, we consider any two lines
with distinct rational slopes in R2. If their primitive direction vectors are
(u1, u2) ∈ Z2 and (v1, v2) ∈ Z2 respectively, then the intersection multiplicity
of the two lines at their unique common point is the determinant |u1v2−u2v1|.

We now focus on tropical curves whose Newton polygons are the standard
triangles, with vertices (0, 0), (0, d) and (d, 0). We refer to such a curve
as a curve of degree d. A curve of degree d has d rays, possibly counting
multiplicities, perpendicular to each of the three edges of its Newton triangle.
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Figure 1.6: Bézout’s Theorem: Two quadratic curves meet in four points
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A B
A B

Figure 1.7: The stable intersection of a line and a conic

Suppose that C andD are two tropical curves in R2 that intersect transver-
sally, that is, every common point lies in the relative interior of a unique edge
in C and also in D. The multiplicity of that point is the product of the mul-
tiplicities of the edges times the intersection multiplicity |u1v2 − u2v1|.

Theorem 1.3.2 (Bézout). Consider two tropical curves C and D of degree
c and d in R2. If the two curves intersect transversally, then the number of
intersection points, counted with multiplicities as above, is equal to c · d.

Just like in classical algebraic geometry, it is possible to remove the re-
striction “intersect transversally” from the statement of Bézout’s Theorem.
In fact, the situation is even better here because of the following important
phenomenon which is unfamiliar from classical geometry, namely, intersec-
tions can be continued across the entire parameter space of coefficients.

We explain this for the intersection of two curves C and D of degrees c
and d in R2. Suppose the intersection of C and D is not transverse or not
even finite. Pick any nearby curves Cε and Dε such that Cε and Dε intersect
transversely in finitely many points. Then, according to the refined count of
Theorem 1.3.2, the intersection Cε ∩Dε is a multiset of cardinality c · d.

Theorem 1.3.3 (Stable Intersection Principle). The limit of the point con-
figuration Cε ∩ Dε is independent of the choice of perturbations. It is a
well-defined multiset of c · d points contained in the intersection C ∩D.

Here the limit is taken as ε tends to 0. Multiplicities add up when points
collide. The limit is a finite configuration of point in R2 with multiplici-
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Figure 1.8: The stable intersection of a conic with itself.

ties, where the sum of the multiplicities is cd. We call this limit the stable
intersection of the curves C and D, and we denote this multiset of points by

C ∩st D = limε→0(Cε ∩Dε).

Hence we can strengthen the statement of Bézout’s Theorem as follows.

Corollary 1.3.4. Any two curves of degrees c and d in R2, no matter how
special they might be, intersect stably in a well-defined multiset of cd points.

The Stable Intersection Principle is illustrated in Figures 1.7 and 1.8. In
Figure 1.7 we see the intersection of a tropical line with a tropical conic,
moving from general position to special position. In the diagram on the
right, the set-theoretic intersection of the two curves is infinite, but the stable
intersection is well-defined. It consists of precisely the two points A and B.

Figure 1.8 shows an even more dramatic situation. In that picture, a conic
is intersected stably with itself. For any small perturbation the coefficients of
the defining quadratic polynomials, we obtain four intersection points that
lie near the four nodes of the original conic. This shows that the stable
intersection of a conic with itself consists precisely of the four nodes.

1.4 Amoebas and their Tentacles

One of the earliest sources in tropical algebraic geometry is the 1971 paper
by George Bergman [Ber71] on the logarithmic limit of an algebraic vari-
ety. With hindsight, the structure introduced by Bergman is the same as
the tropical variety arising from a subvariety in a complex algebraic torus
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(C∗)n. The amoeba of such a variety is its image under taking the coordinate-
wise logarithm of the absolute value of any point on the variety. The term
amoeba was coined by Gel’fand, Kapranov and Zelevinsky in their mono-
graph on Discriminants, Resultants, and Multidimensional Determinants
[GKZ08]. Bergman’s logarithmic limit arises from the amoeba as the set
of all tentacle directions. In this section we review material from these and
related sources, and we discuss what the authors had in mind.

Let I be an ideal in the Laurent polynomial ring S = C[x±1
1 , x±1

2 , . . . , x±1
n ].

Its algebraic variety is the common zero set of all Laurent polynomials in I:

V (I) =
{
z ∈ (C∗)n : f(z) = 0 for all f ∈ I

}
.

Note that this is well-defined because C∗ = C\{0}. The amoeba of the ideal
I is the subset of Rn defined as image of the coordinate-wise logarithm map:

A(I) =
{(

log(|z1|), log(|z2|), . . . , log(|zn|)
)
∈ Rn : z = (z1, . . . , zn) ∈ V (I)

}
.

If n = 1 and I is a proper ideal in S = C[x, x−1] then I is a principal ideal,
which is generated by a single polynomial f(x) that factors over C:

f(x) = (u1 + iv1 − x)(u2 + iv2 − x) · · · (um + ivm − x).

Here u1, v1, . . . , um, vm ∈ R are the real and imaginary parts of the various
roots of f(x), and the amoeba is the following set of ≤ m real numbers:

A(I) = A(f) =
{

log
(√

u2
1 + v2

1

)
, log

(√
u2

2 + v2
2

)
, . . . , log

(√
u2

m + v2
m

) }
.

The name “amoeba” begins to make more sense once one examines the
case when n = 2. Suppose that I = 〈f(x1, x2)〉 is the principal ideal of
a curve {f(x1, x2) = 0} in (C∗)2. The amoeba A(f) of that curve is a
closed subset of R2 whose boundary is described by analytic functions. It
has finitely many tentacles that emenate towards infinity, and the directions
of these tentacles are precisely the directions perpendicular to the edges of
the Newton polygon Newt(f). The complement R2\A(f) of the amoeba is
a finite union of open convex subsets of the plane R2. Pictures of amoebas
of curves and surfaces are supposed to like their biological counterparts.

We refer to the work of Passare and his collaborators [PR04, PT05] for the
foundational results on amoebas of hypersurfaces in (C∗)n, and to the article
by Theobald [The02] for methods for computing and drawing amoebas. An
interesting Nullstellensatz for amoebas was established by Purbhoo [Pur08].
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Figure 1.9: The amoeba of a plane curve and its spine
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Example 1.4.1. Figure 1.9 shows the complex amoeba of the curve

f(z, w) = 1 + 5zw + w2 − z3 + 3z2w − z2w2.

This picture uses the max-convention under which logarithms are negated.
(Passare tells us that he prefers max-convention because his son’s first name
is Max and not Min). So, what is depicted in Figure 1.9 is the set

−A(f) =
{

(−log(|z|),−log(|w|)) ∈ R2 : z, w ∈ C∗ and f(z, w) = 0
}
.

Note the two bounded convex components in the complement of A(f). They
correspond to the two interior lattice points of the Newton polygon of f . The
tentacles of the amoeba converge to four rays in R2, and the union of these
rays is precisely the plane curve V (p) defined by the tropical polynomial

p = trop(f) = 0 ⊕ u� v ⊕ v2 ⊕ u3 ⊕ u2 � v ⊕ u2 � v2.

This expression is the tropicalization of f . All coefficients of p are zero
because the coefficients of f are complex numbers. There are no parameters.

Inside the amoeba of Figure 1.9, we see a tropical curve V (q) defined by
a specific tropical polynomial whose coefficients c1, . . . , c6 are nonzero reals:

q = c1 ⊕ c2 � u� v ⊕ c3 � v2 ⊕ c4 � u3 ⊕ c5 � u2 � v ⊕ c6 � u2 � v2

The tropical curve V (q) is a canonical deformation retract of A(f). It is
known as the spine of the amoeba. The coefficients ci are defined below.

There are three ways in which tropical varieties arise from amoebas. They
are different and we associate the name of a mathematician with each of them.

The Passare Construction: Every complex hypersurface amoeba A(f) has a
spine which is a canonical tropical hypersurface contained in A(f). Suppose
f = f(z, w) is a polynomial in two variables. Then its Ronkin function is

Nf (u, v) =
1

(2πi)n

∫
Log−1(u,v)

log|f(z, w)|dz
z
∧ dw

w
.

Passare and Rullgard [PR04] showed that this function is concave, and that
it is linear on each connected component of the complement of A(f). Let
q(u, v) be denote the minimum of these affine-linear functions, one for each
component in the amoeba complement. Then q(u, v) is a tropical polynomial
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function (i.e. piecewise-linear concave function) which satisfies Nf (u, v) ≤
q(u, v) for all (u, v) ∈ R2. Its tropical curve V (q) is the spine of A(f).

The Maslov Construction: Tropical varieties arise as limits of amoebas as
one changes the base of the logarithm and makes it either very large or very
small. This limit process is also known as Maslov dequantization, and it can
be made precise as follows. Given h > 0, we redefine arithmetic as follows:

x⊕h y = h · log

(
exp

(x
h

)
+ exp

(y
h

))
and x�h y = x+ y.

This is what happens to the operations addition and multiplication of positive
real numbers under the coordinate transformation R+ → R, x 7→ h · log(x).

We now consider a polynomial fh(z, w) whose coefficents are rational
functions of the parameter h. For each h > 0, we take the amoeba Ah(fh)
of fh with respect to scaled logarithm map (z, w) 7→ h ·

(
log(|z|), log(|w|)

)
.

The limit in the Hausdorff topology of the set Ah(fh) as h→ 0+ is a tropical
hypersurface V (q). For details see [Mik04]. The coefficients of the tropical
polynomials q are the orders (of poles or zeros) of the coefficients at t = 0.
This process can be thought of as a sequence of amoebas converging to their
spine but it is quite different from the construction using Ronkin functions.

The Bergman Construction: Our third connection between amoebas on trop-
ical varieties arises by examining their tentacles. Here we disregard the inte-
rior structure ofA(f), such as the bounded convex regions in the complement,
and we focus only on the asymptotic limit directions. This makes sense for
any subvariety of (C∗)n, so our input now is an ideal I ⊂ S as above.

We denote the unit sphere by Sn−1 = {x ∈ Rn : ||x|| = 1}. For any
real number M > 0 we consider the following scaled subset of the amoeba:

AM(I) =
1

M
A(I) ∩ Sn−1.

The logarithmic limit set A∞(I) is the set of all points v on the sphere Sn−1

such that there exists a sequence of points vM ∈ AM(I) converging to v, i.e.,

limM→∞vM = v.

The following result establishes the relationship to the tropical variety trop(I)
of I. Here trop(I) is defined as the intersection of the tropical hypersurfaces
V (p) where p = trop(f) is the tropicalization of any polynomial f ∈ I.
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Theorem 1.4.2. The tropical variety of I coincides with the cone over the
logarithmic limit set A∞(I), i.e., a non-zero vector w ∈ Rn lies in trop(I) if
and only if the corresponding unit vector 1

||w||w lies in A∞(I).

In Chapter 3 we will show that V (I) is a polyhedral fan, and we shall
establish various structural properties of that fan. Theorem 1.4.2 and the
fan property of V (I) implies that A∞(I) is a spherical polyhedral complex.

It is interesting to see the motivation behind the paper [Ber71]. Bergman
introduced tropical varieties in order to prove a conjecture of Zalessky con-
cerning the multiplicative action of GL(n,Z) on the Laurent polynomial ring
S. Here, an invertible integer matrix g = (gij) acts on S as the ring homo-
morphism that maps each variable xi to the Laurent monomial

∏n
j=1 x

gij

j .
If I is a proper ideal in S then we consider its stabilizer subgroup:

Stab(I) =
{
g ∈ GL(n,Z) : gI = I

}
.

The following result answers Zalessky’s question. It is Theorem 1 in [Ber71]:

Corollary 1.4.3. The stabilizer Stab(I) ⊂ GL(n,Z) of a proper ideal I ⊂ S
has a subgroup of finite index which stabilizes a nontrivial sublattice of Zn.

Proof. The tropical variety V (I) has the structure of a proper polyhedral fan
in Rn. Let U be the finite set of linear subspaces of Rn that are spanned by
the maximal cones in V (I). While the fan structure on V (I) is not unique,
the set U of linear subspaces of Rn is uniquely determined by I. The set U
does not change under refinement or coarsening of the fan structure on V (I).

The group Stab(I) acts by linear transformations on Rn, and it leaves the
tropical variety V (I) invariant. This implies that it acts by permutations on
the finite set U of subspaces in Rn. Fix one particular subspace U ∈ U and
let G be the subgroup of all elements g ∈ Stab(I) that fix U . Then G has
finite index in Stab(I) and it stabilizes the sublattice U ∩ Zn of Zn.

1.5 Implicitization

An algebraic variety can be represented either as the image of a rational map
or as the zero set of some multivariate polynomials. The latter representa-
tion exists for all algebraic varieties while the former representation requires
that the variety be unirational, which is a very special property in algebraic
geometry. The transition between two representations is a basic problem in
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computer algebra. Implicitization is the problem of passing from the first
representation to the second, that is, given a rational map Φ, one seeks to
determine the prime ideal of all polynomials that vanish on the image of Φ.

In this section we examine the simplest instance, namely, we consider the
case of a plane curve in C2 that is given by a rational parametrization:

Φ : C → C2 , t 7→ (φ1(t), φ2(t)).

To make the map Φ actually well-defined, we here tacitly assume that the
poles of φ1 and φ2 have been removed from the domain C. The implicitization
problem is to compute the unique (up to scaling) irreducible polynomial
f(x, y) vanishing on the curve Image(Φ) =

{(
φ1(t), φ2(t)

)
∈ C2 : t ∈ C

}
.

Example 1.5.1. Consider the plane curve defined parametrically by

Φ(t) =

(
t3 + 4t2 + 4t

t2 − 1
,
t3 − t2 − t+ 1

t2

)
.

The implicit equation of this curve equals

f(x, y) = x3y2 − x2y3 − 5x2y2 − 2x2y − 4xy2 − 33xy + 16y2 + 72y + 81.

Two standard methods used in computer algebra for solving impliciti-
zation problems are Gröbner bases and resultants. These methods are ex-
plained in the text book by Cox, Little and O’Shea [CLO07]. Specifically,
the desired polynomial f(x, y) equals the Sylvester resultant of the numera-
tor of x−φ1(t) and the numerator of y−φ2(t) with respect to variable t. For
instance, the implicit equation in Example 1.5.1 is easily found as follows:

f(x, y) = resultantt

(
t3 + 4t2 + 4t− (t2 − 1)x , t3 − t2 − t+ 1− t2y

)
.

However, for larger problems in higher dimensions, Gröbner bases and re-
sultants often do not perform well enough, or do not give enough geometric
insight. This is where the tropical approach to implicatization comes in. We
shall explain the basic idea behind this approach for the case of plane curves.

The Newton polygon of the implicit equation f(x, y) is the convex hull in
R2 of all points (i, j) ∈ Z2 such that xiyj appears with non-zero coefficient in
the expansion of f(x, y). We denote the Newton polygon of f by Newt(f).
For example, the Newton polygon of the polynomial above equals

Newt(f) = Conv

{(
0
0

)
,

(
2
1

)
,

(
3
2

)
,

(
2
3

)
,

(
2
1

)}
(1.9)
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This pentagon has four additional lattice points in its interior, so Newt(f)
contains precisely nine lattice points, one for each of the nine terms of f(x, y).

Suppose we are given the parametrization Φ and suppose that the implicit
equation f(x, y) is unknown and hard to get. Let us further assume that the
Newton polygon the implicit equation is known. That information reveals

f(x, y) = c1x
3y2 + c2x

2y3 + c3x
2y2 + c4x

2y + c5xy
2 + c6xy + c7y

2 + c8y + c9

where the coefficients c1, c2, . . . , c9 are unknown parameters. At this point we
can set up a linear system of equations as follows. For any choice of complex
number τ , the equation f(φ1(τ), φ2(τ)) = 0 holds. This equation translates
into one linear equation for the nine unknowns ci. Eight of such linear equa-
tions will determine the coefficients uniquely (up to scaling). For instance,
in our example, if we take τ = ±2,±3,±4,±5, then we get eight linear equa-
tions which stipulate that the column vector (c1, c2, c3, c4, c5, c6, c7, c8, c9)

T

lies in the kernel of the following 8×9-matrix of rational numbers



τ x3y2 x2y3 x2y2 x2y xy2 xy y2 y 1

−5 −2187
10

−419904
625

2916
25

−81
4

−7776
125

54
5

20736
625

−144
25

1
−4 −80

3
−1875

16
25 −16

3
−375

16
5 5625

256
−75

16
1

−3 −2
3

−512
81

16
9

−1
2

−128
27

4
3

1024
81

−32
9

1
−2 0 0 0 0 0 0 81

16
−9

4
1

2 2048
3

48 64 256
3

6 8 9
16

3
4

1
3 15625

6
40000

81
2500

9
625
4

800
27

50
3

256
81

16
9

1
4 34992

5
32805

16
729 1296

5
1215
16

27 2025
256

45
16

1
5 235298

15
3687936

625
38416

25
2401

6
18816
125

196
5

9216
625

96
25

1


This matrix has rank 8, so its kernel is 1-dimensional. Any generator of
that kernel translates into a scalar multiple of the polynomial f(x, y). From
this example we see that the implicit equation f(x, y) can be recovered using
(numerical) linear algebra from the Newton polytope Newt(f), but it also
suggests that the matrices in the resulting systems of linear equations tend to
be dense and ill-conditioned. This means that it is rather non-trivial compu-
tational problem to solve the equations when f(x, y) has thousands of terms.
However, from a geometric perspective it makes sense to consider the implic-
itization problem solved once the Newton polytope has been found. Thus, in
what follows, we consider the following alternative version of implicitization:

Tropical Implicitization Problem: Given two rational functions φ1(t) and
φ2(t), compute the Newton polytope Newt(f) of the implicit equation f(x, y).
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We shall present the solution to the tropical implicitization problem for
plane curves. By the Fundamental Theorem of Algebra, the two given ratio-
nal functions are products of linear factors over the complex numbers C:

φ1(t) = (t− α1)
u1(t− α2)

u2 · · · (t− α1)
um

φ2(t) = (t− α1)
v1(t− α2)

v2 · · · (t− α1)
vm

(1.10)

Here the αi are the zeros and poles of either the two functions φ1 and φ2. It
may occur that ui is zero while vj is non-zero or vice versa. For what follows
we do not need the algebraic numbers αi but only the exponents ui and
vj occuring in the factorizations. These exponents can be computed using
symbolic algorithms, such as the Euclidean algorithm, and no field extensions
or floating pointing computations are needed to find the integers ui and vj.

We abbreviate u0 = −u1 − u2 − · · · − um and v0 = −v1 − v2 − · · · − vm,
and we consider the following collection of m+1 integer vectors in the plane:(

u0

v0

)
,

(
u1

v1

)
,

(
u2

v2

)
, . . . ,

(
um

vm

)
. (1.11)

We consider the rays spanned by these m+1 vectors. Each ray has a natural
multiplicity namely the sum of the lattice lengths of all vectors (ui, vi)

T lying
on that ray. Since the vectors in (1.11) sum to zero, this configuration of
rays satisfies the balancing condition: it is a tropical curve in the plane R2.

The following result is an immediate consequence of the Fundamental
Theorem of Tropical Geometry which will be stated and proved in Chapter 3:

Theorem 1.5.2. The tropical curve V (f) defined by the unknown polynomial
coincides with the tropical curve determined by the vectors in (1.11).

The Newton polygon Newt(f) can be recovered from the tropical curve
V (f) as follows. The first step is to rotate our vectors by 90 degrees:(

v0

−u0

)
,

(
v1

−u1

)
,

(
v2

−u2

)
, . . . ,

(
vm

−um

)
. (1.12)

Since these vectors sum to zero, there exists a convex polygon P whose edges
are translates of these vectors. We construct P by sorting the vectors by
increasing slope and then simply concatenating them. The convex polygon
P is unique up to translation. Hence there exists a unique translate P+

of the polygon P which lies in the non-negative orthant R≥0 and which
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has non-empty intersection with both the x-axis and the y-axis. The latter
requirements are necessary (and sufficient) for a convex polygon to arise as
the Newton polygon of an irreducible polynomial in C[x, y]. We conclude:

Corollary 1.5.3. The polygon P+ coincides with the Newton polygon Newt(f)
of the defining irreducible polynomial of the parametrized curve Image(Φ).

This solves the tropical implicitization problem for plane curves over C.
We illustrate this solution for our running example.

Example 1.5.4. We write the map of Example 1.5.1 in factored form (1.10):

φ1(t) = (t− 1)−1 t1 (t+ 1)−1 (t+ 2)2,
φ2(t) = (t− 1)2 t−2 (t+ 1)1 (t+ 2)0.

The derived configuration of five vectors as in (1.11) equals(
−1
−1

)
,

(
−1

2

)
,

(
1

−2

)
,

(
−1

1

)
,

(
2
0

)
.

We form their rotations as in (1.12), and we order them by increasing slope:(
2
1

)
,

(
1
1

)
,

(
−1

1

)
,

(
−2
−1

)
,

(
0

−2

)
.

If we concatenate these vectors starting at the origin, then the resulting edges
all remain in the non-negative orthant. The result is the convex pentagon P+

in Corollary 1.5.3. As predicted, it coincides with the pentagon in (1.9).

The technique of tropical tmplicitization can be used, in principle, to
compute the tropicalization of any parametrically presented algebraic variety.
The details are more complicated than the simple curve case discussed here,
and a proper treatment will require some toric geometry and concepts from
resolution of singularities. We shall return to this subject in Chapter 7.

1.6 Group Theory

One of the origins in tropical geometry is the work of Bieri, Groves, Strebel
and Neumann in group theory [BG84, BS80, BNS87]. Starting in the late
1970’s, these authors associate polyhedral fans to certain classes of discrete
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groups, and they establish remarkable results concerning generators, relations
and higher cohomology of these groups in terms of these fans. This section
aims to offer a first glimpse of this point of entry to the tropical universe.

We begin with an easy illustrative example. Fix a non-zero real number
ξ and let Gξ denote the group generated by the two invertible 2×2-matrices

A =

(
1 1
0 1

)
and X =

(
1 0
0 ξ

)
. (1.13)

What are the relations satisfied by these two generators? In particular, is the
group Gξ is finitely presented? Does this property depend on the number ξ ?

To answer this question, we explore some basic computations such as

XuAcX−uXvAdX−v =

(
1 c ξu + d ξv

0 1

)
.

Here u, v, c and d can be arbitrary integers. This identity shows that the two
matrices XuAcX−u and XvAdX−v commute, and this commutation relation
is a valid relation among the two generators of Gξ. If the number ξ is not
algebraic over Q then the set of all such commutation relations constitutes a
complete presentation of Gξ, and in this case the group Gξ is never finitely
presented. On the other hand, if ξ is an algebraic number then additional
relations can be derived from the irreducible minimal polynomial f ∈ Z[x] of
ξ. To show how this works, we consider the explicit example ξ =

√
2 +

√
3.

The minimal polynomial of this algebraic number is f(x) = x4 − 10x2 + 1.
This polynomial translates into a word in the group generators as follows:

(X−4A1X4) · (X−2A−10X2) · (X0A1X0) = X−4AX2A−10X2A. (1.14)

We see that this word is a valid relation in Gξ. Our question is whether the
group of all relations is finitely generated. It turns out that the answer is af-
firmative for ξ =

√
2+

√
3, and we shall list the generators in Example 1.6.10

below. In general, finite presentation is characterized by the following result:

Proposition 1.6.1. The group Gξ = 〈A,X〉 is finitely presented if and only
if either the real number ξ or its reciprocal 1/ξ is an algebraic integer over Q.

The condition that either ξ or 1/ξ is an algebraic integer says that either
the highest term or the lowest term of f(x) has the coefficient +1 or −1.
This is equivalent to saying that either the highest or the lowest term of the
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minimal polynomial f(x) is a unit in Z[x, x−1]. It is precisely this condition
on leading terms that underlies the tropical thread in geometric group theory.

Bieri and Strebel introduced tropical varieties over the integers in their
1980 paper in metabelian groups [BS80]. Later work with Neumann [BNS87]
extended their construction to a wider class of discrete groups. In what fol-
lows we restrict ourselves to metabelian groups whose corresponding module
is cyclic. This special case suffices in order to explain the general idea, and to
shed sufficient light on the mystery of why Proposition 1.6.1 might be true.

We begin with some commutative algebra definitions. Consider the Lau-
rent polynomial ring S = Z[x±1

1 , . . . , x±1
n ] over the integers Z. The units in

S are the monomials ±xa = ±xa1
1 · · ·xan

n where a = (a1, . . . , an) runs over
Zn. Let I be a proper ideal in S. If w ∈ Rn then the initial ideal inw(I) is the
ideal generated by all initial forms inw(f) where f runs over I. The compu-
tation of the initial ideal inw(I) from a generating set of I requires Gröbner
bases over the integers. The relevant algorithm for computing inw(I) from I
is implemented in computer algebra systems such as Macaulay2 and Magma.

The tropical variety of the ideal I is defined as the following subset of Rn:

tropZ(I) =
{
w ∈ Rn : inw(I) 6= S

}
.

Our construction of Gröbner fans over the field Q in Chapter 2 will reveal
that tropZ(I) is a polyhedral fan in Rn. Moreover, it implies that the integral
tropical variety contains the tropical variety over the field Q as a subfan:

tropZ(I) ⊇ tropQ(I),

but this containment is strict in general. For example, if n = 2 and I is the
principal ideal 〈x1 + x2 + 3〉, then tropQ(I) is the tropical line, which has
three rays, but tropZ(I) additionally contains the positive quadrant.

We write R = S/I for the quotient Z-algebra, and, by mild abuse of
notation, we write R∗ for the multiplicative group generated by the images
of the monomials. It follows from the results to be proved later in Chapter 3
that the complex variety of the ideal I is finite if and only if tropQ(I) = {0}.
Here we state the analogous result for tropical varieties over the integers.

Theorem 1.6.2 (Bieri-Strebel). The Z-algebra R = S/I is finitely generated
as a Z-module if and only if

tropZ(I) = {0}. (1.15)
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Proof. See [BS80, Theorem 2.4].

This raises the question of how to test this criterion in practise, and if
(1.15) holds, how to determine a finite set of monomials U ⊂ R∗ that generate
R as an abelian group. It turns out that this can be done in Macaulay2.

Example 1.6.3. Fix integers m and n, where |m| > 1 and consider the ideal

J = 〈ms−1t−1 + s−1 + t−1 +n+ st, mst+ s+ t+n+ s−1t−1 〉 ⊂ Z[s±1, t±1].

This ideal is a variation on Example 43 in Strebel’s exposition [Str84]. The
condition (1.15) is satisfied. To find a generating set U , we can run the
following four lines of Macaulay2 code, for various fixed values of m and n:

R = ZZ[s,t,S,T]; m = 7; n = 13;

J = ideal(m*S*T+S+T+n+s*t,m*s*t+s+t+n+S*T,s*S-1,t*T-1);

toString leadTerm J

toString basis(R/J)

The output of this script is the same for all m and n, namely,

U =
{
1, s, st−1, t, s−1, s−1t−1, t−1, t−2

}
. (1.16)

For a proof that ZU = R/J, it suffices to show that the initial monomial ideal
of J with respect to the reverse lexicographic term order is generated by

{(m^2-1)*S*T,t*T,m*s*T,S^2,t*S,s*S,t^2,s*t,s^2,T^3,S*T^2,s*T^2}

This proof amounts to computing a Gröbner basis over the integers ZZ.

The integral tropical variety tropZ(I) is of interest even in the case n = 1.

Example 1.6.4. Suppose that ξ is an algebraic number of Q and let I be the
prime ideal of all Laurent polynomials f(x) in Z[x, x−1] such that f(ξ) = 0.
There are four possible cases of what the integral tropical variety can be:

• If ξ and 1/ξ are both algebraic integers then tropZ(I) = {0}.

• If ξ is an algebraic integer but 1/ξ is not then tropZ(I) = R≥0.

• If 1/ξ is an algebraic integer but ξ is not then tropZ(I) = R≤0.

• If neither ξ nor 1/ξ are algebraic integers then tropZ(I) = R.
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Examples of numbers for the first, third and last cases are ξ =
√

2 +
√

3,
ξ = 1√

2
+ 1√

3
, and ξ =

√
2+ 1√

3
, respectively. In particular, we conclude from

Proposition 1.6.1 that Gξ is finitely presented if and only if tropZ(I) 6= R.

We now come to the punchline of this section, namely, the extension of
Example 1.6.4 to n ≥ 2 variables. Let I be any ideal in S = Z[x±1

1 , . . . , x±1
n ],

and set R = S/I. We associate with I a metabelian group GI with a distin-
guished system of n+ 1 of generators, namely, the group of 2×2-matrices

GI =

(
1 R
0 R∗

)
.

The elements of the group GI are the matrices

(
1 f
0 m

)
where f is a Laurent

polynomial and m is a Laurent monomial, but both considered modulo I.
The connection between tropical varieties and group theory is as follows.

Theorem 1.6.5 (Bieri-Strebel). The metabelian group GI is finitely pre-
sented if and only if the integer tropical variety tropZ(I) contains no line.

This was the main result in the remarkable 1980 paper by Bieri and
Strebel [BS80, Theorem A]. It predates the 1984 paper by Bieri and Groves
[BG84] which is widely cited among tropical geometers for its resolution of
problems left open in Bergman’s 1971 paper on the logarithmic limit set.

In what follows we aim to shed some light on the presentation of the
metabelian group GI . We begin with the observation that GI is always
finitely generated, namely, by a natural set of n+1 matrices in R = S/I:

Lemma 1.6.6. The metabelian group GI is generated by the n+ 1 matrices

A =

(
1 1
0 1

)
and Xi =

(
1 0
0 xi

)
for i = 1, 2, . . . , n.

If n = 1 then we recover the group with two generators A and X seen
at the beginning of this section. Indeed, if I = 〈f(x)〉 is the principal ideal
generated by the minimal polynomial of an algebraic number ξ then GI = Gξ.
In that special case, Theorem 1.6.5 is equivalent to Proposition 1.6.1.

Returning to the general case n ≥ 2, we now examine the relations among
the n+ 1 generators in Lemma 1.6.6. Let us first assume that I = 〈0〉 is the
zero ideal, so that R = S. Clearly, the matrices Xi and Xj commute, i.e., the
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commutator [Xi, Xj] = XiXjX
−1
i X−1

j is the 2×2-identity matrix. Next we
consider the action of the group R∗ on GI by conjugation. For any monomial

m = xu we have Xu =

(
1 0
0 xu

)
, and we find that the product Am =

X−uAXu is equal to

(
1 m
0 1

)
. Likewise, we have A−m = X−uA−1Xu =(

1 −m
0 1

)
, so the same identify holds for monomials whose coefficient is −1.

In particular, for any monomialm in S, the two matrices A and Am commute.
Hence, in the group G〈0〉 we have

[Xi, Xj] = [A,Am] = 1 for 1 ≤ i < j ≤ n and monomials m ∈ S∗. (1.17)

Lemma 1.6.7. The relations (1.17) define a presentation of the group G〈0〉.

For example, the following matrix lies in G〈0〉 for any f ∈ S:

Af =

(
1 f
0 1

)
.

Indeed, if we write f as an alternating sum of monomials, say
∑s

i=1mix
ui ,

where mi ∈ Z and ui ∈ Zn, then this translates into the factorization

Af = X−u1Am1Xu1X−u2Am2Xu2 · · ·X−usAmsXus .

By applying the relations in (1.17), the word above can be transformed into
the word for Af that corresponds to any other way of writing f as an alter-
nating sum of monomials. Hence the following statement makes sense:

Proposition 1.6.8. For any ideal I in S, the group GI has the presentation

[Xi, Xj] = [A,Am] = Af = 1, (1.18)

where m runs over monomials, f runs over I, and 1 ≤ i < j ≤ n.

As it stands, this presentation is infinite, and we are interested in the
question whether the set of relations (1.18) can be replaced by a finite subset.
We would like to know whether the group GI is finitely presented. To answer
this, we first note that the conjugation action satisfies the following relations:

AfAg = AgAf = Af+g and (Af )g = (Ag)f = Afg for f, g ∈ S.
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This shows that it suffices to take f from any finite generating set of the
ideal I. So, the question is whether there exists a finite subset U ⊂ Zn such
that the monomials m = ±xu with u ∈ U suffice in the presentation (1.18).

Theorem 1.6.5 offers a criterion for testing whether such a finite set U ex-
ists. For instances where the answer is affirmative, we can use the techniques
in [BS80, §3] to construct an explicit generating set U . The underlying tech-
niques are quite delicate and have not yet been developed into a practical
algorithm. In what follows we sketch ideas on how one might approach this.

The first step is compute the integral tropical variety tropZ(I) from a
given generating set of I. This can be done by first homogenizing the ideal I
and then computing the Gröbner fan of the homogeneous ideal. The Gröbner
fan of a homogeneous ideal J in Z[x0, x1, . . . , xn] is a polyhedral fan in Rn+1

such that the initial ideal inw(I) is constant as w ranges over the relative
interior of any cone in the fan. For coefficients in a field K, this will be
explained in full detail in Chapter 2. The general theory is analogous over
the integers Z, except that Gröbner fans over Z tend to be finer than over K.
For example, if I = 〈2x1, x1x2−x1x3〉 then the Gröbner fan over Q consists of
single cone, while the Gröbner fan over Z has a wall on the plane {w2 = w3}.

In the course of computing the Gröbner fan of I, one obtains a generating
set for every initial ideal inw(I). This can be further extended to a finite
generating set B of I with the property that, for every w ∈ Rn, either inw(I)
is a proper ideal in S or the finite set {inw(f) : f ∈ B} contains a unit. A
subset B of the ideal I that enjoys this property is called a tropical basis.
Every Laurent polynomial in a tropical basis B can be scaled by a unit, so
we can always assume that the relevant leading monomial is the constant 1.

Suppose now that I is an ideal in S which satisfies the condition of The-
orem 1.6.5, and that we have computed a tropical basis B for I. Then

For all w ∈ Rn there exists f ∈ B with inw(f) = 1 or in−w(f) = 1. (1.19)

For each Laurent polynomial f in the tropical basis B let support(f)
denote the set of all vectors a ∈ Zn such that the monomial xa appears with
non-zero coefficient in f . We define the Newton polytope of the tropical basis
B to be the convex hull of the union of these support sets for all f in B:

Newton(B) := conv
(⋃

f∈B

support(f)
)

By examining the proof technique used in [BS80, §3.5], one can derive the
following explicit version of the “if”-direction in the Bieri-Strebel Theorem:
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Theorem 1.6.9. Fix a tropical basis B satisfying (1.19) for the ideal I.
Then the metabelian group GI is presented by the relations (1.17) where f
runs over the elements in the tropical basis B and m = xu runs over the set
Newton(B)∩Zn of lattice points u in the Newton polytope the tropical basis.

We close this section with two simple examples:

Example 1.6.10. Let n = 1 and let I be the prime ideal of ξ =
√

2 +
√

3.
The singleton B = {x4 − 10x2 + 1} is a tropical basis of I satisfying (1.19).
Then the group Gξ = GI is presented by five relations. The first relation is
the word in (1.14) and the other four required relations are the words

[A,Ax] = Ax−iAxiA−1x−iA−1xi for i = 1, 2, 3, 4.

Example 1.6.11. We consider the group in [Str84, Example 43]. Let S =
Z[s±1, t±1] with I = 〈 f 〉 generated by the polynomial in Example 1.6.3:

f(s, t) = ms−1t−1 + s−1 + t−1 + n+ st.

The tropical variety tropZ(I) contains no line. A minimal tropical basis
satisfying the condition (1.19) consists of three Laurent polynomials:

B =
{
s−1t−1f(s, t) , sf(s, t), tf(s, t)

}
.

The corresponding polytope Newton(B) is a planar convex 7-gon that has
14 lattice points, corresponding to the 14 Laurent monomials:

m = s2t, st2, st, s, s/t, t, 1, 1/t, t/s, 1/s, 1/st, 1/st2, 1/s2t, 1/s2t2.

The metabelian group GI has three generators A,X1, X2. From the descrip-
tion in Theorem 1.6.9 we get a presentation with 17 = 3 + 14 relations.

In our view, it would be worthwhile to further develop the connection
between Gröbner bases and tropical geometry over Z, and to revisit the
beautiful group theory results by Bieri, Groves, Neumann and Strebel from
a computational point of view. Surely, there will be plenty of applications.

1.7 Curve Counting

One of the early successes that brought tropical methods to the attention of
geometers was the work of Mikhalkin [Mik05] on Gromov-Witten invariants of
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the plane. These invariants count the number of complex algebraic curves of a
given degree and genus passing through a given number of points. Mikhalkin
proved that complex curves can be replaced by tropical curves, and he then
derived a combinatorial formula for the count in the tropical case. The
objective of this section is to present the basic ideas and the main result.

As a warm-up, let us consider the question of how many singular quadratic
curves pass through four general points in the plane. The answer to this
question is three. A singular quadric is the union of two lines, and, since the
four points are in general position, there are precisely three pairs of lines that
pass through them. This analysis is valid both in classical geometry and in
tropical geometry, and it yields the same result, namely 3, in both cases.

To state our general problem, we now review some classical facts about
curves in the complex projective plane P2. If C is a smooth curve of degree
d in P2 then its genus is the number of handles of C when regarded as a
two-dimensional Riemann surface over the real numbers. That genus equals

g(C) =
1

2
(d− 1)(d− 2).

Moreover, that same number counts the lattice points in the interior of the
Newton polygon of the general curve of degree d. That Newton polygon is
the triangle with vertices (0, 0, d), (0, d, 0) and (d, 0, 0). In symbols,

g(C) = #
(
int(Newt(C)) ∩ Z3

)
.

The set of all curves of degree d forms a projective space of dimension(
d+ 2

2

)
− 1 =

1

2
(d− 1)(d− 2) + 3d− 1. (1.20)

As the
(

d+2
2

)
coefficients of its defining polynomial vary, the curve C may

acquire one or more singular points. The simplest type of singularity is a
node. Each time the curve acquires a node, the genus drops by one. Thus for
a singular curve Csing with ν nodes and no other singularities, the genus is

g(Csing) =
1

2
(d− 1)(d− 2)− ν. (1.21)

We are interested in the following problem of enumerative geometry:
What is the number Ng,d of irreducible curves of genus g and degree d that
pass through g + 3d− 1 general points in the complex projective plane P2?
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This question makes sense because the variety of curves of degree d and
genus g is expected to have dimension g + 3d − 1, by (1.20) and (1.21),
and each of the points poses one independent condition on the curve. Thus
we expect the number Ng,d of curves satisfying all constraints to be finite.
Gromov-Witten theory offers the tools for proving that this is indeed the case.

There is also a closely related counting problem where all curves are
allowed, not just irreducible ones. If we denote that number by N red

g,d then
the reducible quadrics at the beginning of the section would give the count:

N red
−1,2 = 3.

In what follows we restrict our attention to the case of irreducible curves.
The numbersNg,d are called Gromov-Witten invariants of the plane P2. Their
study has been a topic of considerable interest among geometers, and it has
been a boon for the tropical approach. Here are some explicit such numbers:

Example 1.7.1. The simplest Gromov-Witten invariants of P2 are N0,1 = 1
and N0,2 = 1. This translates into saying that a unique line passes through
two points, and that a unique conic passes through five points. We also have
N1,3 = 1, which says that there is a unique cubic through nine points.

Example 1.7.2. The first non-trivial number is N0,3 = 12, and we wish to
explain this in some detail. It concerns curves defined by cubic polynomials

f = c0x
3 +c1x

2y+c2x
2z+c3xy

2 +c4xyz+c5xz
2 +c6y

3 +c7y
2z+c8yz

2 +c9z
3.

For general coefficients c0, . . . , c9, the curve {f = 0} is smooth of genus g = 1.
The curve becomes rational, i.e. the genus to drops to g = 0, precisely when
there is a singular point, and this happens if and only if the discriminant of f
vanishes. The discriminant ∆(f) is a homogeneous polynomial of degree 12
in the 10 unknown coefficients c0, c1 . . . , c9. It is a sum of 2040 monomials:

∆(f) = 19683c40c
4
6c

4
9−26244c40c

3
6c7c8c

3
9+5832c40c

3
6c

3
8c

2
9+ · · · −c22c3c44c35c26 (1.22)

The study of discriminants and resultants is the topic of the book by Gel’fand,
Kapranov and Zelevinsky [GKZ08], which contains many formulas for com-
puting them. Here is a simple determinant formula for (1.22). The Hessian
H of the quadrics ∂f

∂x
, ∂f

∂y
and ∂f

∂z
is a polynomial of degree 3. Form the 6× 6-

matrix M(f) whose entries are the coefficients of the six quadrics ∂f
∂x

, ∂f
∂y

, ∂f
∂z

,
∂H
∂x

, ∂H
∂y

, ∂H
∂z

. Then ∆(f) = det(M(f)).
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Now, suppose we are given eight points in P2 and we require them to lie on
the cubic {f = 0}. This translates into eight linear equations in c0, c1, . . . , c9.
Combining the eight linear equations with the degree 12 equation ∆(f) = 0,
we obtain a system of equations that has 12 solutions in P9. These solutions
are the coefficient vectors of the N0,3 = 12 rational cubics we seek to find.

Example 1.7.3. Quartic curves in the plane P2 can have genus 3, 2, 1 or 0.
The Gromov-Witten numbers corresponding to these four cases are

N3,4 = 1, N2,4 = 27, N1,4 = 225, and N0,4 = 620.

Here 27 is the degree of the discriminant of a ternary quartic. The last entry
means that there are 620 rational quartics through 11 general points.

The result of Mikhalkin [Mik05] can be stated informally as follows:

Theorem 1.7.4. The Gromov-Witten numbers Ng,d can be found tropically.

The following discussion is aimed at stating precisely what this means.
We consider tropical curves of degree d in R2. Each such curve C is the planar
dual graph to a regular subdivision of the triangle with vertices (0, 0), (0, d)
and (d, 0). We say that the curve C is smooth if this subdivision consists of
d2 triangles each having unit area 1/2. Equivalently, the tropical curve C is
smooth if it has d2 vertices. These vertices are necessarily trivalent.

A tropical curve C is called simple if each vertex is either trivalent or
is locally the intersection of two line segments. Equivalently, C is simple if
the corresponding subdivision consists only of triangles and parallelograms.
Here the triangles are allowed to have large area. Let t(C) be the number of
trivalent vertices and let r(C) be the number of bounded edges of C.

We define the genus of a simple tropical curve C by the formula

g(C) =
1

2
t(C)− 1

2
r(C) + 1. (1.23)

It is instructive to check that this definition makes sense for smooth tropical
curves. Indeed, if C is smooth then t(C) = d2 and r(C) = 3d, and we recover
the formula for the genus of a classical complex curve that is smooth:

g(C) =
1

2
d2 − 1

2
3d+ 1 =

1

2
(d− 1)(d− 2).

We finally define the multiplicity of a simple curve C as the product of the
normalized areas of all triangles in the corresponding subdivision. Thus, in
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computing the multiplicity of C, we disregard the “nodal singularities”, which
correspond to 4-valent crossings. We just multiply positive integers attached
to the trivalent vertices. The contribution of a trivalent vertex can also be
computed by the formula w1w2|det(u1, u2)| where w1, w2, w3 are the weights
of the adjacent edges and u1, u2, u3 are their primitive edge directions. That
formula is independent of the choice made because of the balancing condition
w1u1 +w2u2 +w3u3 = 0. If the curve is smooth then its multiplicity equals 1.

Here now is the precise statement of what was meant in Theorem 1.7.4:

Theorem 1.7.5 (Mikhalkin’s Correspondence Principle). The number of
simple tropical curves of degree d and genus g that pass through g + 3d − 1
general points in R2, where each curve is counted with its multiplicity, is
equal to the Gromov-Witten number Ng,d of the complex projective plane P2.

Example 1.7.6. We show the tropical count for the number N0,3 = 12 in
Example 1.7.2.

The proof of Theorem 1.7.5 given by Mikhalkin in [Mik05] uses methods
from complex geometry, specifically, deformations of J-holomorphic curves.
Subsequently, Gathmann and Markwig [GM07a, GM07b] developed a more
algebraic approach, and this has led to an ongoing systematic development
of tropical moduli spaces and tropical intersection theory on such spaces.

We close with one more example of what can be done with tropical curves
in enumerative geometry. The Gromov-Witten invariants N0,d for rational
curves (genus g = 0) satisfy the following remarkable recursive relations:

N0,d =
∑

d1+d2=d
d1,d2>0

(
d2

1d
2
2

(
3d− 4

3d1 − 2

)
− d3

1d2

(
3d− 4

3d1 − 1

))
N0,d1N0,d2 . (1.24)

This equation is due to Kontsevich, who derived them from the WDVV
equations, named after the theoretical physicists Witten, Dijkgraaf, Verlinde
and Verlinde, which express the associativity of quantum cohomology of P2.

Using Mikhalkin’s Correspondence Principle, Gathmann and Markwig
[GM08] gave a proof of this formula using tropical methods. Namely, they
establish the combinatorial result that simple tropical curves of degree d and
genus 0 passing through 3d−1 points satisfy the Kontsevich relations (1.24).
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1.8 Compactifications

Many of the advanced tools of algebraic geometry, such as intersection theory,
are custom-taylored for varieties that are compact, such as complex projective
varieties. On the other hand, in concrete problems, the given spaces are quite
often not compact. In such a case one first needs to replace the given variety
X by a nice compact variety X̄ that contains X as dense subset. Here the
emphasis lies on the adjective “nice” because the advanced tools will not
work or will give incorrect answers if the boundary X̄\X is not good enough.

We begin by considering a non-singular curve X in the n-dimensional
complex torus (C∗)n. The curve X is not compact, and we wish to add a
finite set of points to X so as to get a smooth compactification X̄ of X.

From a geometric point of view, it is clear what must be done. When
viewed over the field of real numbers R, the curve X is a surface. More
precisely, X is a non-compact Riemann surface. It is an orientable smooth
compact surface of some genus g with a certain number m of points removed.
The problem is to identify the m missing points and to fill them back in.
What is the algebraic procedure that accomplishes this geometric process?

To illustrate the algebraic complications, we begin with a plane curve

X = { (x, y) ∈ (C∗)2 : f(x, y) = 0 }.

Our smoothness hypothesis says that the three Laurent polynomial equations

f(x, y) =
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0 (1.25)

have no common solutions (x, y) in the algebraic torus (C∗)2. The first thing
one might try to compactifyX is to homogenize the given Laurent polynomial

fhom(x, y, z) = zN · f
(x
z
,
y

z

)
.

Here N is the smallest integer such that this expression is a polynomial. This
homogeneous polynomial defines a curve in the complex projective plane P2:

Xhom =
{

(x : y : z) ∈ P2 : fhom(x, y, z) = 0
}
.

This curve is a compactification of X but it usually not what we had in mind.
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Example 1.8.1. Let X be the curve in (C∗)2 defined by the polynomial

f(x, y) = c1 + c2xy + c3x
2y + c4x

3y + c5x
3y2. (1.26)

Here c1, c2, c3, c4, c5 are any complex numbers that satisfy

c2c
4
3 − 8c22c

2
3c4 + 16c32c

2
4 − c1c

3
3c5 + 36c1c2c3c4c5 − 27c21c4c

2
5 6= 0. (1.27)

This inequation ensures that the given non-compact curve X is smooth. The
discriminant polynomial in (1.27) is computed by eliminating x and y from
(1.25). The homogenization of the polynomial f(x, y) equals

fhom(x, y, z) = c1z
5 + c2xyz

3 + c3x
2yz2 + c4x

3yz + c5x
3y2.

The corresponding projective curve Xhom in P2 is compact but it is not
smooth. The boundary we have added to compactify consists of two points

Xhom\X =
{

(1 : 0 : 0), (0 : 1 : 0)
}
.

Both of these points are highly singular on the compact curve Xhom. Their
respective multiplicities are 7 and 14.

Another thing one might try is the closure of our curve X ⊂ (C∗)2 in the
product of two projective lines P1 × P1. Then the ambient coordinates are(
(x0 : x1), (y0 : y1)

)
, and our polynomial is replaced by its bihomogenization

x3
0y

2
0f(

x1

x0

,
y1

y0

) = c1x
3
0y

2
0 + c2x1y1x

2
0y0 + c3x

2
1y1x0y0 + c4x

3
1y1y0 + c5x

3
1y

2
1.

The compactification Xbihom of X is the zero set of this polynomial in P1×P1.
Now, the boundary we have added to compactify consists of three points

Xbihom\X =
{(

(1 : 0), (0 : 1)
)
,
(
(0 : 1), (1 : 0)

)
,
(
(0 : 1), (c5,−c4)

)}
. (1.28)

The compactification Xbihom is still singular but it is better than Xhom. The
first two points in (1.28) are singular, of multiplicity 5 and 3 respectively,
but the third point is smooth. It correctly fills in one of the holes in X.

The solution to our problem offered by tropical geometry is to replace a
given non-compact variety X ⊂ (C∗)n by a tropical compactification X trop.
Each such tropical compactification of X is characterized by a polyhedral fan
in Rn whose support is the tropical variety corresponding to X. In small and
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low-dimensional examples, including all curves and all hypersurfaces, there
is a unique coarsest fan structure, and in these cases we obtain a canonical
tropical compactification. However, in general, picking a tropical compacti-
fication requires making choices, and X trop will depend on these choices.

Tropical compactifications were introduced by Jenia Tevelev in [Tev07].
The geometric foundation for his construction is the theory of toric varieties.
In this introductory section we do not assume any familiarity with toric ge-
ometry, but we do encourage the reader to start perusing one of the text
books on this topic. In Chapter 6, we shall give a brief introduction to toric
geometry, and we shall explain its relationship to tropical geometry. In that
later chapter, we shall see the precise definition of the tropical compactifi-
cation X trop of a variety X ⊂ (C∗)n, and we shall prove its key geometric
properties. In what follows, we keep the discussion informal and entirely ele-
mentary, and we simply go over a few examples of tropical compactifications.

Example 1.8.2. Let X be the plane complex curve in (1.26). Its tropical
compactification X trop is a smooth elliptic curve, that is, it is a Riemann sur-
face of genus g = 1. The boundary X trop\X consists of m = 4 points. Unlike
the extra points in the bad compactifications Xhom and Xbihom in Example
1.8.1, these four new points are smooth on X trop. Thus, with hindsight, we
see that the complex curve X is a real torus with m = 4 points removed.

The tropical compactification of a plane curve is nothing but the clas-
sical compactification derived from its Newton polygon. Here, the Newton
polygon is the quadrangle Newt(f) = conv

{
(0, 0), (1, 1), (3, 2), (3, 1)

}
. The

genus g of the curve X is the number of interior lattice points of Newt(f).
The tropical curve is the union of the inner normal rays to the four edges

of this quadrangle. In other words, Trop(X) consists of the four rays spanned
by (1,−1), (1,−2), (−1, 0) and (−1, 3). Each ray has multiplicity one because
the edges of Newt(f) have no interior lattice points. This shows that m =
4 points need to be added to X to get X trop. The directions of the rays
specifies how these new points should be glued into X in order to make them
smooth in X trop. Algebraically, this process can be described by replacing
the given polynomial f by a certain homogeneous polynomial f trop, but the
homogenization process is now a little bit more tricky. One uses homogeneous
coordinates, in the sense of David Cox, on the toric surface given by Newt(f).
These generalize the homogeneous coordinates we used for P2 and P1×P1.

The examples of plane curves has two natural generalizations, namely,
curves in (C∗)n and hypersurfaces in (C∗)n. We briefly discuss both of these.
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If X is a curve in (C∗)n then the geometry is still easy. All we are doing
is to fill in m missing points in a punctured Riemann surface of genus g.
However, the algebra is more complicated now than in Example 1.8.2. The
curve X is given by an ideal I ⊂ C[x±1

1 , . . . , x±1
n ], and our primary challenge

is to determine the number m from I. The number m is the sum of the
multiplicities of the rays in the tropicalization of X. The tropical curve
Trop(X) is a finite union of rays in Rn but it is generally impossible to
determine these rays from (the Newton polytopes of) the given generators
of I. To understand how Trop(X) arises from I, one needs the concepts
pertaining to Gröbner bases and initial ideals to be introduced in Chapters 2
and 3. In practise, the software GFan, due to Anders Jensen, can be used to
compute the tropical curve Trop(X) and the multiplicity of each of its rays.

If X is a hypersurface in (C∗)n then the roles are reversed. The algebra is
still easy but the geometry is more complicated now than in Example 1.8.2.
Let f = f(x1, . . . , xn) be the polynomial that defines X. We compute its
Newton polytope Newt(f) ⊂ Rn. The tropical compactification X trop has
one boundary divisor for each facet of Newt(f). These boundary divisors are
varieties of dimension n−2 that get glued to the (n−1)-dimensional varietyX
in order to create the compact (n−1)-dimensional variety X trop. The precise
nature of this gluing is determined by the ray normal to the facet. What
is different from the curve case is that the boundary divisors are themselves
non-trivial hypersurfaces, and they are no longer pairwise disjoint. In fact,
describing their intersection pattern in X trop\X is an essential part of the
construction. The relevant combinatorics is encoded in the facial structure of
the polytope Newt(f), and we record this data in the tropical hypersurface.

Tropical geometry provides the tools to generalize these constructions to
an arbitrary d-dimensional subvariety X of the algebraic torus (C∗)n. The
variety X is presented by an ideal I in C[x±1

1 , . . . , x±1
n ]. Given any generating

set of I, we can compute the tropical variety Trop(X). For small examples
this can be done by hand, but for larger examples we use software such as
GFan for that computation. The output is a polyhedral fan ∆ in Rn whose
support |∆| equals Trop(X). That fan determines a tropical compactification
X trop(∆) of the variety X. Now, this compactification may not be quite nice
enough, so one sometimes has to replace the fan ∆ by a suitable refinement
∆′. This induces a map X trop(∆′) → X trop(∆), and now X trop(∆′) may
satisfy the technical conditions for tropical compactifications required by
Tevelev in [Tev07]. For example, ∆ may not be a simplicial fan, and, as is
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customary in toric geometry, we could replace ∆′ by a triangulation of ∆.

Let us consider the case when X is an irreducible surface in (C∗)n. In
any compactification X̄ of X, the boundary X̄\X is a finite union of irre-
ducible curves. What is desired is that these curves are smooth and that they
intersect each other transversally. If this holds then the boundary X̄\X is
said to have normal crossings. The tropical compactifications of a surface X
usually have the normal crossing property. Here the tropical variety Trop(X)
supports a two-dimensional fan in Rn. Such a fan has a unique coarsest fan
structure. We identify the tropical surface Trop(X) with that coarsest fan
∆, and we abbreviate X trop = X trop(∆). The rays in the fan Trop(X) corre-
spond to the irreducible curves in X̄\X, and two such curves intersect if and
only if the corresponding rays span a two-dimensional cone. Since the fan
Trop(X) is two-dimensional, it has no cones of dimension ≥ 3. This means
that the intersection of any three of the irreducible curves in X̄\X is empty.

Example 1.8.3. Let I be the ideal minimally generated by three linear
polynomials a1x1+a2x2+a3x3+a4x4+a5x5+a6 in C[x±1

1 , x±1
2 , x±1

3 , x±1
4 , x±1

5 ].
Its variety X is an non-compact surface in (C∗)5. If we took the variety of I
in affine space C5 then this would simply be an affine plane C2. But the torus
(C∗)5 is obtained from C5 by removing the hyperplanes {xi = 0}. Hence our
non-compact surface X equals the affine plane C2 with five lines removed.
Equivalently, X is the complex projective plane P2 with six lines removed.

If the three generators of I are linear polynomials with random coeffi-
cients, then the six lines form a normal crossing configuration in P2, i.e., no
three of the lines intersect. In that generic case, the tropical compactifica-
tion is constructed by simply filling the six lines back in, that is, we have
X trop = P2. Here the tropical variety Trop(X) consists of six rays and the
15 two-dimensional cones spanned by any two of the rays. Five of the rays
are spanned by the standard basis vectors e1, e2, e3, e4, e5 of R5, and the sixth
rays is spanned by their negated sum −e1 − e2 − e3 − e4 − e5.

The situation is more interesting if the generators of I are special, e.g.,

I = 〈x1 + x2 − 1, x3 + x4 − 1, x1 + x3 + x5 − 1 〉.

For this particular ideal, the configuration of six lines in P2 has four triples
of lines that meet in one point. Two of these special intersection points are

{x1 = x4 = x5 = 0, x2 = x3 = 1} and {x2 = x3 = x5 = 0, x1 = x4 = 1}.
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The other two points lie on the line at infinity, where they are determined by
{x1 = x2 = 0} and {x3 = x4 = 0} respectively. The tropical compactification
is constructed geometrically by blowing up these four special points. This
process replaces each triple intersection point by a new line that meets the
three old lines transversally at three distinct points. Thus X trop is a compact
surface whose boundary X trop\X consists of ten lines, namely, the six old
lines that had been removed from P2 plus the four new lines from blowing up.
Now, no three lines intersect, so the boundary X trop\X is normal crossing.
There are 15 pairwise intersection points, three on each of the four new lines,
and three old intersection points. The latter are determined by {x1 = x3 =
0}, {x2 = x4 = 0} and by intersecting {x5 = 0} with the line at infinity.

The combinatorics of this situation is encoded in the tropical surface
trop(X). It consists span 15 two-dimensional cones which are spanned by 10
rays. The rays correspond to the ten lines, and their primitive generators are

e1 , e2 , e3 , e4 , e5 , −e1 − e2 − e3 − e4 − e5
e1 + e4 + e5, e2 + e3 + e5, −e3 − e4 − e5, −e1 − e2 − e5.

The tropical surface trop(X) is the cone over a graph which is known as
the Petersen graph. The ten vertices of the Petersen graph correspond to the
ten lines in X trop\X, and the 15 edges of the Petersen graph correspond to
the pairs of lines that intersect on the tropical compactification X trop.

The previous example shows that tropical compactifications are non-
trivial and interesting even for linear ideals I. Since linear ideals cut out
linear spaces, we refer to the tropical variety trop(X) as a tropical linear
space. The combinatorics of tropical linear spaces is governed by the theory
of matroids. This will be explained in Chapter 4. In the linear case, the open
variety X ⊂ (C∗)n is the complement of an arrangement of n+1 hyperplanes
in a projective space, and the tropical compactification Xtrop was already
known before the advent of tropical geometry. It is essentially equivalent
to the wonderful compactifications of a hyperplane arrangement complement
due to De Concini and Procesi. This was shown in [FS05, Theorem 6.1].

1.9 Exercises

1. Let p : Rn → R be a function that is continuous, concave and piecewise-
linear, with finitely many linear functions having integer coefficients.
Show that p can be represented by a tropical polynomial in x1, . . . , xn.
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2. Formulate the Fundamental Theorem of Algebra in the tropical setting,
and give a proof. Why is the tropical semiring “algebraically closed”?

3. Prove Proposition 1.2.3. This concerns the tropical interpretation of
the dynamic programming method for integer programming.

4. Show that for any collection of five points in the plane there is a unique
tropical conic passing through them. If the five points are in special
position then you will need to use stable intersections to get uniqueness.

5. Let D = (dij) be a symmetric n×n-matrix with zeros on the diagonal
and positive off-diagonal entries. We say that D represents a metric
space if the triangle inequalities dik ≤ dij +djk hold for all indices i, j, k.
Show that D represents a metric space if and only if D �D = D.

6. The tropical 3×3-determinant is a piecewise-linear real-valued function
R3×3 → R on the 9-dimensional vectors space of 3 × 3-matrices. De-
scribe all the regions of linearity of this function and their boundaries.
In tropical geometry, what does it mean for a matrix to be singular?

7. How many distinct combinatorial types of quadratic curves are there?

8. Prove that the stable self-intersection of a plane curve is precisely its
set of vertices. What does this mean for classical algebraic geometry?

9. Given five general points in R2, there exists a unique tropical quadric
passing through these points. Compute and draw the quadratic curve
passing through the points (0, 5), (1, 0), (4, 2), (7, 3) and (9, 4).

10. A tropical cubic curve in R2 is smooth if it has precisely nine nodes.
Prove that every smooth cubic curve has a unique bounded region, and
that this region can have either three, four, five, six, seven, eight, or
nine edges. Draw examples for all seven cases.

11. Install Anders Jensen’s software GFan on your computer. Download
the manual and try running one example.

12. The amoeba of a curve of degree four in the plane C2 can have either 0,
1, 2 or 3 bounded convex regions in its complement. Construct explicit
examples for all four cases.
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13. Prove Theorem 1.4.2 on the logarithmic limit set, at least for curves.

14. Consider the plane curve given by the parametrization

x = (t− 1)13t19(t+ 1)29 and y = (t− 1)31t23(t+ 1)17.

Find the Newton polygon of the implicit equation f(x, y) = 0 of this
curve. How many terms do you expect the polynomial f(x, y) to have?

15. Let v1, v2, . . . , vm be vectors in Zn that sum to zero: v1+v2+ · · ·+vm =
0. Show that there exists a algebraic curve in (C∗)n whose correspond-
ing tropical curve in Rn consists of the rays spanned by v1, v2, . . . , vm.

16. Let ξ = 1
4
(1 +

√
33) and consider the group generated by the matrices

A and X in (1.13). Can you construct a finite presention of this group?

17. Let I be any ideal generated by two linear forms in Z[x, y, z]. What can
the integral tropical variety tropZ(I) look like? List all possibilities.

18. Given 14 general points in the plane C2, what is the number of rational
curves of degree five that pass through these 14 points?

19. Consider the curve X in (C∗)3 cut out by two general polynomials of
degree two. What is the genus g and the number m of punctures of
this Riemann surface? Describe its tropical compactification Xtrop.

20. The set of all singular 3×3-matrices with non-zero complex entries is a
hypersurface X in the 9-dimensional algebraic torus (C∗)3×3. Describe
its tropical compactification Xtrop. How many irreducible components
does the boundary Xtrop\X have? How do these components intersect?



56 CHAPTER 1. INTRODUCTION



Chapter 2

Building Blocks

Tropical geometry is a marriage between algebraic and polyhedral geometry.
In order to develop this properly, we need some tools and building blocks from
various mathematical disciplines, such as abstract algebra, discrete mathe-
matics, elementary algebraic geometry, and symbolic computation. The first
four sections of this chapter will introduce these building blocks. They are
fields and valuations, algebraic varieties, polyhedral geometry, and Gröbner
bases. In the last section we take a first step into the tropical world by
defining a family of bases for ideals in Laurent polynomial ring.

2.1 Fields

Let K be a field. We denote by K∗ the nonzero elements of K. A valuation
on K is a function val : K → R∪ {∞} satisfying the following three axioms:

1. val(a) = ∞ if and only if a = 0,

2. val(ab) = val(a) + val(b) and

3. val(a+ b) ≥ min{val(a), val(b)} for all a, b ∈ K∗.

The image of the valuation map is denoted Γval. This is an additive
subgroup of the real numbers R which is called the value group. We will
usually assume that the value group Γval contains 1. Since (λ val) : K → R is
a valuation for any valuation val and λ ∈ R>0, this is not a serious restriction.

Lemma 2.1.1. If val(a) 6= val(b) then val(a+ b) = min(val(a), val(b)).

57
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Proof. Without loss of generality we may assume that val(b) > val(a). Since
12 = 1, we have val(1) = 0, and so (−1)2 = 1 implies val(−1) = 0 as well.
This implies val(−b) = val(b) for all b ∈ K. The third axiom implies

val(a) ≥ min(val(a+ b), val(−b)) = min(val(a+ b), val(b)),

and therefore val(a) ≥ val(a+ b). But we also have

val(a+ b) ≥ min(val(a), val(b)) = val(a),

and hence val(a+ b) = val(a) as desired.

Consider the set of all field elements with non-negative valuation:

RK = { c ∈ K : val(c) ≥ 0 }.

The set RK is a local ring. Its unique maximal ideal equals

mK = { c ∈ K : val(c) > 0 }.

The quotient ring k = RK/mK is a field, called the residue field of (K, val).
Our main example of a field with a valuation is the field of Puiseux series.

Example 2.1.2. Let K be the field of Puiseux series with coefficients in the
complex numbers C. The scalars in this field are the formal power series

c(t) = c1t
a1 + c2t

a2 + c3t
a3 + · · · , (2.1)

where the ci are nonzero complex numbers for all i, and a1 < a2 < a3 < · · ·
are rational numbers that have a common denominator. We use the notation
C{{t}} for the field of Puiseux series over C. Note that we can write

C{{t}} =
⋃
n≥1

C((t1/n)),

where C((t1/n)) is the field of Laurent series in the formal variable t1/n.
This field has a natural valuation val : C{{t}} → R given by taking a non-

zero scalar c(t) ∈ C{{t}}∗ to the lowest exponent a1 that appears in the series
expansion of c(t). The field of rational functions C(t) is a subfield of C{{t}}
because every rational function c(t) in one variable t has a unique expansion
as a Laurent series in t. The valuation of a rational function c(t) is a positive
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integer if c(t) has a zero at t = 0, and it is a negative integer if c(t) has a
pole at t = 0. The value of val(c(t)) indicates the order of the zero or pole.
Here are three examples that illustrate the inclusion of C(t) into C{{t}}:

c(t) =
4t2 − 7t3 + 9t5

6 + 11t4
=

2

3
t2 − 7

6
t3 +

3

2
t5 + · · · has val(c(t)) = 2,

c̃(t) =
14t+ 3t2

7t4 + 3t7 + 8t8
= 2t−3 +

3

7
t−2 + · · · has val(c̃(t)) = −3,

π = 3.1415926535897932385..... has val(π) = 0.

We shall see in Theorem 2.1.4 that the field of Puiseux series is algebraically
closed, so we also get an inclusion of C(t) into C{{t}}. Here is an illustration:
Consider the two roots of the algebraic equation x2 − x+ t = 0. They are:

x1(t) =
1 +

√
1− 4t

2
= 1−

∞∑
k=1

1

k + 1

(
2k

k

)
tk with val(x1(t)) = 0,

x2(t) =
1−

√
1− 4t

2
=

∞∑
k=1

1

k + 1

(
2k

k

)
tk with val(x2(t)) = 1.

Combinatorialists will recognize the coefficients as Catalan numbers. Simi-
larly, every univariate polynomial equation with coefficients in C(t) can be
solved in C{{t}}. This algorithm for computing such series solutions is imple-
mented in computer algebra systems such as maple and Mathematica.

Remark 2.1.3. We can replace C by another field k in Example 2.1.2 and
construct the field k{{t}} of Puiseux series over k. If k is algebraically closed
of characteristic zero then so is k{{t}}. However, if k is algebraically closed
of positive characteristic p, then the Puiseux series field k{{t}} would not be
algebraically closed. Explicitly, if char(k) = p > 0, then the Artin-Schreier
polynomial xp − x− t−1 has no roots (see Remark 2.1.9 below for details).

Here is now the promised key property of the Puiseux series field:

Theorem 2.1.4. The field K = k{{t}} of Puiseux series is algebraically
closed when k is an algebraically closed field of characteristic zero.

Proof. We need to show that given a polynomial F =
∑n

i=0 cix
i ∈ K[x] there

is y ∈ K with F (y) =
∑n

i=0 ciy
i = 0. We shall describe an algorithm for

constructing y as a Puiseux series, by successively adding higher powers of t.
We first note that we may assume the following properties of F :
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1. val(ci) ≥ 0 for all i,

2. There is some j with val(cj) = 0,

3. c0 6= 0, and

4. val(c0) > 0.

To see this, note that if α = min{val(ci) : 0 ≤ i ≤ n} then multiplying F
by t−α does not change the existence of a root of F . This justifies the first
two properties. If c0 = 0 then y = 0 is a root so there is nothing to prove.

To make the last assumption, suppose that F satisfies the first three
assumptions but val(c0) = 0. If val(cn) > 0 then we can form G(x) =
xnF (1/x) =

∑n
i=0 cn−ix

i, which has the desired form, and if G(y′) = 0 then
F (1/y′) = 0. If val(c0) = val(cn) = 0 then consider the polynomial f := F ∈
k[x] that is the image of F modulo m. This is not constant since val(cn) = 0.
Since k is algebraically closed, the polynomial f has a root λ ∈ k. Then

F̃ (x) := F (x+ λ) =
n∑

i=0

(
n∑

j=i

cj

(
j

i

)
λj−i)xi

has constant term F̃ (0) = F (λ) with positive valuation, and F̃ still satisfies
the first three properties. If y′ is a root of F̃ , then y′ + λ is a root of F .

Set F0 = F . We will construct a sequence of polynomials Fi =
∑n

j=0 c
i
jx

j.
Each of the Fi is assumed to satisfy conditions 1 to 4 above, by the same
reasoning we employed for i = 0 above. The Newton polygon of Fi is the
convex hull of the points {(i, j) : there is k with k ≤ i, val(cik) ≤ j} ⊂ R2.
The Newton polygon has an edge with negative slope connecting the vertex
(0, val(ci0)) to a vertex (ki, val(ciki

)). The absolute value of that slope equals

wi =
val(ci0)− val(ciki

)

ki

.

Let fi be the image in k[x] of the polynomial t− val(ci
0)Fi(t

wix) ∈ K[x].
Note that fi has degree ki, and has nonzero constant term. Since k is alge-
braically closed we can find a root λi of fi. Let ri+1 be the multiplicity of λi

as a root of fi. Hence fi = (x− λi)
ri+1gi(x), where gi(λi) 6= 0. We define

Fi+1(x) = t− val(ci
0)Fi

(
twi(x+ λi)

)
=

n∑
j=0

ci+1
j xj.
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The coefficients ci+1
j of the new polynomial Fi+1(x) are given by the formula

ci+1
j =

n∑
l=j

cil t
lwi−val(ci

0)

(
l

j

)
λl−j

i . (2.2)

The image of this Puiseux series in the residue field k equals

ci+1
j =

1

j!

∂jfi

∂xj
(λi).

For 0 ≤ j < ri+1 this is zero, since λi is a root of fi of multiplicity ri+1. For
j = ri+1 this is nonzero. Thus val(ci+1

j ) > 0 for 0 ≤ i ≤ ri+1, and val(ci+1
j ) = 0

for j = ri+1. Note that here we have used the fact that char(k) = 0.
If ci+1

0 = 0 then x = 0 is a root of Fi+1, so λit
wi is root of Fi, and further

back substitutions reveal that
∑i

j=0 λjt
w0+···+wj is a root of F0 = F , and

we are done. Thus we may assume for each i that ci+1
0 6= 0, so Fi+1 satisfies

conditions 1 to 4 above. This ensures that the construction can be continued.
The observation above on val(ci+1

j ) implies that ki+1 ≤ ri+1 ≤ ki. Since n
is finite, the value of ki can only drop a finite number of times. Hence there
exist k ∈ {1, . . . , n} and m ∈ N such that ki = k for all i ≥ m. This means
that ri = k for all i > m, so fi = µi(x− λi)

k for all i > m, and some µi ∈ k.
Let Ni be such that cij ∈ k((t1/Ni)) for 0 ≤ j ≤ n. By Equation (2.2),

we can take Ni+1 to be the least common denominator of Ni and wi. Let
yi =

∑i
j=0 λjt

w0+···+wj ∈ k((t1/Ni)). We claim that Ni+1 = Ni works for

i > m. Indeed, we have wi+1 = val(ci0)/k, so it suffices to show val(ci0) ∈ k
Ni

Z
for i > m. This follows from the fact that fi is a pure power, so val(cij) = (k−
j)/k val(cj0) for 1 ≤ j ≤ k, and in particular val(cik−1) = 1/k val(cj0) ∈ 1

Ni
Z.

Thus there is an N for which yi ∈ k((t1/N)) for all i, and so the limit

y =
∑
j≥0

λjt
w0+···+wj lies in k((t1/N)).

It remains to show that y is a root of F . To see this, consider zi =∑
j≥i λjt

wi+···+wj , and note that y = yi−1 + tw0+···+wi−1zi for i > 0. We have

Fi(zi) = tval(c
i
0)Fi+1(zi+1).

Since z0 = y, it follows that

val(F (y)) =
i∑

j=0

val(cj0) + val(Fi+1(zi+1)) >
i∑

j=0

val(cj0) for all i > 0.
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Since val(cj0) ∈ 1
N

Z, we conclude val(F (y)) = ∞, so F (y) = 0 as required.

Remark 2.1.5. When char(k) = 0, the Puiseux series field k{{t}} is the
algebraic closure of the Laurent series field k((t)). See [Rib99, 7.1.A(β), p186].

The fact that the field of Puiseux series is not algebraically closed when
char(k) > 0 motivates the following definition. Recall that a group G is
divisible if for all g ∈ G and positive integers n there is a g′ with ng′ = g.

Example 2.1.6. Fix an algebraically closed field k, and a divisible group
G ⊂ R. The Mal’cev-Neumann ring K = k((G)) of generalized power series
is the set of formal sums α =

∑
g∈G αgt

g, where αg ∈ k and t is a variable,
with the property that supp(α) := {g ∈ G : αg 6= 0} is a well-ordered set.

If β =
∑

g∈G βgt
g then we set α + β =

∑
g∈G(αg + βg)t

g, and αβ =∑
h∈G(

∑
g+g′=h αgβg′)t

h. Then supp(α + β) ⊆ supp(α) ∪ supp(β) is well-
ordered, and thus α+β is well-defined. For αβ, define supp(α) + supp(β) to
be the set {g + g′ : g ∈ supp(α), g′ ∈ supp(β)}. This set is well-ordered, and
hence {(g, g′) : g+g′ = h} is finite for all h ∈ G. Thus, multiplication is well-
defined. The same holds for division, so K is a field. For details, see [Pas85,
Theorem 13.2.11, p. 601]. Moreover, it is known the field K is algebraically
closed. For a non-constructive proof see [Poo93, Corollary 4].

Remark 2.1.7. One might be tempted to define the elements of a ring of
generalized power series to be formal sums α =

∑
g∈G αgt

g with no restriction
on supp(α). However, with that definition, multiplication is not well-defined.
Without the well-ordering hypothesis, the set {(g, g′) : g + g′ = h} summed
over in the definition of the product of two series may be infinite.

The field of generalized power series is the most general field with valua-
tion we need to consider in the following sense.

Theorem 2.1.8. [Poo93, Corollary 5] Fix a divisible group G and an alge-
braically closed residue field k. Let K be a field with a valuation val with
value group G = Γval and residue field k. If val is trivial on the prime field
(Fp or Q) of K, then K is isomorphic to a subfield of k((G)).

Remark 2.1.9. Consider the case when k has characteristic p > 0. Then
the Artin-Schreier polynomial xp − x− t−1 has the roots

(t−1/p + t−1/p2

+ t−1/p3

+ . . . ) + c
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where c runs over the prime field Fp of k. These are well-defined elements
of the ring of generalized power-series, since {1/pi : i ≤ 0} ∪ {0} is well-
ordered, but they are not Puiseux series. Since there are p such roots to the
Artin-Schreier polynomial, which is of degree p, and the Puiseux series are
a subfield of the generalized power series, we see that there are no Puiseux
series roots. Hence the Puiseux series field over k is not algebraically closed.
See [Ked01] for a subfield of the field of generalized power series that contains
the algebraic closure of the field of Laurent series in positive characteristic.

Example 2.1.10. Let K = Q(t) be the algebraic closure of the field of
rational functions in one variable with coefficients in Q. Since Q(t) ⊂ C((t))
the field K is a subfield of C{{t}}. An advantage of K over C{{t}} is that
elements of K can be described in finite space as the roots of polynomials
g =

∑r
i=0 aix

i with coefficients ai ∈ Q(t). This allows them to be represented
in a computer. The valuation val : K → R is inherited from C{{t}}. The
valuations of the roots of g can also be read from g as follows. Write ai = pi/qi
for 1 ≤ i ≤ n where pi, qi ∈ Q[t]. The valuation of p =

∑s
j=0 bjt

j ∈ Q[t]
is min{j : bj 6= 0}, and val(ai) = val(pi) − val(qi). Then the valuations
of the roots α of g are the w ∈ R for which the graph of the function
min{val(ai) + ix : 0 ≤ i ≤ r} is not differentiable. Note that there are most
r such values w. We picture this as shown in Figure 1.1. The polynomial g
is replaced by an associated tropical polynomial, and the valuations of the
roots of g are the roots of that tropical polynomial, as in Section 1.1.

Lemma 2.1.11. Let K be algebraically closed with non-trivial valuation.
Then the value group Γval is a divisible subgroup of R that is dense in R.

Proof. The fact that Γval = val(K∗) is divisible follows from val(a1/n) =
1/n val(a). We assume for all valuations that 1 ∈ Γval, so this means in
addition that Q ⊆ Γval,which implies that Γval is dense in R.

Example 2.1.12. In [Mar07] Thomas Markwig proposes using a subfield of
k((R)) that contains the Puiseux series when char(k) = 0. His field has the
advantage that the valuation map K∗ → R is surjective, which is not the
case for the Puiseux series, since the valuation of any series is rational.

We will make frequent use of the fact that the surjection K∗ � Γval splits.

Lemma 2.1.13. If K is algebraically closed then the surjection K∗ � Γval

splits: there is a group homomorphism ψ : Γval → K∗ with val(ψ(w)) = w.
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Proof. Since K is algebraically closed, it contains the nth roots of all of its
elements. Thus K∗, and so Γval are divisible abelian groups. Since Γval is
an additive subgroup of R, it is torsion-free, so Γval is a torsion-free divisible
group, and thus isomorphic to a (possibly uncountable) direct sum of copies
of Q (see, for example, [Hun80, Exercise 8, p198]). Given any summand
isomorphic to Q, with w ∈ Γval taken to 1 by the isomorphism, and any a ∈
K∗ with val(a) = w, there is a group homomorphism ψ(Q) → K∗ taking w to
K∗. By construction this homomorphism satisfies val(ψ(m/nw)) = m/nw.
The universal property of the direct product then implies the existence of a
homomorphism Γval → K∗ with the desired property.

Throughout this book, we use the notation tw to denote the element
ψ(w) ∈ K∗. This is consistent with the canonical splitting for the Puiseux
series field C{{t}}. Here Γval = Q, and the elements tw are the powers of t.

Consider any field K with a valuation val : K → R∪{∞}. The valuation
induces a norm | · | : K → R by setting |a| = exp(− val(a)) for a 6= 0, and
|0| = 0. Here “exp” can be the exponential function for any base. This norm
on the field K satisfies the standard norm axioms: |a| = 0 if and only if a = 0,
|ab| = |a||b|, and |a + b| ≤ |a| + |b|. The last condition can be strengthened
to |a+ b| ≤ max{|a|, |b|}. Norms satisfying this are called non-archimedean.

The norm on K allows the use of analytical and topological arguments.
The field K is now a metric space with distance |a− b| between two elements
a, b ∈ K. A ball is the set of all elements whose distance to a fixed element
is bounded by some real constant. Our metric space K has the following
remarkable property: if two balls intersect then one must be contained in the
other. This structure suggest that K can be drawn as the leaves of a rooted
tree, and that is why pictures of trees are ubiquitous in arithmetic geometry.

Example 2.1.14. One of the original motivations for the study of valuations
is the p-adic valuation on the field Q of rational numbers for a prime number
p. The valuation val : Q → R given by setting valp(q) = k, for q = pka/b,
where p does not divide a or b. For example,

val2(4/7) = 2, val2(3/16) = −4.

We use this valuation to construct the completion Qp of Q. Algebraically,
this is the field of fractions of the completion Zp of Z at the prime p. See
[Eis95, Chapter 7] for details on completions. More analytically, the field Qp
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is the completion of Q with respect to the norm | · |p induced by the p-adic
valuation valp. An element a ∈ Qp can be written in the form

a =
∞∑

i=m

aip
i,

where ai ∈ {0, . . . , p− 1} and m ∈ Z. The p-adic integers Zp have the same
representation but with m ∈ N. The valuation val extends to Qp by setting
val(a) = min{i : ai 6= 0}. This is consistent with valuation on Q and the
inclusion of Q into Qp; for example, val2(6) = 1, and 6 = 1 · 21 + 1 · 22.

It is instructive to explore the topological properties of Qp. The ball with
center 0 and radius 1 in this metric space equals Zp. The topology on Zp is
fractal in nature, and, in fact, Z2 is homeomorphic to the Cantor set.

The field Qp is not algebraically closed. For instance, xp−x−p−1 has no
roots. Its algebraic closure Qp inherits the norm but it is no longer complete.
The completion of Qp is the field Cp, which is both complete and algebraically
closed. Performing arithmetic with scalars in these fields is a challenge.

In Theorem 2.1.8 we had assumed that val is trivial on the prime field.
That result does not apply to the fields K in Example 2.1.14, where the
prime field is Q but with the p-adic valuation. There exists a generalization
of the field k((G)) of generalized power series which allows an extension of
Theorem 2.1.8 to the case where val is the p-adic valuation on Q. However,
the arithmetic in such fields is really tricky. See [Poo93] for details.

We close this section with a remark about computational issues. It is
impossible to enter a generalized power series or arbitrary Puiseux series
into a computer, as it cannot be described by a finite amount of information.
This suggests that the best pure characteristic zero field we can hope to
compute with the algebraic closure Q(t) of the ring of rational functions in
t with coefficients in Q. Almost all of the examples in the examples will be
defined and computed over the field Q(t) of rational functions.

A typical computation one may wish to do is compute a Gröbner basis of
a homogeneous ideal in a polynomial ring, as in Section 2.4 below, or perhaps
even a tropical basis of an ideal in a Laurent polynomial ring, as in Section
2.5 below. If K = Q(t) then this computation can be reduced to working over
the field of constants k = Q. Namely, given an ideal I ⊂ Q(t)[x±1

1 , . . . , x±1
n ],

we may consider instead do our computation for I ′ = I∩Q[t±1, x±1
1 , . . . , x±1

n ].
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2.2 Algebraic Varieties

For the first four chapters of this book we assume no background in algebraic
geometry beyond that covered in the highly recommended undergraduate
text book by Cox, Little and O’Shea [CLO07]. We now recall their notation.

Definition 2.2.1. Let K be a field. Affine space over K of dimension n is

An
K = An = {(a1, a2, . . . , an) : ai ∈ K} = Kn.

The n-dimensional projective space over the field K is

Pn
K = Pn = (Kn+1 \ 0)/ ∼

where v ∼ λv for all λ 6= 0. The points of Pn are the equivalence classes of
lines through the origin 0. We write [v0 : v1 : · · · : vn] for the equivalence
class of v = (v0, v1, . . . , vn) ∈ Kn+1. The n-dimensional algebraic torus is

Tn
K = Tn = { (a1, a2, . . . , an) : ai ∈ K∗}.

Definition 2.2.2. The coordinate ring of the affine space An is the polyno-
mial ring K[x1, . . . , xn]. The homogeneous coordinate ring of the projective
space Pn is K[x0, x1, . . . , xn], and the coordinate ring of the algebraic torus
Tn is the Laurent polynomial ring K[x±1

1 , . . . , x±1
n ].

The affine variety defined by an ideal I ⊂ K[x1, . . . , xn] is

V (I) = {a ∈ An
K : f(a) = 0 for all f ∈ I}.

An ideal I ⊂ K[x0, . . . , xn] is homogeneous if it has a generating set con-
sisting of homogeneous polynomials. The projective variety defined by a
homogeneous ideal I ⊂ K[x0, . . . , xn] is

V (I) = {x ∈ Pn
K : f(x) = 0 for all f ∈ I}.

Any ideal I in K[x±1
1 , . . . , x±1

n ] defines a very affine variety in the torus:

V (I) = {x ∈ Tn
K : f(x) = 0 for all f ∈ I}.

For any variety X we consider the ideal IX of all polynomials (or ho-
mogeneous polynomials, or Laurent polynomials) that vanish on X. The
coordinate ring K[X] of a variety X is the quotient of the coordinate ring of
the ambient space, namely An, Pn or Tn, by the defining ideal IX .
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In tropical geometry, we are mostly concerned with Laurent polynomials
and the very affine varieties they define. Frequently, our ground field will be
K = C, the complex numbers. Very affine affine varieties are non-compact,
as was discussed in Section 1.8. Here is one more example along these lines.

Example 2.2.3. Let K = C, n = 3, and f = f(x1, x2, x3) and g =
g(x1, x2, x3) be random polynomials of degree two, and consider the ideal
I = 〈f, g〉 they generate in the Laurent polynomial ring C[x±1

1 , x±1
2 , x±1

3 ].
The very affine variety V (I) is a curve in the torus T3

C = (C∗)3. This is an
elliptic curve with 16 punctures. In other words, V (I) is a non-compact Rie-
mann surface of genus g = 1 but with m = 16 points removed. Students of
number theory may wish to contemplate the same example for K = Qp.

The map that takes an ideal to its variety is not a bijection; for example,
V (〈x〉) = V (〈x2〉) ⊂ A1. Two ideals I and J satisfy V (J) = V (I) if have the
same radical

√
J =

√
I. When K is algebraically closed, Hilbert’s Nullstel-

lensatz states that
√
I = IX where X = V (I) is the variety of I. For details,

see any book on commutative algebra (for example, [Eis95], or [CLO07]).

Experts should note that we do not assume that our varieties are irre-
ducible. A variety X is irreducible if it cannot be written as the union of two
proper subvarieties. Every variety can be decompose into a finite union of
irreducible varieties. This can be computed algebraically (e.g. in Macaulay2)
by means of the primary decomposition of the corresponding ideals. If X is
an irreducible variety then its vanishing ideal IX is a prime ideal.

The simplest prime ideals are those generated by linear polynomials. The
corresponding varieties are called linear spaces. An ideal is principal if it is
generated by one polynomial, and in this case the variety is a hypersurface.
Hypersurfaces are varieties of codimension one. The dimension of a variety
is its most basic invariant. The codimension is n minus the dimension. See
Chapter 9 in [CLO07] for the definition of dimension and how to compute it.

Linear algebra furnishes many interesting examples of varieties. For ex-
ample, the set X of all m× n-matrices of rank ≤ r is an irreducible variety.
Its prime ideal IX is generated by all (r+1)×(r+1)-minors of anm×n-matrix
of variables. Such varieties are called determinantal varieties, and they fre-
quently occur as irreducible components of other interesting varieties.

Example 2.2.4. Let n = 8, fix any field K, and consider the affine space
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A8 = A8
K whose points are pairs (A,B) of 2×2-matrices with entries in K:

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12
b21 b22

)
.

The commuting variety is defined by the matrix equation A ·B = B ·A. This
variety is irreducible and has dimension 4. (It’s a complete intersection). The
four matrix entries of the commutator A ·B −B ·A generate a prime ideal.

For an example with different properties consider the 5-dimensional vari-
ety defined by the matrix equation A · B = 0. This is the smallest instance
of what is known as a variety of complexes. Its radical ideal equals

I = 〈 a11b11 + a12b21, a11b12 + a12b22, a21b11 + a22b21, a21b12 + a22b22 〉.

This ideal I has the prime decomposition

(I + 〈a11a22 − a12a21, b11b22 − b12b21〉) ∩ 〈b11, b21, b12, b22〉 ∩ 〈a11, a12, a21, a22〉.

Hence the variety has three irreducible components, corresponding to what
the ranks of A and B are. The components have dimensions 5, 4 and 4.

Tropical geometers would study the variety {A · B = 0} not in affine
space A8 but in the torus T8. The variety in T8 is irreducible because the
components {A = 0} and {B = 0} disappear. In terms of algebra, the ideal
I is a prime ideal in the Laurent polynomial ring C[a±1

11 , a
±1
12 , . . . , b

±1
22 ].

We place a topology on affine space An by taking the closed sets to be
{V (I) : I is an ideal of K[x1, . . . , xn]}. This is the Zariski topology. To check
that ∅ and An are closed, note that ∅ = V (1), and An = V (0). It is an exercise
to check that the finite union of closed sets and the arbitrary intersection of
closed sets are closed. We denote by U the closure in the Zariski topology of
a set U . This is the smallest set of the form V (I) for some I that contains
U . Similarly we can define the Zariski topology on Pn and Tn.

There are inclusions Tn i→ An j→ Pn, where the second map sends x ∈ An

to (1 : x) ∈ Pn. The affine closure of a variety X ⊂ Tn is the Zariski closure
i(X) of i(X) ⊂ An. The projective closure of a variety X ⊂ An is the Zariski
closure j(X) of j(X) ⊂ Pn. We now recall their algebraic descriptions.

Definition 2.2.5. The degree of a polynomial f =
∑
cux

u in K[x1, . . . , xn]
is W = max{|u| : cu 6= 0}, where |u| =

∑n
i=1 ui. The homogenization f̃ of f

is the homogeneous polynomial f̃ =
∑
cux

W−|u|
0 xu ∈ K[x0, x1, . . . , xn]. Given

an ideal I inK[x1, . . . , xn], its homogenization is the ideal Iproj = 〈 f̃ : f ∈ I〉.
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Proposition 2.2.6. Let X = V (I) be a subvariety of the torus Tn for an ideal
I ⊂ K[x±1

1 , . . . , x±1
n ]. Then i(X) = V (Iaff), where Iaff = I ∩ K[x1, . . . , xn].

For an ideal I ⊂ K[x1, . . . , xn], the projective closure j(X) of V (I) is the
subvariety of projective space Pn defined by the homogeneous ideal Iproj.

Proof. The sets V (Iaff) and V (Iproj) are Zariski closed subsets of An and Pn

respectively that contain i(X) and j(X), so they contain i(X) and j(X).
Conversely, suppose that f ∈ K[x1, . . . , xn] vanishes on i(X). Then f(y) = 0
for all y ∈ X, so f ∈ I(X) when regarded as a polynomial in K[x±1

1 , . . . , x±1
n ],

and thus f ∈ Iaff . Similarly, if a homogeneous polynomial g ∈ K[x0, . . . , xn]
vanishes on the projective variety j(X) then g(1, y1, . . . , yn) = 0 for all y =
(y1, . . . , yn) ∈ X, so g(1, x) ∈ I, and thus g ∈ Iproj.

Example 2.2.7. Consider the very affine variety X = V (I) in T3 defined by

I =
〈 1

x1

+
1

x2

+
1

x3

− 1 ,
1

x1

+
2

x2

+
3

x3

〉
.

Then its affine closure i(X) = V (Iaff) in A3 is defined by the ideal

Iaff = I ∩K[x1, x2, x3] = 〈x2x3 + 2x2 + x3, 2x1x3 + x1 − x3 〉,

and its projective closure j(X) = V (Iproj) in P3 is defined by the ideal

Iproj = 〈x2x3 + 2x0x2 + x0x3, 2x1x3 + x0x1 − x0x3, 3x1x2 − x0x1 − 2x0x2〉.

Such computations are based on ideal quotients as in [CLO07, §4.4].

A morphism φ : X → Y of affine or very affine varieties is induced by a
ring homomorphism φ∗ : K[Y ] → K[X] between the respective coordinate
rings. Note that the homomorphism φ∗ takes the coordinate ring of Y to that
of X. The transformation X 7→ K(X) is a contravariant functor. Computing
the image of a morphism is known as implicatization (cf. Section 1.5).

For a morphism of tori φ : Tn → Tm we place the additional constraint
that the map φ be a homomorphism of algebraic groups. This means that the
map φ∗ : K[x±1

1 , . . . , x±1
m ] → K[x±1

1 , . . . , x±1
n ] is (after appropriate choice of

coordinates) a monomial map, so φ∗(xi) is a monomial for 1 ≤ i ≤ m. Equiv-
alently, the ring homomorphism φ∗ is induced by a group homomorphism,
which we also denote by φ∗, from Zm to Zn. If X = V (I) is a subvariety of
Tn, then the Zariski closure φ(X) of φ(X) in Tm is the variety V (φ∗−1(I)).
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Example 2.2.8. Let n = 1 and m = 2. The curve in Example 1.5.1 is given
as the image of a morphism Φ of very affine varieties T1 → T2. However,
that morphism is not a morphism of tori because the coordinates of Φ are not
monomials in t. A morphism of tori has the form φ : T1 → T2, t 7→ (ta, tb),
where a and b are integers. Assuming that a and b are relatively prime, the
image of φ is the binomial curve

{
(x, y) ∈ T2 : xb − ya = 0

}
.

Recall that the group of group automorphisms of the lattice Zn is isomor-
phic to GL(n,Z), the group of invertible matrices with integer entries and
determinant ±1. We denote by e1, . . . , en the standard basis for Zn.

Lemma 2.2.9. Given any vector v ∈ Zn with the greatest common divisor of
the |vi| equal to one, there is a matrix U ∈ GL(n,Z) with Uv = e1. Further,
if L is a rank k subgroup of Zn with Zn/L torsion-free then there is a matrix
U ∈ GL(n,Z) with UL equal to the subgroup generated by e1, . . . , ek.

Proof. The first statement follows from the second, as if the greatest common
divisor of the |vi| is one, the group Zn/v is torsion-free. Let A be a k × n
matrix with rows an integer basis for the subgroup L. The condition that
Zn/L is torsion-free implies that the Smith normal form of A is the k × n
matrix A′ with first k × k block the identity matrix, and all other entries
zero. There are matrices V ∈ GL(k,Z), U ′ ∈ GL(n,Z) with A′ = V AU ′.
Multiplying on the left by an element of GL(k,Z) does not change the integer
row span, so the integer row span of V A equals L. We now take U = U ′T .

An automorphism of the torus Tn is an invertible map specified by n
Laurent monomials in x1, . . . , xn. Thus the automorphism group of Tn is
isomorphic to GL(n,Z). Here the matrix entries are the exponents of the
monomials. We we speak of a coordinate change in Tn we mean the trans-
formation given by such an invertible monomial map. These multiplicative
changes of variables behave very differently from the more familiar linear
changes of variables in affine space An or projective space Pn. Automor-
phisms of Tn are essential for tropical geometry, and we already encountered
them in Bergman’s solution to Zalessky’s problem in Corollary 1.4.3.

Example 2.2.10. The invertible integer map U =

(
1 −1
1 −2

)
represents the

automorphism (x, y) 7→ (xy, x−1y−2) of the torus T2 and of its coordinate
ring C[x±1, y±1]. The image of the curve X = {(x, y) ∈ T2 : f(x, y) = 0} in
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Example 1.8.1 under the automorphism U is the curve defined by

(U ◦ f)(x, y) = c2 + c5x+ c1y + c3xy + c4x
2y2.

Note how the linear map U moves the tropical curve trop(X). The compact-
ifications Xhom = j(X) ⊂ P2 and Xbihom ⊂ P1 × P1 are changed under this
automorphism, but the tropical compactificationXtrop remains the same.

2.3 Polyhedral Geometry

We review here the notions from polyhedral geometry that are needed in this
book. Polyhedral geometry is a rich and beautiful area of discrete mathe-
matics. The reader unfamiliar with this area is urged to spend some time
with a reference such as the first few chapters of Ziegler’s text book [Zie95].

Definition 2.3.1. A set X ⊆ Rn is convex if for all u,v ∈ X and all
0 ≤ λ ≤ 1 we have λu + (1 − λ)v ∈ X. The convex hull conv(U) of a set
U ⊆ Rn is the smallest convex set containing U . If U = {u1, . . . ,ur} is finite
then conv(U) = {

∑r
i=1 λiui : 0 ≤ λj ≤ 1,

∑r
i=1 λi = 1} is called a polytope.

A polyhedral cone in Rn is the positive hull of a finite set of vectors in Rn:

C = pos(v1, . . . ,vr) := {
r∑

i=1

λivi : λi ≥ 0}.

Every polyhedral cone has the alternate description as a set of the form

C = {x : Ax ≤ 0 }

where A is a d× n matrix. For a proof see [Zie95, Theorem 1.3].
A face of a cone is determined by a linear functional w ∈ Rn∨, via

facew(C) = {x ∈ C : w · x ≤ w · y for all y ∈ C}.

This has the alternate description as facew(C) = {x ∈ C : A′x = 0}, where
A′ is a d′ × n submatrix of A. A polyhedral fan is a collection of polyhedral
cones, the intersection of any two of which is a face of each.

A convex set is, by definition, the intersection of half spaces in some Rn.
A polyhedron P ⊂ Rn is the intersection of finitely many closed half spaces:

P = {x ∈ Rn : Ax ≤ b},
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Figure 2.1: Polyhedral fans

Figure 2.2: Not a polyhedral fan

where A is a d× n matrix, and b ∈ Rd. Polytopes are those polyhedra that
are bounded [Zie95, §1.1]. A face of a polyhedron is determined by a linear
functional w ∈ Rn∨, via facew(P ) = {x ∈ P : w ·x ≤ w ·y for all y ∈ P}. A
face of P that is not contained in any larger proper face is called a facet. A
polyhedral complex is a collection of polyhedra satisfying two conditions: if a
polyhedron P is in the collection, then so is any face of P , and if P and Q
lie in the collection then P ∩ Q is a face of both P and Q. The polyhedra
in a polyhedral complex Σ that are not faces of any larger polyhedra are
called facets of the complex. Their facets are called ridges of the complex.
The support supp(Σ) of a polyhedral complex Σ is the set {x ∈ Rn : x ∈
P for some P ∈ Σ}. Polyhedral cones are special cases of polyhedra, and
fans are special cases of polyhedral complexes.

The lineality space of a polyhedron is the largest affine subspace contained
in P . Equivalently, it is the largest subspace V ⊂ Rn for which x + v ∈ P
for all x ∈ P,v ∈ V . The lineality space of a polyhedral complex Σ is the
intersection of all the lineality spaces of the polyhedra in the complex. The
affine span of a polyhedron P is the smallest affine subspace containing P .
The dimension of P is the dimension of its affine span. A polyhedral complex
Σ is pure of dimension d if every polyhedron in Σ that is not the face of any
other polyhedron in Σ has dimension d. The relative interior of P is the
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Figure 2.3: A polyhedral complex

interior of P inside its affine span. If P = {x ∈ Rn : Ax = b, A′x ≤ b′},
where each of the inequalities represented by A′x ≤ b′ can be strict for some
x ∈ P , then relint(P ) = {x ∈ Rn : Ax = b, A′x < b′}.

Definition 2.3.2. Let Γ be a subgroup of R. A Γ-rational polyhedron is

P = {x ∈ Rn : Ax ≤ b},

where A is a d × n matrix with entries in Q, and b ∈ Γd. A polyhedral
complex Σ is Γ-rational if every polyhedron in Σ is Γ-rational. We will be
interested in the case where Γ = Γval is the value group of a field K.

Definition 2.3.3. Let P ⊂ Rn be a polyhedron. The normal fan of P is the
polyhedral fan NP consisting of the cones

NP (F ) = cl({w ∈ Rn∨ : facew(P ) = F})

as F varies over the faces of P where cl(·) denotes the closure in the Euclidean
topology on Rn. The fan NP is also called the inner normal fan of P .

Definition 2.3.4. Let S = K[x±1
1 , . . . , x±1

n ] be the Laurent polynomial ring.
Given f =

∑
u∈Zn cux

u ∈ S, the Newton polytope of f is the polytope

Newt(f) = conv(u : cu 6= 0) ⊂ Rn.

If Newt(f) is 2-dimensional then we call it the Newton polygon. This notion of
Newton polygon differs from the one used in the proof of Theorem 2.1.4.

Example 2.3.5. Let S = C[x±1, y±1], and let f = 7x + 8y − 3xy + 4x2y −
17xy2 + x2y2. The Newton polygon of f is shown in Figure 2.5. Let g =
x−1 − y−1 + 3x − 2y + xy. The Newton polygon of g is the translation of
that for f by the vector (−1,−1). The same Newton polygon arises, up to an
automorphism of Z2, from the polynomials in Examples 1.8.1 and 2.2.10.
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1 2

3

1

2

4

4

3

Figure 2.4: The normal fan of a polyhedron P

Figure 2.5: The Newton polytope of 7x+ 8y − 3xy + 4x2y − 17xy2 + x2y2
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Let Σ1 and Σ2 be two polyhedral complexes with the same support. The
common refinement of Σ1 and Σ2 is the polyhedral complex Σ1∧Σ2 consisting
of the polyhedra {P ∩Q : P ∈ Σ1, Q ∈ Σ2}. This operation does not change
the support, so we have supp(Σ1 ∧ Σ2) = supp(Σ1) = supp(Σ2).

The Minkowski sum of two subsets A,B ⊂ Rn is the set

A+B = {a+ b : a ∈ A, b ∈ B}.

If A and B are polyhedra in Rn then A+B is also a polyhedron in Rn. The
same holds for polytopes, cones and supports of polyhedral complexes. Here
are two useful facts that relates Minkowski sums to other constructions.

• If P and Q are polyhedra in Rn then the normal fan of their Minkowski
sum is the common refinement of the two normal fans:

NP+Q = NP ∧NQ. (2.3)

• The Newton polytope of a product of two Laurent polynomials is the
Minkowski sum of the two given Newton polytopes:

Newt(f · g) = Newt(f) + Newt(g). (2.4)

Definition 2.3.6. Let Σ be a polyhedral complex in Rn, and let σ be a
polyhedron in Σ. The star of σ ∈ Σ is a fan in Rn, denoted starΣ(σ), whose
cones are indexed by those τ ∈ Σ for which σ is a face of τ . Fix w ∈ σ. Then
the cone of starΣ(σ) that is indexed by τ is the Minkowski sum

τ̄ = {v ∈ Rn : ∃ε > 0 with w + εv ∈ τ} + aff(σ) − w.

This is independent of the choice of w.

Example 2.3.7. The polyhedral complex Σ shown on the left of Figure 2.6
is a quadratic curve in the tropical plane, as seen in Section 1.3. The affine
span of the vertex σ1 in Σ is just the vertex itself. The star is shown on the
right. For σ2 the affine span is the entire y-axis, and this is also the star.

Computationally inclined readers may wonder what software packages
are available for computing with polytopes and polyhedra. An excellent
general purpose platform is the software polymake due to Evgeny Gavrilov
and Michael Joswig. For the specific study of polyhedral complexes and fans
arising in tropical geometry, we recommend Anders Jensen’s software GFan.
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σ2

σ1

star(σ1)

star(σ2)

Figure 2.6: The star of polyhedron in a polyhedral complex

2.4 Gröbner Bases

In this section we introduce Gröbner bases over a fieldK with a valuation val.
This is a generalization of the Gröbner basis theory familiar from [CLO07]
and other text books, such as [Eis95]. We do not requireK to be algebraically
closed, but we will assume that the valuation is nontrivial, that the value
group Γval is dense in Rn, and that there is a splitting φ : Γval → K∗ which we
denote by φ(w) = tw. If val(a) ≥ 0, so a lies in the valuation ring R of K, we
denote by a the image of a in the residue field k. We begin by considering the
case of a homogeneous ideal I of the polynomial ring S = K[x0, x1, . . . , xn].
Our primary goal is to introduce a new concept: the Gröbner complex of I.

For a polynomial f =
∑

u∈Nn+1 cux
u ∈ S, the tropicalization of f is

the function trop(f) : Rn → R given by w 7→ min(val(cu) + w · u). Fix
w ∈ (Γval)

n+1 and W = trop(f)(w) = min{val(cu) + w · u : cu 6= 0}. We set

inw(f) = t−W
∑

u∈Nn+1

cutw·uxu ∈ k[x0, . . . , xn].

This is the initial form of f with respect to w, and it is equal to

inw(f) =
∑

u∈Nn+1:
val(cu)+w·u=W

cut− val(cu)xu = t− trop(f)(w)f(tw1x1, . . . , twnxn).

Example 2.4.1. Let f = (t + t2)x0 + 2t2x1 + 3t4x2 ∈ C{{t}}[x±1
0 , x±1

1 , x±1
2 ].

If w = (0, 0, 0) then W = 1 and inw(f) = (1 + t)x0 = x0. If w = (4, 2, 0)
then W = 4 and inw(f) = 2x1 + 3x2. Also, in(2,1,0)(f) = x0 + 2x1.
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If I is a homogeneous ideal in K[x0, . . . , xn], then its initial ideal is

inw(I) = 〈inw(f) : f ∈ I〉 ⊂ k[x0, . . . , xn].

Note that inw(I) is an ideal in k[x0, . . . , xn]. A set G = {g1, . . . , gs} ⊂ I is a
Gröbner basis for I with respect to w if inw(I) = 〈inw(g1), . . . , inw(gs)〉.

Lemma 2.4.2. Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal and w ∈
(Γval)

n+1. Then inw(I) is homogeneous, and we may choose a homogeneous
Gröbner basis for I. Further, if g ∈ inw(I) then g = inw(f) for some f ∈ I.

Proof. To see that inw(I) is homogeneous, note that given f =
∑

i≥0 fi ∈ S
with each fi homogeneous of degree i we have inw(f) =

∑
i∈τ inw(fi), where

the sum is over those i with min{val(cu) +w · u : cu 6= 0} minimal, so inw(I)
is generated by the homogeneous elements inw(f) with f homogenous. This
also shows that we may choose our Gröbner basis to consist of homogeneous
polynomials. For the last claim, let g =

∑
aux

u inw(fu) ∈ inw(I), with fu ∈ I
for all u. Then g =

∑
au inw(xufu). For each au choose a lift cu ∈ K, and

let Wu = trop(fu)(w). Let f =
∑

u cut
−Wu−val(cu)xufu. Then by construction

trop(f)(w) = 0, and inw(f) =
∑

u aux
u inw(f) = g.

Example 2.4.3. Fix the fieldK = Q with the 2-adic valuation, so k = Z/2Z.
Let n = 3 and consider the line in P3

K defined by the ideal of linear forms

I = 〈x0 + 2x1 − 3x2, 3x1 − 4x2 + 5x3 〉.

If w = (0, 0, 0, 0) then the two generators are a Gröbner basis and inw(I) =
〈x0 + x2, x1 + x3〉. This is an ideal over k = Z/2Z. If w = (1, 0, 0, 1) then
inw(I) = 〈x1, x2〉, and a Gröbner basis is {x2− 3x0 + 10x3, x1− 4x0 + 15x3}.
How many distinct initial ideals can we get as w varies over Γ4

val = Z4 ?

The definitions of inw(f) and inw(I) extend naturally to the case when f
and I are taken from the polynomial ring k[x0, . . . , xn] over the residue field
k, and w ∈ (Γval)

n+1. This is obvious if K contains k. Otherwise we choose
a field K ′ with a nontrivial valuation containing k for which the valuation is
trivial on k, and the residue field is k. For example, one option is to take
K ′ to be a ring of generalized power series with coefficients in k and value
group Γval. Note that for I ⊂ k[x0, . . . , xn] we have inw(I ′) = inw(I) where
I ′ = IK ′[x0, . . . , xn]. This means that any result that assumes that I is
a homogeneous ideal in a polynomial ring with coefficients in a field with a
nontrivial valuation with Γval dense in R also applies to ideals in k[x0, . . . , xn].
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Lemma 2.4.4. Let I ⊆ K[x0, . . . , xn], and fix w, v ∈ Γn+1
val . Then there exists

ε > 0 such that the following holds for all ε′ ∈ Γval with 0 < ε′ < ε:

inv(inw(I)) = inw+ε′v(I).

Proof. We claim that it suffices to check that for all f ∈ K[x0, . . . , xn] there
is ε > 0 such that inv(inw(f)) = inw+ε′v(f) for all ε′ ∈ Γval with 0 < ε′ < ε.
To see this, note that inv(inw(I)) has a finite generating set {g1, . . . , gs} ⊂
k[x0, . . . , xn] with each generator gi of the form inv(inw(fi)) for some fi ∈ I.
We choose ε to be the minimum of the εi corresponding to these generating
fi. Then gi = inv(inw(fi)) = inw+ε′v(fi), so inv(inw(I)) ⊆ inw+ε′v(I), for any
ε′ < ε. Conversely, the ideal inw+ε′v(I) is finitely generated by h1, . . . , hr ∈
k[x0, . . . , xn], with hi = inw+ε′v(f

′
i) for some f ′i ∈ I. Then inw+ε′v(f

′
i) =

inv(inw(f ′i)) ∈ inv(inw(I)), and we conclude inw+ε′v(I) ⊆ inv(inw(I)).
We now prove the lemma for a single polynomial f =

∑
u∈Nn+1 cux

u. Then

inw(f) =
∑

u∈Nn+1

cutw·u−Wxu,

where W = trop(f)(w). Let W ′ = min(v · u : val(cu) + w · u = W ). Then

inv(inw(f)) =
∑

v·u=W ′

cutw·u−Wxu.

For all sufficiently small ε > 0, we have W + εW ′ = trop(f)(w + εv) and

{u : val(cu)+(w+ ε′v) ·u = W + εW ′} = {u : val(cu)+w ·u = W, v ·u = W ′}.

This implies inw+ε′v(f) = inv(inw(f)) for ε′ ∈ Γval with 0 < ε′ < ε.

By a term in S = K[x0, . . . , xn] we mean the product cux
u of a scalar

cu ∈ K times a monomial. Given w ∈ (Γval)
n+1, we define a ordering ≺w on

the set of all terms in S by setting

cux
u ≺w cu′x

u′

if val(cu) + w · u < val(cu′) + w · u′, or if val(cu) + w · u = val(cu′) + w · u′
and either w · u < w · u′ or w · u = w · u′ and xu ≺lex xu′ . Here ≺lex is
the usual lexicographic order. To emphasize that we are speaking of terms
here, rather than monomials, for a polynomial f =

∑
cux

u ∈ S we use the
notation ST(f) to denote the smallest term cux

u ∈ S of f with respect to ≺w.
For a polynomial

∑
u cux

u the support of f is the set of xu with cu 6= 0. The
following proposition is a variant of the division algorithm, adapted to the
notion of term orderings employed here to work over a field with valuation.
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Proposition 2.4.5. Fix a homogeneous ideal I in S = K[x0, x1, . . . , xn] and
ν ∈ N. For each w ∈ (Γval)

n+1 lying outside a finite union of hyperplanes in
Rn, the monomials of degree ν outside of inw(I)ν form a K-basis for (S/I)ν.
More precisely, each polynomial f ∈ Sν has a unique representation f = j+r
where j ∈ I, ST(r) �w ST(f), and r is a sum of terms not in inw(I).

Proof. The vector space Iν is a subspace of the N =
(

n+ν
ν

)
-dimensional vector

space Sν overK, which has as basis the monomials xu1 , . . . , xuN in S of degree
ν. Let g1, . . . , gs be a basis of Iν . Write gi =

∑N
j=1 cijx

uj , and form the s×N
matrix C with ijth entry equal to cij. Note that C has rank s, since the gi

are a basis for Id. Given a set J = {xui1 , . . . , xuis} of s monomials of degree
ν in S, we set WJ =

∑s
j=1w · uij , and we denote by dJ the minor of C

indexed by J . Since C has rank s, at least one dJ is nonzero, so there is J
with val(dJ) <∞. Our genericity notion for w is that the minimum over all
J of val(dJ) + WJ is achieved once. This can be guaranteed by choosing w
outside of the finite number of hyperplanes w ·eJ +val(dJ) = w ·eJ ′ +val(dJ ′),
where J, J ′ are collections of s monomials of degree d and eJ =

∑
xu∈J u. Let

D be the s × s submatrix of C consisting of the columns indexed by that
J minimizing val(dJ) +WJ . Since that minimum value val(dJ) +WJ is not
infinite, dJ 6= 0, so D is invertible. Set C ′ = D−1C. Then the first s
columns of C ′ consist of the s × s identity matrix, and every other nonzero
entry c′ij has val(c′ij) + w · uj − w · ui > 0. This latter observation follows
from the facts that the J ′th minor of C ′ is dJ ′/dJ for any collection J ′, and
val(dJ)+WJ < val(dJ ′)+WJ ′ , applied to the collection J ′ = J \{xui}∪{xuj}.

The polynomials g′1, . . . , g
′
s corresponding to the rows of C ′ are also a

K-basis for Iν , and inw(g′i) = xui ∈ k[x0, . . . , xn]. If g ∈ Iν is nonzero, then
g =

∑
aig

′
i where ai ∈ K, and inw(g) is a sum of those terms aix

ui with
val(ai)+w ·ui minimized. Thus xu1 , . . . , xus are a k-basis for inw(I). For f =∑N

i=1 dix
ui , set j =

∑s
i=1 dig

′
i. Then r = f − j =

∑N
i=r+1(di −

∑s
j=1 djcji)x

ui

is supported on the monomials not in inw(I). Let ST(f) = dlx
ul , so val(di)+

w·ui is minimized at i = l. Now val(di−
∑s

j=1 djcji)+w·ui ≥ val(di)+w·ui ≥
val(dl) + w · ul, so ST(r) �w ST(f).

To complete the proof, we observe that the monomials not in inw(I)ν are
linearly independent in S/I, as if g =

∑
cix

ui ∈ I, then inw(g) ∈ inw(I), so
inw(g) would not lie in the span of the monomials not in inw(I)ν . Conversely,
given f ∈ Sν , the polynomial r constructed above lies in the span of the
monomials not in inw(I)ν , and f − r ∈ I. Together this show that the
monomials not in inw(I)ν form a K-basis for (S/I)ν .
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In what follows we use the notations SK = K[x0, . . . , xn] and Sk =
k[x0, . . . , xn] for the two polynomial rings that contain a given homogeneous
ideal I and its various initial ideals inw(I). Following [CLO07, §9] we mea-
sure the size of these ideals by their Hilbert functions. These are numerical
functions N → N. For large enough arguments, the Hilbert function is a
polynomial (called the Hilbert polynomial) whose degree is one less than the
Krull dimension of the quotient of the polynomial ring modulo that ideal.

Corollary 2.4.6. For any w ∈ Γn+1
val and any homogeneous ideal I in SK,

the Hilbert functions of I agrees with that of its initial ideal inw(I) ⊂ Sk, i.e.

dimK(SK/I)ν = dimk(Sk/ inw(I))ν for all ν ≥ 0.

Thus the Krull dimensions of the residue rings SK/I and Sk/ inw(I) coincide.

Proof. Fix ν ≥ 0, and choose v ∈ (Γval)
n+1 generic in the sense of Proposi-

tion 2.4.5 for some basis g1, . . . , gs of inw(I)ν . We may assume by Proposi-
tion 2.4.5 that the inv(gi) = mi are all distinct monomials, and inv(gi) is not
a term in gj for i 6= j. By Lemma 2.4.2 we may assume that gi = inw(fi) for
some fi ∈ Iν . Choose a field extension K ′ of k with a nontrivial valuation
with residue field k. Then inv(inw(I))ν has a basis of monomials, and by
Proposition 2.4.5 the set of monomials B of degree ν not in inv(inw(I)) form
a K ′-basis, and thus a k-basis, for (Sk/ inw(I))ν .

By Lemma 2.4.4 there is ε > 0 for which inv(inw(I)) = inw+εv(I), and
inw+εv(fi) = mi, so the set ofmi is a basis for inw+εv(I)ν . Let f =

∑N
i=1 cui

xui ∈
Sν , where {xui : 1 ≤ i ≤ N} are the monomials of Sν , and B = {xur+1 , . . . , xuN}.
Then g = f −

∑r
i=1 cui

fi ∈ I is supported on B, so inw+εv(g) ∈ inw+εv(I) =
inv(inw(I)), which would contradict that the monomials of degree ν not in B
span inv(inw(I))ν unless g = 0. From this we conclude that f1, . . . , fs span
Iν . They are linearly independent since the monomial mi does not appear in
the support of fj for i 6= j.

Consider the r ×N matrix C for which cij is the coefficient of xuj in fi,
and let dJ be the determinant of the submatrix whose columns are indexed
by J = {xui1 , . . . , xuis}. Then the fact thatm1, . . . ,mr span inw+εv(I) implies
that val(dJ)+

∑
xu∈J w ·u is minimized at J = {xu1 , . . . , xur}, so w is generic

for w in the sense of Proposition 2.4.5, so B forms a K-basis for (S/I)ν .

The last sentence then follows from the fact that Hilbert function of a
homogeneous ideal determines the Krull dimension of its residue ring.
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Example 2.4.7. The Hilbert function of the ideals in Example 2.4.3 equals

dimQ(Q[x0, x1, x2, x3]/I)ν = dimk(k[x0, x1, x2, x3]/ inw(I))ν = ν + 1.

Here k = Z/2Z is the field with two elements. The Hilbert polynomial ν + 1
shows that the projective varieties have dimension 1 and degree 1. They are
straight lines in P3

Q and P3
k. Note that P3

k is a finite set with 15 elements.

Corollary 2.4.6 implies that the projective varieties V (I) ⊂ PK and
V (inw(I)) ⊂ Pk always have the same dimension. In typical applications,
V (I) is an irreducible variety but V (inw(I)) can have many irreducible com-
ponents. Our next result states that every irreducible component of V (inw(I))
has the same dimension as V (I). We shall phrase this in the algebraic lan-
guage of primary decomposition. Recall that P is a minimal associated prime
of an ideal I ⊂ S if I ⊆ P , and there is no prime ideal P ′ with I ⊆ P ′ ( P .

Lemma 2.4.8. If I ⊂ SK is a homogeneous prime of dimension d, and w ∈
(Γval)

n+1, then every minimal associated prime of inw(I) has dimension d.

Proof. Let G = {g1, . . . , gs} be a Gröbner basis for I, and let gt
i ∈ SK be

the polynomial t− trop(gi)(w)gi(t
w0x0, . . . , t

wnxn). Let R′ be the local subring
of R ⊂ K containing all the coefficients of all gt

i and the element t = t1

defined as follows. The ring R′ is constructed by taking the algebra over the
prime field F of K generated by these coefficients and t, and localizing at a
prime m′ minimal over t. Note that R′ is a Noetherian ring by construction.
By the Principal Ideal Theorem [Eis95, Theorem 10.1], the local ring R′ has
Krull dimension one, and so the maximal ideal m′ = m ∩ R′. The fraction
field K ′ of R′ is a subfield of K, and k′ = R′/m′ is a subfield of k.

Let I ′ = I ∩ R′[x0, . . . , xn], and let I ′′ = I ∩ K ′[x0, . . . , xn]. Since
I = I ′′ ⊗K′ K, we have dim(K[x0, . . . , xn]/I) = dim(K ′[x0, . . . , xn]/I ′′) = d.
In addition, dim(R′[x0, . . . , xn]/I ′) = d + 1. This follows, for example,
from [Eis95, Theorem 13.8] applied to the prime Q = 〈x0, . . . , xn〉 + m′

of R′[x0, . . . , xn]/I ′, since R′ is one-dimensional and universally catenary
by [Eis95, Corollary 18.10]. Thus the codimension of the prime ideal I ′

is n+ 1− d.
Let P be a prime ideal of R′[x0, . . . , xn] minimal over I ′ + m′. Note that

any prime containing I ′ + t must intersect R′ in a prime containing t, so
must contain m′. Thus P is minimal over I ′ + 〈t〉. By the Principal Ideal
Theorem [Eis95, Theorem 10.1] applied to the domain R′[x0, . . . , xn]/I ′ the
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codimension of P/I ′ is thus one, so the dimension of P is d+1−1 = d. Since
minimal primes of (I ′ + m′)/m′ are of the form P/m′ for minimal primes of
I ′ + m′, this shows that all minimal primes of (I ′ + m′)/m are d-dimensional.

It thus suffices to show that (I ′ +m′)/m⊗k′ k = inw(I). The polynomials
gt

i lie in R′[x0, . . . , xn] by construction, so their images in k[x0, . . . , xn] lie
in k′[x0, . . . , xn], which shows that inw(I) ⊆ (I ′ + m′)/m ⊗ k. The other
inclusion is automatic, so we conclude that every minimal prime of inw(I) is
d-dimensional.

Remark 2.4.9. The ring R = {x ∈ K : val(x) ≥ 0} need not be Noetherian.
For example, when K = C{{t}}, the ideals In = {x ∈ R : val(x) > 1/n} form
an increasing chain of ideals inR. This necessitated passing to the Noetherian
subring R′ of R in the proof of Lemma 2.4.8, as many of the fundamental
theorems of dimension theory apply only to Noetherian rings.

We now come to the punchline of this section, which is the construction
of a polyhedral complex from a given homogeneous ideal I ⊂ K[x0, . . . , xn].
First we shall define the polyhedra in this complex. Given w ∈ (Γval)

n+1, let

CI [w] =
{
w′ ∈ (Γval)

n+1 : inw′(I) = inw(I)
}
.

Let CI [w] be the closure of CI [w] in Rn+1 in the Euclidean topology. The
all-one vector 1 = (1, . . . , 1) lies in (Γval)

n+1, and, since I is homogeneous, it
satisfies inw(I) = inw+λ1(I) for all w ∈ (Γval)

n+1 and λ ∈ Γval. This implies
CI [w] = CI [w + λ1] for all w, λ. For that reason, we shall identify the
polyhedron CI [w] with its image in the n-dimensional space Rn+1/R1.

Example 2.4.10. Let n = 2 and K = Q with the 2-adic valuation, and let
I be the principal ideal generated by the homogeneous cubic polynomial

f = 2x3
0 + 4x3

1 + 2x3
2 + x0x1x2.

The initial ideal for w = (0, 0, 0) equals inw(I) = 〈x0x1x2〉. The polyhedron
CI [w] is a compact subset of the plane R3/R1. Namely, it equals the triangle

CI [w] =
{
(v0, v1, v2) ∈ R3/R1 : v0 + v1 + v2 ≤ min(3v0 +1, 3v1 +2, 3v2 +1)

}
.

Note that the use of the valuation is essential here because x0x1x2 would not
be an initial monomial of f in the usual Gröbner basis sense of [CLO07].
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Theorem 2.4.11. The polyhedra CI [w] as w varies over (Γval)
n+1 form a

(Γval)-rational polyhedral complex inside the n-dimensional space Rn+1/R1.

Proof. Fix ν ≥ 0, and let Cd
I [w] = {w′ ∈ (Γval)

n+1 : inw′(I)d = inw(I)d}. We

first show that the sets Cd
I [w] as w varies over (Γval)

n+1 form an (Γval)-rational
polyhedral complex with lineality space span(1). Let dimK Id = D, and fix
N =

(
n+d

d

)
. We enumerate the monomials of degree d as {xu1 , . . . ,xuN}. The

K-vector-space Id corresponds to a point in the Grassmannian GrK(D,N),

which we consider in its Plücker embedding into P(N
D)−1

K . By Corollary 2.4.6
we have dimk inw(I)d = D for all w ∈ (Γval)

n+1, so inw(I) corresponds to
a point in CGrk(D,N), which we consider in its Plücker embedding into

P(N
D)−1

k . Index the Plücker coordinates by sets in [N ]D := {J ⊂ {1, . . . , N} :

|J | = D}. We use the notation PJ for the Plücker coordinates in P(N
D)−1

K , and

pJ for the coordinates in P(N
D)−1

k . Let UJ =
∑

j∈J uj. Let W = min{val(PJ)+

w ·UJ : J ∈ [N ]D}. The key observation is that (up to a global scaling factor
for all J ∈ [N ]D) we have

pJ = tw·Uj−WPJ . (2.5)

To see this, choose a K-basis g1, . . . , gD for Id, and fix J with PJ 6= 0 and
val(PJ) + w · UJ = W . Let G be D × N matrix with entries in K whose
ith row records the coefficients of gi. Multiplying the jth column by tw·uJj

adds w · UJ to PJ . This corresponds to replacing gi by g̃i(x0, . . . , xn) =
gi(t

w0x0, . . . , t
wnxn), which are a basis for the degree d part of the ideal

tw · I := 〈g(t0x0, . . . , tnxn) : g ∈ I〉. By definition inw(I)d = in0(t
w · I),

so we may assume that w = 0. Multiplying G on the left by an element
A ∈ GL(D,K) does not change the property that the rows index a basis
for Id of the desired form, though it adds val(det(A)) to W . We may thus
multiply by the inverse of the D × D submatrix GJ of G indexed by the
columns in J to obtain a choice of gi with GJ the identity matrix, and thus
PJ = 1, and W = 0. Note that this also means that the valuation of every
entry of G is now nonnegative.

Let G be the D ×N matrix with entries in k whose (i, j)th entry is Gij.
The ith row of G records the coefficients of in0(gi). The submatrix indexed by
J is the identity matrix, so the polynomials in0(g1), . . . , in0(gD) are linearly
independent, and thus form a basis for in0(I). Thus for any J ′ ∈ [N ]D the
determinant of the D × D submatrix of G indexed by J ′ is pJ ′ , which thus
equals P J ′ . This proves Equation 2.5.
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Thus we have w′ ∈ Cd
I [w] if and only if val(PJ) + w′ ·′ UJ = W ′ :=

min{val(PJ)+w′ ·UJ : J ∈ [N ]D} for all J ∈ [N ]D with val(PJ)+w ·UJ = W ,
and val(PJ)+w′ ·UJ > W ′ for all J ∈ [N ]D with val(PJ)+w ·UJ > W . This
means that Cd

I [w] is the set of relative interior of an (Γval)-rational polyhedron

Cd
I [w]. Since the relative interiors of distinct Cd

I [w] do not intersect by the

definition of Cd
I [w], the collection of all Cd

I [w] form a polyhedral complex.
We next observe that there is a finite set D of degrees for which if

inw(I)d = inw′(I)d for all d ∈ D then inw(I) = inw′(I). By [Mac01, Corol-
lary 2.2] there are only a finite number of monomial ideals with the same
Hilbert function as I. It suffices to take D to contain the degrees of all
minimal generators of these monomial ideals, as these degrees contains a
Gröbner basis, and thus a generating set, for inw(I) and inw′(I). Note that
CI [w] =

⋂
d∈D C

d
I [w], so taking the common refinement of the polyhedral

complexes {Cd
I [w] : w ∈ (Γval)

n+1} for all d ∈ D gives the polyhedral complex

{CI [w] : w ∈ (Γval)
n+1}. Since the intersection of (Γval)-rational polyhedra is

Γval-rational, this complex is again (Γval)-rational.

Definition 2.4.12. The Gröbner complex Σ(I) of a homogeneous ideal I in
K[x0, x1, . . . , xn] is the polyhedral complex constructed in Theorem 2.4.11.
It consists of the polyhedra CI [w] as w ranges over (Γval)

n+1.

The support of the Gröbner complex Σ(I) is the n-dimensional space
Rn+1/R1. From the perspective of the tropical semiring (R,⊕,�), this space
can be regarded as the tropical projective space, as it is obtained from Rn+1

by identifying vectors that differ from each other by tropical scalar multipli-
cation. For that reason, the Rn+1/R1 was denoted TPn in some early papers
on tropical geometry. In this book, we retain the notation Rn+1/R1 be-
cause we wish to reserve the name tropical projective space notation TPn for
the natural compactification obtained by including ∞ in the tropical semir-
ing. Points in Rn+1/R1 can be uniquely represented by vectors of the form
(0, v1, . . . , vn), and this also is the convention used for drawing pictures.

Example 2.4.13. Let f = tx2
1 + 2x1x2 + 3tx2

2 + 4x0x1 + 5x0x2 + 6tx2
0 ∈

C{{t}}[x0, x1, x2], and let I = 〈f〉 be the ideal generated by f . The Gröbner
complex of I is a polyhedral complex in the plane R3/R1 shown in Figure 2.7.

The ideal I has 19 distinct initial ideals, corresponding to the various
cells of Σ(I). There are 6 cells of dimension two, 9 cells of dimension one,
and 4 cells of dimension one. The following table lists eight of the 19 initial
ideals, namely, those corresponding to the labels in the diagram.
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BA

(0, 1, 1)

(0, 0, 0)

(0, 0,−1)

D

E

F

G

(0,−1, 0)

H

C

Figure 2.7: The Gröbner complex of a plane curve subdivides R3/R1.

Cell Initial ideal Cell Initial Ideal
A 〈4x0x1〉 E 〈5x0x2〉
B 〈4x0x1 + 6x2

0〉 F 〈3x2
2〉

C 〈6x2
0〉 G 〈2x1x2〉

D 〈4x0x1 + 5x0x2 + 6x2
0〉 H 〈x2

1〉
In this example we observe that the initial ideal inw(I) contains a monomial if
and only if the corresponding cell is full-dimensional in the plane R3/R1.

The construction of the Gröbner complex allows us to define the concept
of a universal Gröbner basis. By this we mean a finite subset U of I such
that, for all w ∈ (Γval)

n+1, the set inw(U) = {inw(f) : f ∈ U} generates the
initial ideal inw(I). In particular, U generates I, as seen by taking w = 0.

Corollary 2.4.14. Every homogeneous ideal I ⊂ K[x0, . . . , xn] has finite
universal Gröbner basis.

Proof. The Gröbner complex Σ(I) is finite. Pick a representative w for each
cell, and compute a Gröbner basis of I with respect to each of these finitely
many w. The union of these Gröbner bases is a universal Gröbner basis.

An important special case arises when our homogeneous ideal I is gen-
erated by polynomials f whose coefficients all have valuation zero. If this
happens then we say that the polynomial f has constant coefficients and
same for the ideal I. The constant coefficient case is ubiquitous in this book,



86 CHAPTER 2. BUILDING BLOCKS

and it furnishes the bridge to the more familiar notion of term orders used
for Gröbner bases, as in [CLO07, Eis95, Stu96]. Indeed, if f is a homoge-
neous polynomial with constant coefficients and w ∈ (Γval)

n+1 is sufficiently
generic, then inw(f) is the leading monomial of f with respect to the term
order determined by −w. See e.g. [Eis95, §15.1]. This identifies the Gröbner
complex with the Gröbner fan of [Stu96, Chapter 2], up to a sign change.

Corollary 2.4.15. Let I be a homogeneous ideal with constant coefficients.
Then the negated Gröbner complex −Σ(I) is equal to the Gröbner fan of I.

In many of the geometric examples seen later in this book we will examine
a projective variety whose defining ideal I has coefficients in the field Q of
rational numbers. Such an ideal I has well-defined Gröbner fan, and it arises
as −Σ(I) from the inclusion of Q into any field with non-trivial valuation,
such as the Puiseux series C{{t}}. On the other hand, we can also consider
the p-adic Gröbner complex of the same ideal I. The p-adic Gröbner complex
Σ(I) is generally not a fan, as it arises from the p-adic valuation on Q.

2.5 Tropical Bases

In the previous section we introduced Gröbner bases and the Gröbner com-
plex for homogeneous ideals in a polynomial ring K[x0, x1, . . . , xn] over a
field K with valuation. We now examine the case when the ambient ring
is the Laurent polynomial ring K[x±] = K[x±1

1 , . . . , x±1
n ]. We wish to argue

that there is no natural intrisic notion of Gröbner bases for ideals in K[x±].
However, there is a natural analogue to the notion of a universal Gröbner
basis, namely, that of a tropical basis, and this is our subject in this section.

For every polynomial f ∈ K[x±] and w ∈ Γn
val we define the initial form

inw(f) ∈ k[x±] by the same rule as in the previous section. Namely, we set

inw(f) =
∑

u:val(cu)+w·u
=W

t− val cu cu x
u.

where W = min{val(cu) + w · u : cu 6= 0}.
Let I be any ideal in K[x±] = K[x±1

1 , . . . , x±1
n ]. The initial ideal inw(I)

is the ideal in k[x±] generated by the initial forms inw(f) as f runs over I.
So far, this is the same as in the polynomial ring, but there is an important
distinction that arises when we work with Laurent polynomials. For generic
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choices of w = (w1, . . . , wn), the initial form inw(f) is a unit in k[x±], and
the initial ideal inw(I) will be equal to the whole Laurent polynomial ring
k[x±]. If this happens then the initial ideal contains no information at all.
Tropical geometry is concerned with the study of those special weight vectors
w ∈ Γn

val for which the initial ideal inw(I) is actually proper ideal in k[x±].
In order to compute and study these initial ideals, it is useful to work with

homogeneous polynomials as in Section 2.4. We write Iproj for its homoge-
nization in K[x0, x1, . . . , xn]. This is the ideal generated by all polynomials

f̃ = xm
0 f

(x1

x0

, . . . ,
xn

x0

)
,

where f ∈ I and m is the smallest integer that clears the denominator.
The initial ideals inw(I) of an ideal I ⊆ K[x±] can be computed from the

initial ideals of its homogenization Iproj as follows. The weight vectors for
the homogeneous ideal Iproj live in naturally in the quotient space Rn+1/R1,
and we identify this space with Rn via w 7→ (0, w).

Proposition 2.5.1. Let I be an ideal in K[x±], and fix w ∈ (Γval)
n. Then

inw(I) equals the image of in(0,w)(Iproj) in k[x±] obtained by setting x0 = 1.

Proof. We first observe that for all f ∈ I∩K[x1, . . . , xn] we have in(0,w)(f̃) =
innw(f) as a Laurent polynomial. Indeed, let f =

∑
cux

u ∈ K[x±1
1 , . . . , x±1

n ],
and f̃ =

∑
cux

uxju

0 , where ju = maxcu 6=0 |u| − |u|. Then trop(f)(w) =
min(val(cu) + w · u) = min(val(cu) + (0, w) · (ju, u)) = trop(f̃)((0, w)). Thus

in(0,w)(f̃) =
∑

val(cu)+w·u=W cut− val(cu)xuxju

0 , so in(0,w)(f̃)|x0=1

=
∑

val(cu)+w·u=W cut− val(cu)xu = inw(f).
Next note that by multiplying by monomials if necessary, we may choose

a Gröbner basis {f1, . . . , fs} for I consisting of polynomials in K[x1, . . . , xn].
The above calculation applied to the fi shows that inw(I) ⊆ in(0,w)(Iproj)|x0=1.
For the reverse inclusion, note that if g is a homogeneous polynomial in Iproj,

then g = xj
0h̃ for some j, where h(x) = g(1, x), so since by Lemma 2.4.2 we

can choose a homogeneous Gröbner basis for Iproj this case also follows from
the above calculation.

Here are some facts about initial ideals of Laurent polynomial ideals.

Lemma 2.5.2. Let I be an ideal in K[x±1
1 , . . . , x±1

n ], and fix w ∈ (Γval)
n.

1. If inw(I) = 〈1〉, then there is f ∈ I with inw(f) = 1.
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2. If inv(inw(I)) = inw(I) for v ∈ Zn, then inw(I) is homogeneous with
respect to the grading given by deg(xi) = vi.

3. If g ∈ inw(I), then g = inw(h) for some h ∈ I.

4. If f, g ∈ K[x±1
1 , . . . , x±1

n ], then inw(fg) = inw(f) inw(g).

Proof. If inw(I) = 〈1〉, then by Proposition 2.5.1, there is a monomial xu in
in(0,w)(Iproj). By Lemma 2.4.2 there is f ∈ Iproj with in(0,w)(f) = xu. Let
ū = (u1, . . . , un) and g = x−ūf(1, x1, . . . , xn). Then g ∈ I, and inw(g) = 1.

Suppose now that inv(inw(I)) = inw(I). This means that inw(I) has
generating set of the form inv(g) for g ∈ inw(I). For any g =

∑
aux

u ∈
k[x±1

1 , . . . , x±1
n ], the initial form inv(g) =

∑
v·u=W aux

u for W = minau 6=0 v ·
u. This is homogeneous in the v-grading of degree W , so inw(I) has a v-
homogeneous generating set.

Part 3 follows directly from Lemma 2.4.2 and Proposition 2.5.1.
For the last part, write f =

∑
cux

u and g =
∑
dux

u. Then fg =
∑

w evx
v

for ev =
∑

u+u′=v cudu′ . Let W1 = trop(f)(w), and let W2 = trop(g)(w).
Since trop(fg) = trop(f) + trop(g), trop(fg)(w) = W1 + W2, so inw(fg) =∑

val(ev)+w·v=W1+W2
evt− val(ev)xv. Now val(ev) + w · v ≥ val(cu) + w · u +

val(du′)+w ·u′ for all u, u′ with u+u′ = v, so val(ev)+w · v = W1 +W2 only
if val(cu)+w ·u = W1 and val(du′)+w ·u′ = W2. So inw(fg) = inw(f) inw(g)
as required.

Definition 2.5.3. Let I be an ideal in the Laurent polynomial ring K[x±]
over a field K with a valuation. A finite generating set T of I is said to
be a tropical basis if, for all weight vectors w ∈ Γn

val, the initial ideal inw(I)
contains a unit if and only if inw(T ) = {inw(f) : f ∈ T } contains a unit.

Theorem 2.5.4. Every ideal I in K[x±] has a finite tropical basis.

Proof. Consider the homogenization Iproj of I. Its Gröbner complex Σ(Iproj)
is a polyhedral complex in Rn+1/R1. For each of the finitely many cells Γ(i)

in that complex, we select one representive vector (0, w(i)) ∈ Γn+1
var . For each

index i such that inw(i)(I) = 〈1〉, we select a Laurent polynomial f (i) ∈ I
such that inw(i)(f (i)) = 1. Such a choice is possible by Proposition 2.5.1 and
part 1 of Lemma 2.5.2. Now we define T by taking any finite generating set
of I and augmenting it by the Laurent polynomials f (i) constructed above.
Then T is a generating set of I. Consider an arbitrary weight vector w ∈ Γn

val.
There exists an index i such that in(0,w)(Iproj) = in(0,w(i))(Iproj), and this ideal
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contains a monomial if and only if inw(i)(f (i)) is a unit. Hence the initial ideal
inw(I) contains a unit if and only if the finite set inw(T ) contains a unit.

Our first example of a tropical basis concerns principal ideals.

Example 2.5.5. If f ∈ K[x±] then {f} is a tropical basis for the ideal
I = 〈f〉 it generates. Indeed, suppose that inw(I) contains a unit. Then
there exists g ∈ K[x±] such that inw(fg) = inw(f) · inw(g) is a unit, and this
implies that inw(f) is a unit.

The concept of a tropical basis extends naturally to ideals in a polyno-
mial ring. For instance, if J is a homogeneous ideal in K[x0, . . . , xn] then a
generating set T of J is a tropical basis of J if, for all w ∈ Γn

val, the ideal
inw(J) contains a monomial if and only if inw(T ) contains a monomial. In
this setting, being a Gröbner basis and being a tropical basis are unrelated.

Example 2.5.6. Let I be the homogeneous ideal in Q[x, y, z] generated by
G = {x + y + z, x2y + xy2, x2z + xz2, y2z + yz2}. The set G is a universal
Gröbner basis, that is, G is a Gröbner basis of I for all w ∈ Γ3

val. However, G
is not a tropical basis. To see this, we take w = (0, 0, 0). The ideal inw(I) = I
contains the monomial xyz but inw(G) = G contains no monomial.

Our next goal is to show that the notion of a tropical basis is invariant
under multiplicative coordinate changes in K[x±]. Along the way, we shall
prove a more general lemma that will be used in the proofs of Chapter 3.

Given a morphism φ : Tn → Tm, with associated ring homomorphism
φ∗ : K[x±1

1 , . . . , x±1
m ] → K[x±1

1 , . . . , x±1
n ], we also denote by φ∗ the map Zm →

Zn given by setting φ∗(ei) = u where φ∗(xi) = xu. This gives an induced
map, which we also denote by φ, by applying Hom(−,Z) to φ∗:

φ : Hom(Zn,Z) ∼= Zn → Hom(Zm,Z) ∼= Zm.

If the homomorphism φ∗ is given by φ∗(xi) = xai for ai ∈ Zn, let A be the
n ×m matrix with ith column ai. Then the map φ : Zn → Zm is given by
AT . We also denote by φ the induced map φ : Zn⊗R ∼= Rn → Zm⊗R ∼= Rm

induced by tensoring with R. Note that the restriction of φ to Γn
val has image

contained in Γm
val. Note also that for y = (y1, . . . , yn) ∈ Tn we have

val(φ(y)) = (val(ya1), . . . , val(yam))

= (a1 · val(y), . . . , am · val(y)) (2.6)

= AT val(y) = φ(val(y)).
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Lemma 2.5.7. Let φ∗ : K[x±1
1 , . . . , x±1

m ] → K[x±1
1 , . . . , x±1

n ] be a monomial
map. Let I ⊆ K[x±1

1 , . . . , x±1
m ] be an ideal, and let I ′ = φ∗−1(I). Then

φ∗(inφ(w)(I
′)) ⊆ inw(I) for all w ∈ (Γval)

n.

Thus, in particular, if inw(I) 6= 〈1〉 then we also have inφ(w)(I
′) 6= 〈1〉.

Proof. Let the monomial map φ∗ be given by φ(xi) = xai , where ai ∈ Zn.
Then φ(xu) = xAu, where A is the n × m matrix with ith column ai. Let
f =

∑
cux

u ∈ I ′, so φ(f) =
∑
cux

Au ∈ I. Let W = trop(f)(ATw) =
mincu 6=0(val(cu) + wAu) = trop(φ(f))(w). Thus

φ∗(inφ(w)(f)) = φ∗(
∑

val(cu)+wAu=W

t− val(cu)cux
u)

=
∑

val(cu)+wAu=W

t− val(cu)cux
Au

= inw(φ(f)).

Thus φ∗(inφ(w)(I
′)) ⊆ inw(I). If inφ(w)(I

′) = 〈1〉, then 1 = φ∗(1) ∈ φ∗(inφ(w)(I
′)) ⊆

inw(I), so if inw(I) 6= 〈1〉 we also have inφ(w)(I
′) 6= 〈1〉.

Corollary 2.5.8. Let φ∗ : K[x±1
1 , . . . , x±1

n ] → K[x±1
1 , . . . , x±1

n ] be a monomial
automorphism, let I ∈ K[x±1, . . . , x±1

n ] and let I ′ = φ∗−1(I). Then inw(I) =
〈1〉 if and only if inφ(w)(I

′) = 〈1〉.

2.6 Exercises

1. Show that the residue field of k{{t}} is isomorphic to k.

2. Let K = Q with the p-adic valuation. Show that the residue field of K
is isomorphic to Z/pZ.

3. Show that if K is an algebraically closed field with a valuation val :
K∗ → R, and k = R/m is its residue field, then k is algebraically closed.
Give an example to show that if k is algebraically closed it does not
automatically follow that K is algebraically closed.

4. Apply the algorithm implicit in the proof that C{{t}} is algebraically
closed to compute (the start of) a solution to the equation x2+t+1 = 0.
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5. (a) Show that if φ : C∗ → C∗ is a homomorphism of algebraic groups,
then φ has the form φ(x) = xn for some n ∈ Z.

(b) Deduce that Homalg(Tn,C∗) ∼= Zn.

(c) Conclude that the group of automorphisms of Tn as an algebraic
group is GL(n,Z).

6. Show that for a polyhedron σ in a polyhedral complex Σ the fan
starΣ(σ) defined in Definition 2.3.6 is independent of the choice of w.

7. Compute all initial ideals of of I = 〈7x2
0 + 8x0x1 − x2

1 + x0x2 + 3x2
2〉 ⊆

C[x0, x1, x2], and draw the Gröbner complex of I. Repeat for the ideal
I = 〈tx2

1 + 3x1x2 − tx2
2 + 5x0x1 − x0x2 + 2tx2

0〉 ⊆ C{{t}}[x0, x1, x2].

8. Let I = 〈7 + 8x1 − x2
1 + x2 + 3x2

2〉 ⊆ C[x±1
1 , x±1

2 ]. Draw the set {w ∈
Q2 : inw(I) 6= 〈1〉} . Repeat for the ideal I = 〈tx2

1 +3x1x2− tx2
2 +5x1−

x2 + 2t〉 ⊆ C{{t}}[x±1
1 , x±1

2 ].
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Chapter 3

Tropical Varieties

In this chapter we introduce the main player of this book, the tropical va-
riety. Here we restrict this term to mean the tropicalization of a classical
variety. Many research articles in tropical geometry use a more inclusive
notion of tropical varieties, which allows for balanced polyhedral complexes
that do not necessarily lift to a classical variety. This issue will be discussed
later in Chapter 8 but, for now, we always start with a classical variety
and we pass to its tropicalization. Throughout this chapter, the underly-
ing field K is assumed to be algebraically closed with a nontrivial valuation
val : K → R∪{∞}. The first section concerns the case of hypersurfaces, but
thereafter we pass to tropical varieties arising from arbitrary subvarieties of
the algebraic torus Tn = (K∗)n. We shall prove a range of key results about
tropical varieties, including the Fundamental Theorem (Theorem 3.2.4) and
the Structure Theorem (Theorem 3.3.4).

3.1 Tropical Hypersurfaces

Let K[x±] = K[x±1
1 , . . . , x±1

n ] denote the ring of Laurent polynomials over
the field K. Given a Laurent polynomial f =

∑
cux

u in K[x±], we define
its tropicalization trop(f) to be the real-valued function on Rn that is ob-
tained by replacing each coefficient cu by its valuation and by performing all
additions and multiplications in the tropical semiring (R,⊕,�). Explicitly,

trop(f)(w) = min(val(cu) +
n∑

i=1

uiwi) = min(val(cu) + u · w)

93
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(0, 0)

Figure 3.1: A tropical line

The tropical polynomial trop(f) is a piecewise linear function Rn → R.
The classical variety of the Laurent polynomial f ∈ K[x±] is its hyper-

surface in the algebraic torus Tn over the algebraically closed field K:

V (f) = {v ∈ Tn : f(v) = 0}.

We now define the tropical hypersurface associated with the same f :

Definition 3.1.1. The tropical hypersurface trop(V (f)) is the set

{w ∈ Rn : the minimum in trop(f) is achieved at least twice }.

This is the locus in Rn where piecewise linear function trop(f) fails to be
linear. This can be paraphrased as follows in terms of the initial forms

inw(f) =
∑

u:val(cu)+w·u
=trop(f)(w)

t− val cu cu x
u.

The tropical hypersurface trop(V (f)) is the topological closure in Rn of the
set of weight vectors w ∈ (Γval)

n for which inw(f) is not a unit in K[x±]. The
equivalence of these two definitions is the easy part of Theorem 3.1.3 below.

Example 3.1.2. Let K = C{{t}} be the field of Puiseux series with complex
coefficients. We consider Laurent polynomials f ∈ K[x±1, y±1].
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Figure 3.2: A tropical quadric

1. Let f = x+ y + 1. Then trop(f) = min(x, y, 0), so

trop(V (f)) = {x = y ≤ 0} ∪ {x = 0 ≤ y} ∪ {y = 0 ≤ x}.

This is the tropical line that is shown in Figure 3.1.

2. Let f = t2x2 + xy+ (t2 + t3)y2 + (1 + t3)x+ t−1y+ t3. Then trop(f) =
min(2+2x, x+y, 2+2y, x,−1+y, 3), so trop(V (f)) consists of the three
line segments joining the pairs {(−1, 0), (−2, 0))}, {(−1, 0), (−1,−3)},
and {(−1, 0), (3, 4)}, and the six rays {(−2, 0) + λ(0, 1) : λ ∈ R≥0},
{(−2, 0) + λ(−1,−1) : λ ∈ R≥0}, {(−1,−3) + λ(−1,−1) : λ ∈ R≥0},
{(−1,−3) + λ(1, 0) : λ ∈ R≥0}, {(3, 4) + λ(0, 1) : λ ∈ R≥0}, and
{(3, 4) + λ(1, 0) : λ ∈ R≥0}. This is illustrated in Figure 3.2.

The following theorem was first stated in the early 1990’s in a unpublished
manuscript by Mikhael Kapranov. It establishes the link between classical
hypersurfaces over a field K with valuation and tropical hypersurfaces in
Rn. In the next section, we state and prove the more general “Fundamental
Theorem” which works for varieties of arbitrary codimension. Kapranov’s
Theorem for hypersurfaces will then serve as the base case for the proof.

Theorem 3.1.3 (Kapranov’s Theorem). Fix a Laurent polynomial f =∑
u∈Zn cux

u in K[x±] = K[x±1
1 , . . . , x±1

n ]. The following three sets coincide:
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1. the tropical hypersurface trop(V (f)) in Rn;

2. the closure in Rn of the set {w ∈ (Γval)
n : inw(f) is not a monomial };

3. the closure of the set
{
(val(v1), . . . , val(vn)) : v ∈ V (f)

}
.

In addition, if w = val(v) for v ∈ (K∗)n with f(v) = 0 and n > 1 then Uw =
{v′ ∈ V (f) : val(v′) = w} is an infinite subset of the hypersurface V (f).

Example 3.1.4. Let K = C{{t}} and f = x + y + 1 ∈ K[x±1, y±1]. Then
X = {(z,−1− z) : z ∈ K, z 6= 0,−1}, and trop(V (f)) is the tropical line in
Figure 3.1. Note that inw(f) is a monomial unless w is a positive multiple
of (1, 0), (0, 1), or (−1,−1), in which cases inw(f) is y + 1, x + 1, or x + y
respectively, or w = (0, 0) with inw(f) = x+ y + 1. We have

(val(z), val(−1− z)) =



(val(z), 0) if val(z) > 0;
(val(z), val(z)) if val(z) < 0;
(0, a) if val(z) = 0,

z = −1 + αta + z̃,
with val(z̃) > a > 0;

(0, 0) otherwise.

As z varies in K \ {0,−1} we get all points in trop(V (f)) with rational
coordinates, confirming Theorem 3.1.3.

Proof of Theorem 3.1.3. Let (w1, . . . , wn) ∈ trop(V (f)). Then by definition
the minimum W = minu:cu 6=0(val(cu) + u · w) = trop(f)(w) is achieved at

least twice. This means that inw(f) =
∑

u:cu 6=0,val(cu)+u·w=W t− val(cu)cux
u is

not a monomial, and thus set 1 is contained in set 2. Conversely, if inw(f)
is not a monomial, then minu:cu 6=0{val(cu) + u ·w} is achieved at least twice,
so w ∈ trop(V (f)). This shows the other containment, so the first two sets
are equal.

We now prove the inclusion of set 3 in set 1. Since set 1 is closed, it
is enough to consider points in 3 of the form val(v) := (val(v1), . . . , val(vn))
where v = (v1, . . . , vn) ∈ (K∗)n satisfies f(v) = 0. Let v ∈ (K∗)n satisfy
f(v) = 0, so

∑
u∈Zn cuv

u = 0. This means that val(
∑

u∈Zn cuv
u) = val(0) =

∞ > val(cuv
u) for all u with cu 6= 0. Lemma 2.1.1 then implies that the

minimum of val(cuv
u) = val(cu) + u · val(v) for u with cu 6= 0 must be

achieved at least twice, where val(v) = (val(v1), . . . , val(vn)). Thus val(v) ∈
trop(V (f)) as required.
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The final inclusion is of the set 1 into the set 3. This is the content of
Proposition 3.1.5, which also proves that the set Uw is infinite.

Proposition 3.1.5. Let f =
∑

u∈Zn cux
u ∈ K[x±1

1 , . . . , x±1
n ], and let w ∈

Γn
val. If inw(f) is not a monomial, let α ∈ (k∗)n satisfy inw(f)(α) = 0. Then

there exists y ∈ (K∗)n with f(y) = 0, val(y) = w, and t−wy = α. If n > 1
then there are infinitely many such y.

Proof. The proof is by induction on n. Suppose first that n = 1. Since the
truth of the lemma is not affected by multiplying f by a monomial, we may
assume that f =

∑s
i=0 cix

i =
∏s

j=1(ajx − bj), where c0, cs 6= 0, and since
inw(f) is not a monomial we have s > 0. Then inw(f) =

∏s
j=1 inw(ajx− bj)

by Lemma 2.5.2. Since this is not a monomial, we have inw(ajx − bj) not
a monomial for some j, so val(aj) + w = val(bj). Set y = bj/aj. Note that
f(y) = 0, and val(y) = w as required.

We now assume that n > 1 and that the proposition holds for all smaller
n. The proof now breaks into two cases. The first case is when inw(f)|xn=αn 6=
0. In this case let yn be one of the infinitely many elements of K∗ with
val(yn) = wn, and t−wnyn = αn. Let g(x1, . . . , xn−1) ∈ K[x±1

1 , . . . , x±1
n−1] be

defined by setting g(x1, . . . , xn−1) = f(x1, . . . , xn−1, yn). Then g =
∑

u′∈Zn−1 du′x
u′ ,

where du′ =
∑

j∈Z c(u′,j)y
j
n.

Let W = trop(f)(w) = mincu 6=0{val(cu) + w · u}. Then

inw(f) =
∑

u:val(cu)+w·u=W

t− val cucux
u =

∑
u:val(cu)+w·u=W

aux
u,

where au ∈ k is equal to t− val(cu)cu. Thus

inw(f)(x1, . . . , xn−1, αn) =
∑

u′∈Zn−1

(
∑

j:val(c(u′,j))+w·u=W

a(u′,j)α
j
n)xu′ .

Since this is not the zero polynomial, there is
u′ ∈ Zn−1 with

∑
j:val(c(u′,j))+w·u=W a(u′,j)α

j
n 6= 0.

Let w′ = (w1, . . . , wn−1) ∈ Γn−1
val . Note that for such u′

val(du′) + w′ · u′ ≥ min
j:val(c(u′,j))+w·u=W

val(c(u′,j)y
j
n) + w′ · u′

= min
j:val(c(u′,j))+w·u=W

val(c(u′,j)) + w · (u′, j)

= W
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We next note that this inequality is in fact an equality. Indeed

t−W+w′·u′du′ =
∑

j:val(c(u′,j))+w·u=W

c(u′,j)y
j
nt−W+w′·u′

=
∑

j:val(c(u′,j))+w·u=W

c(u′,j)y
j
nt
− val(c(u′,j))−jwn

=
∑

j:val(c(u′,j))+w·u=W

c(u′,j)t
− val(c(u′,j))t−jwnyj

n

=
∑

j:val(c(u′,j))+w·u=W

a(u′,j)α
j
n

6=0,

so val(du′) + w′ · u′ = W . Thus for u′ with
∑

j:val(c(u′,j))+w·u=W a(u′,j)α
j
n 6= 0

inw′(g) =
∑

du′ 6=0

t−W+w′·u′du′x
u′

=
∑

du′ 6=0

∑
j∈Z

t−W+w′·u′c(u′,j)y
j
nx

u′

=
∑

du′ 6=0

∑
j∈Z

t−W+w·uc(u′,j)t−jwnyj
nx

u′

=
∑

du′ 6=0

(
∑
j∈Z

a(u′,j)α
j
n)xu′

=
∑
u′

(
∑
j∈Z

a(u′,j)α
j
n)xu′

= inw(f)(x1, . . . , xn−1, αn).

This means that inw′(g)(α1, . . . , αn−1) = 0, so inw′(g) has a root in the torus,
and is thus not a monomial. It then follows by induction that there exist
y1, . . . , yn−1 with val(yi) = wi and g(y1, . . . , yn−1) = 0. This gives the required
infinite number of y = (y1, . . . , yn) with f(y) = 0 and val(y) = w.

The second case is that inw(f)|xn=αn = 0. This means that inw(f) =
(xn − αn)f̃ , where f̃ ∈ k[x±1

1 , . . . , x±1
n ]. Then for any w′ ∈ (im val)n with

w′
n = 0 we have inw′(inw(f)) = (xn − αn) inw′(f̃), so inw′(inw(f)) is not a
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monomial. Then by Lemma 2.4.4 we know that inw+εw′(f) is not a monomial
for all such w′ and all sufficiently small ε ∈ Γval. Choose v ∈ Zn with
gcd(|vi|) = 1 for which inw+εv(f) is a monomial for all sufficiently small
ε ∈ Γval, and an automorphism φ : Tn

K → Tn
K with φ(v) = e1. Such a v exists

for any polynomial, since by Lemma 2.4.4 it suffices to note that in the
constant coefficient case one can always find v ∈ Zn with inv(f) a monomial.
The existence of the automorphism then follows from Lemma 2.2.9. Note
that since φ is linear we have φ(w + εv) = φ(w) + εe1. Let h = φ∗−1(f). It
suffices to show that we can find z ∈ (K∗)n with h(z) = 0 and val(z) = φ(w),
as then y = φ−1(z) satisfies f(y) = 0 and val(y) = w. The automorphism
φ : Tn

K → Tn
K induces an automorphism, which we also denote by φ, of Tn

k .
Let α̃ = φ(α) ∈ Tn

k . Since the property of an initial form being a monomial is
invariant under multiplicative automorphisms, we conclude that inφ(w)+εe1(h)
is a monomial for all sufficiently small ε, so inφ(w)(h)(x1, . . . , xn−1, α̃n) 6=
0. Thus by the first case the desired z with h(z) = 0 and val(z) = φ(w)
exists.

In the rest of this section we examine the polyhedral geometry of tropical
hypersurfaces, making the connection to the topics discussed in Section 2.3.

Proposition 3.1.6. Let f ∈ K[x±] be a Laurent polynomial. The tropi-
cal hypersurface trop(V (f)) is the support of a pure polyhedral complex of
dimension n− 1.

Proof.

Proposition 3.1.7. Suppose that all coefficients of the Laurent polynomial
f have zero valuation. Then trop(V (f)) is the support of (n−1)-dimensional
polyhedral fan. This fan is the (n− 1)-dimensional skeleta of the normal fan
to the Newton polyhedron of f .

Proof.

3.2 The Fundamental Theorem

The goal of this section is to prove the fundamental theorem of tropical
algebraic geometry, which establishes a tight connection between classical
varieties and tropical varieties. We must begin by defining the latter objects.
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Definition 3.2.1. Let I be an ideal in the Laurent polynomial ring K[x±] =
K[x±1

1 , . . . , x±1
n ] and let X = V (I) be its variety in the algebraic torus Tn.

The tropicalization trop(X) of the variety X is the intersection of all tropical
hypersurfaces defined by Laurent polynomials in the ideal I. In symbols,

trop(X) =
⋂
f∈I

trop(V (f)) ⊆ Rn. (3.1)

Note that trop(X) depends only on the radical ideal
√
I and not on I itself.

By a tropical variety in Rn we mean any subset if the form trop(X) where
X is a subvariety of the torus Tn over some field K with a valuation.

In this definition, it does not suffice to take the intersection over the
tropical hypersurfaces trop(V (f)) where f runs over any generating set of I.

Example 3.2.2. Let n = 3, K = C{{t}}, and I = 〈x+ y+ z, x+2y 〉. Then
trop(V (x+ 2y)) = {(w1, w2, w3) ∈ R3 : w1 = w2} and trop(V (x+ y + z)) =
{(w1, w2, w3) ∈ R3 : w1 = w2 ≤ w3 or w2 = w3 ≤ w1 or w3 = w1 ≤ w2}. The
intersection of these two tropical hypersurfaces

trop(V (x+ y + z))∩ trop(V (x+ 2y)) = {(w1, w2, w3) ∈ R3 : w1 = w2 ≤ w3}.

However, we have z − y ∈ I, and trop(V (z − y)) = {(w1, w2, w3) : w2 = w3}
does not contain some of the points in this intersection, such as (1, 1, 2).
Thus we cannot compute a tropical variety by just intersecting the given
hypersurfaces, but we usually have to enlarge the basis of the ideal I.

This brings us back to the notion of a tropical basis, as in Section 2.5.

Corollary 3.2.3. Every tropical variety is a finite intersection of tropical
hypersurfaces. More precisely, if T is a tropical basis of the ideal I then

trop(X) =
⋂
f∈T

trop(V (f)).

Proof. Suppose that w ∈ Rn is not in trop(X). Then there exists f ∈ I such
that inw(f) is a monomial, and thus a unit in K[x±]. By the definition of
tropical basis, then there exists f ∈ T such that inw(f) is a unit. This means
w 6∈ trop(V (f)).
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In Example 3.2.2, the two given generators are not yet a tropical basis of
the ideal I. However, we get a tropical basis if we add one more polynomial:

T =
{
x+ y + z, x+ 2y, y − z

}
.

The tropical variety is the intersection of these three tropical hypersurfaces:

trop(X) = trop(V (x+ y + z)) ∩ trop(V (x+ 2y)) ∩ trop(V (y − z))

= {(w1, w2, w3) ∈ R3 : w1 = w2 = w3}.

We now come to the main result of this section, which is the direct gen-
eralization of Kapranov’s Theorem from hypersurfaces to arbitrary varieties.

Theorem 3.2.4 (Fundamental Theorem of Tropical Algebraic Geometry).
Let I be an ideal in K[x±] and X = V (I) its variety in the algebraic torus
Tn ∼= (K∗)n. Then the following three subsets of Rn coincide:

1. The tropical variety trop(X) as defined in equation (3.1);

2. the closure in Rn of the set of all vectors w ∈ (Γval)
n with inw(I) 6= 〈1〉;

3. the closure in Rn of the set of coordinatewise valuations of points in X:

val(X) = {(val(u1), . . . , val(un)) : (u1, . . . , un) ∈ X}.

The rest of this section is devoted to proving Theorem 3.2.4. We begin
with a sequence of lemmas whose purpose is to get prepared for that proof.

Recall from commutative algebra that a minimal associated prime of an
ideal I is a prime ideal P ⊃ I for which there is no prime ideal Q with
P ) Q ⊃ I. The variety V (I) has a decomposition as ∪P minimal V (P ).

Lemma 3.2.5. Let X ⊂ Tn be an irreducible variety of dimension d, with
prime ideal I ⊂ K[x±], and w ∈ trop(X)∩Γn

val. Then all minimal associated
primes of the initial ideal inw(I) in k[x±] have the same dimension d.

Proof. Let Iproj ⊆ K[x0, x1, . . . , xn] be as in Definition 2.2.5. Then Iproj is
prime of dimension d+1, so by Lemma 2.4.8 all minimal primes of in(0,w)(Iproj)
have dimension d+ 1, and thus by the Principal Ideal Theorem all minimal
primes of in(0,w)(Iproj)+〈x0−1〉 have dimension at least d. Since in(0,w)(Iproj)
is homogeneous by Lemma 2.4.2, all minimal primes are homogeneous and
containined in 〈x0, . . . , xn〉, so do not contain x0 − 1. Thus minimal primes
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of in(0,w)(Iproj) + 〈x0− 1〉 have dimension exactly d. By Proposition 2.5.1 we
have that inw(I) = in(0,w)(Iproj)|x0=1 viewed as an ideal in k[x±1

1 , . . . , x±1
n ], so

minimal primes of inw(I) are the images in k[x±1
1 , . . . , x±1

n ] of those primes
minimal over in(0,w)(Iproj) + 〈x0 − 1〉 that do not contain any monomial in
x1, . . . , xn, which all thus have dimension d. Since the dimension of inw(I)
is the minimum of the dimensions of all minimal primes, this implies that
dim(inw(I)) = d.

The proof Theorem 3.2.4 will proceed by projecting to the hypersurface
case. We need to know that we can choose this projection sufficiently nicely,
which the following proposition guarantees.

Proposition 3.2.6. Let X be a subvariety of Tn. Then there exists a pro-
jection φ : Tn → Tm for which the image φ(X) ⊂ Tm is closed in the Zariski
topology. This projection can be chosen so that the kernel of the associated
map φ : Rn → Rm does not nontrivially intersect a finite number of subspaces
of Rn.

Proof.

Much of the power of tropical geometry comes from the fact that the
Gröbner definition (Part 2 of Theorem 3.2.4) gives a polyhedral complex
structure to the tropical variety, as we now see.

Proposition 3.2.7. Let I be an ideal in K[x±1]. The set {w ∈ Rn : inw(I) 6=
〈1〉} is the support of an (Γval)-rational polyhedral complex.

Proof. Let Iproj be as in Proposition 2.5.1. The Gröbner complex Σ(Iproj) is
an (Γval)-rational polyhedral complex in Rn+1 by Theorem 2.4.11. By Propo-
sition 2.5.1 we have inw(I) = 〈1〉 if and only if 1 ∈ in(0,w)(Iproj)|x0=1. This
occurs if and only if there is an element in in(0,w)(Iproj) that is a polynomial
in x0 times a monomial in x1, . . . , xn, and thus if and only if there is a mono-
mial in in(0,w)(Iproj), since in(0,w)(Iproj) is homogeneous by Lemma 2.4.2. So
{w ∈ Rn : inw(I) 6= 〈1〉} = {w : in(0,w)(Iproj) does not contain a monomial}.
It is thus a union of slices of polyhedra in Σ(Iproj), and so a polyhedral
complex.

The polyhedral complex structure guaranteed by Proposition 3.2.7 is not
unique. We next note the following bound on its dimension. This will be
further improved to an equality in Theorem 3.3.7, whose proof uses Theo-
rem 3.2.4.
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Lemma 3.2.8. Let X ⊂ Tn have dimension d, with ideal I ⊆ K[x±1
1 , . . . , x±1

n ].
Then every polyhedron in the polyhedral complex Σ whose support is the set
{w ∈ (Γval)

n : inw(I) 6= 〈1〉} has dimension at most d.

Proof. Let w ∈ (Γval)
n lie in the relative interior of a maximal-dimensional

polyhedron P ∈ Σ. Let the affine span of P = w + L, where L is a subspace
of Rn. By Lemma 2.2.9 and Corollary 2.5.8 we may assume that L is the
span of e1, . . . , ek for some k. We need to show that k = dim(L) ≤ d. Since
w lies in the relative interior of P , inw+εv(I) 6= 〈1〉 for all v ∈ Zn ∩ L and
ε ∈ (Γval) sufficiently small. Thus Lemma 2.4.4 and Proposition 2.5.1 imply
that inv(inw(I)) = inw(I) for all v ∈ L ∩ Zn. Choose a generating set G for
inw(I) with the property that no element is the sum of two other polynomials
in inw(I) containing fewer monomials. Then f ∈ G implies that inv(f) = f
for all v ∈ L, as inv(f) is otherwise a polynomial in inw(I) containing fewer
monomials. In particular inei

(f) = f for 1 ≤ i ≤ k, so f = mf̃ , where
m is a monomial, and x1, . . . , xk do not appear in f̃ . Since monomials are
units in k[x±1

1 , . . . , x±1
n ], this means that inw(I) has a generating set where

no generator contains x1, . . . , xk, and thus k ≤ dim(inw(I)) ≤ dim(X) = d
as required.

We now use Theorem 3.1.3 to prove Theorem 3.2.4.

Proof of Theorem 3.2.4. Let (val(u1), . . . , val(un)) lie in set 3, so
u = (u1, . . . , un) ∈ X. Then for any f ∈ I we have f(u) = 0, so by
Proposition 3.1.3 we know (val(u1), . . . , val(un)) ∈ trop(V (f)), and thus in
set 1. This means that (val(u1), . . . , val(un)) lies in set 1. Since set 1 is a
closed set by construction, we have set 3 contained in set 1.

Next, let w lie in set 1. Then for any f =
∑
cux

u ∈ I the minimum of
{val(cu) + u ·w : cu 6= 0} is achieved twice. Thus inw(f) is not a monomial,
so by Lemma 2.5.2 we see that inw(I) is not equal to 〈1〉, so w lies in set 2.

It thus remains to prove that set 2 is contained in set 3. We first reduce
to the case where X is irreducible. Since inw(f r) = inw(f)r for all f, r,
inw(I) = 〈1〉 if and only if inw(

√
I) = 〈1〉, so we may assume that I is radical.

Thus we can write I =
⋂s

i=1 Pi, where Pi is prime, and V (P1), . . . , V (Ps) are
the irreducible components of X. Note that if w ∈ Γn

val has inw(I) 6= 〈1〉 then
there is a 1 ≤ j ≤ s for which inw(Pj) 6= 〈1〉. Indeed, if not, by Lemma 2.5.2
there are f1, . . . , fs with fi ∈ Pi and inw(fi) = 1. Set f =

∏s
i=1 fi. Then

inw(f) = 1 and f ∈ I, so inw(I) = 〈1〉, contradicting our assumption. Thus
if w lies in set 2 for X, then it lies in set 2 for some irreducible component
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X ′ of X, and so if we show that w = val(x) for some x ∈ X ′ we will have
shown that w = val(x) for some x ∈ X. The irreducible case is the content
of Proposition 3.2.9 below.

Proposition 3.2.9. Let X be an irreducible d-dimensional subvariety of Tn,
with ideal I = IX ⊆ K[x±1]. Fix w ∈ Γn

val with inw(I) 6= 〈1〉, and α ∈
(k∗)n ∈ V (inw(I)). Then there is y ∈ X with val(y) = w and t−wy = α. If
dim(X) > 0 then there are infinitely many such y.

Remark 3.2.10. In fact the set of y ∈ X satisfying the conclusion of Propo-
sition 3.2.9 is Zariski dense in X. See [Pay09].

Proof of Proposition 3.2.9. The proof is by induction on n. The base case
is n = 1, where it follows from Proposition 3.1.5. Suppose now that n > 1.
The case where X is a hypersurface is Proposition 3.1.5, so we may assume
that d = dim(X) < n− 1.

By Proposition 3.2.7 there is a polyhedral complex Σ whose support is
the closure of {w′ ∈ Γn

val : inw′(I) 6= 〈1〉}. By Lemma 3.2.8 we know that
every polyhedron in this complex has dimension at most d. For each P ∈ Σ,
let HP be the affine subspace of Rn spanned by P and w, with HP = w+LP

for a subspace LP of Rn. Then dim(HP ) = dim(LP ) ≤ d+ 1 < n. Choose a
projection φ : Tn → Tn−1 so that the associated map φ : Rn → Rn−1 satisfies
ker(φ) ∩ LP = {0} for all P ∈ Σ. Let Y ⊂ T n

k be the variety α−1V (inw(I)),
which has dimension dim(I) = d by Lemma 3.2.5. Choose φ, as guaranteed
by Proposition 3.2.6, so the image φ(X) of the projection is closed in Tn−1,
and so that ker(φ)∩Y = 1. If inw′(I) 6= 〈1〉 for some w′ ∈ Γn

val then w′ ∈ HP

for some P , so w′ − w ∈ LP . Thus φ(w′) = φ(w) and inw′(I) 6= 〈1〉 implies
that w = w′. Also, if φ(α′) = φ(α) for some α′ ∈ V (inw(I)) ⊆ T n

k then
α′/α ∈ Y ∩ ker(φ), which our choice of φ implies is 1, so α = α′.

LetX ′ = φ(X) = V (I ′), where I ′ = φ∗−1(I)). By Lemma 2.5.7 inφ(w)(I
′) 6=

〈1〉. Let α′ = φ(α). By the induction assumption there is z ∈ Tn−1 with

z ∈ X ′, val(z) = φ(w), and t−φ(w)z = φ(α). If dim(X ′) > 0 then there are
infinitely many such z.

Since φ(X) = φ(X) we can find y ∈ X withn φ(y) = z. If dim(X ′) > 0
there are thus infinitely many such y. If dim(X ′) = 0, then since X is
irreducible it must be the single point z, so if dim(X) > 0 all infinitely
many points in X map to z, so there are again infinitely many such y. Since
φ(w) = val(φ(x)) = φ(val(x)) by Equation 2.6, by our choice of φ we have
val(y) = w. It remains to prove that α′ = t−wy equals α. By our choice of φ
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Figure 3.3: Some examples of balanced fans

it suffices to show that α′ ∈ V (inw(I), so inw(f)(α′) = 0 for all f ∈ I. Fix

f =
∑
cux

u ∈ I. Then inw(f) =
∑
t− trop(f)(w)cut−w·uxu, so

inw(f)(α′) =
∑

t− trop(f)(w)cutw·uα
′u

=
∑

t− trop(f)(w)cuyu

= t− trop(f)(w)f(y)

= 0.

This proves the existence of such a y ∈ X with val(y) = w and t−wy = α,
and the existence of infinitely many such y if dim(X) > 0.

3.3 The Structure Theorem

In what follows we explore the question of which polyhedral complexes are
tropical varieties. The main result is the Structure Theorem (Theorem 3.3.4)
which says that if X is an irreducible subvariety of Tn of dimension d then
trop(X) is the support of a pure d-dimensional weighted balanced Γval-
rational polyhedral complex that is connected in codimension one.

We first define these concepts. Let Σ ⊂ Rn be a one-dimensional fan with
s rays. Let ui be the first lattice point on the ith ray of Σ. We give Σ the
structure of a weighted fan by assigning a weight mi ∈ N to the ith ray of Σ.
We say that Σ is balanced if ∑

miui = 0.

This is sometimes called the zero-tension condition; a tug-of-war game with
ropes in the directions ui and participants of strength mi would have no
winner. See Figure 3.3 for some examples. We now extend this concept to
arbitrary weighted polyhedral complexes.

Definition 3.3.1. Let Σ ⊆ Rn be a rational polyhedral fan, pure of dimen-
sion d, and fix m(σ) ∈ N for all cones σ of dimension d.
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Given τ ∈ Σ of dimension d − 1, let L be the affine span of τ , which is
a (d − 1)-dimensional subspace of Rn. Note that since τ is a rational cone,
LZ = L∩Zn is a free abelian group of rank d−1 with Nτ = Zn/LZ ∼= Zn−d+1.
For each σ ∈ Σ with τ ( σ the cone (σ + L)/L is a one-dimensional cone
(ray) in Nτ . Let uσ be the first lattice point on this ray.

The fan Σ is balanced at τ if∑
m(σ)uσ = 0.

The fan Σ is balanced if it is balanced at all τ ∈ Σ with dim(τ) = d− 1.
If Σ is a pure Γ-rational polyhedral complex of dimension d with weights

m(σ) ∈ N on each d-dimensional polyhedron in Σ, then for each σ ∈ Σ the
fan starΣ(σ) inherits a weighting function m. The polyhedral complex Σ is
balanced if the fan starΣ(σ) is balanced for all σ ∈ Σ with dim(σ) = d− 1.

We next define what it means for a polyhedral complex to be connected
in codimension one.

Definition 3.3.2. Let Σ ⊂ Rn be a pure d-dimensional polyedral complex.
The complex Σ is connected in codimension one if for any two d-dimensional
polyhedra P, P ′ ∈ Σ there is a chain P = P1, P2, . . . , Ps = P ′ for which Pi

and Pi+1 share a common facet Fi for 1 ≤ i ≤ s− 1. Since the Pi are facets
of Σ and the Fi are ridges, we call this a facet-ridge path connecting P and
P ′.

Example 3.3.3. A pure one-dimensional polyhedral complex is connected
in codimension one if and only if it is connected. An example of a connected
two-dimensional polyhedral complex that is not connected in codimension
one is shown in Figure 3.4.

This lets us state the structure theorem, whose proof takes the rest of the
chapter.

Theorem 3.3.4 (Structure Theorem for Tropical Varieties). Let X be an
irreducible d-dimensional subvariety of Tn. Then trop(X) is the support of
a balanced weighted Γval-rational polyhedral complex pure of dimension d. If
char(K) = 0 then this complex is connected in codimension-one.

Proof. That trop(X) is a pure Γval-rational d-dimensional polyhedral com-
plex is Theorem 3.3.7. That it is balanced is Theorem 3.4.8, and in charac-
teristic zero the connectivity result is Theorem 3.5.1.
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Figure 3.4: A polyhedral complex that is not connected in codimension one

In the remainder of this section we prove the dimension part of this theo-
rem (Theorem 3.3.7). This will use the following proposition, which says that
the star of any polyhedron in a polyhedral complex structure on trop(X) is
itself a tropical variety.

Proposition 3.3.5. Let X ⊂ Tn
K, with X = V (I) for I ⊆ K[x±1

1 , . . . , x±1
n ]

and let Σ be a polyhedral complex whose support is the closure of {w ∈
(Γval)

n : inw(I) 6= 〈1〉} ⊂ Rn. Fix w ∈ Σ ∩ (im val)n, and let σ be the
polyhedron of Σ containing w in its relative interior. Then

starΣ(σ) = {v ∈ (Γval)
n : inv(inw(I)) 6= 〈1〉}

Proof. We have

{v ∈ Rn : inv(inw(I)) 6= 〈1〉} = {v ∈ Rn : inw+εv(I) 6= 〈1〉 for sufficiently small ε > 0}
= {v ∈ Rn : w + εv ∈ Σ for sufficiently small ε > 0}
= starΣ(σ),

where the first equality follows from Lemma 2.4.4 and Proposition 2.5.1.

Example 3.3.6. Let X = V (tx2 + x + y + xy + t) ⊂ T 2
K for K = C{{t}}.

Then trop(X) is shown in Figure 3.5. Let I = 〈tx2 + x + y + xy + t〉. The
initial ideal in(1,1)(I) = 〈x + y + 1〉, which has tropical variety the standard
tropical line. The star of the vertex (1, 1) has rays spanned by (1, 0), (0, 1),
and (−1 − 1), so these coincide. This is also the star of the vertex (−1, 0),
which is explained by in(−1,0)(I) = 〈x2 +x+xy〉 = 〈x+1+ y〉. At the vertex
(0, 0) the star has rays (1, 1), (−1, 0), and (0,−1), which is the tropicalization
of V (in(0,0)(I)) = V (〈x+ y + xy〉).
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(−1, 0)

(1, 1)

(0, 0)

Figure 3.5:

Theorem 3.3.7. Let X be an irreducible subvariety of Tn of dimension d.
Then trop(X) is the support of a pure d-dimensional Γval-rational polyhedral
complex.

Proof. That trop(X) is the support of a Γval-rational polyhedral complex Σ
follows from Proposition 3.2.7 and Theorem 3.2.4. Lemma 3.2.8 shows that
the dimension of each polyhedron in Σ is at most d. It thus remains to show
that each maximal polyhedron in Σ has dimension precisely d.

Suppose that σ ∈ Σ is a maximal polyhedron of dimension dim(σ) = k,
and fix w ∈ relint(σ). Let I = IX . By Proposition 3.3.5 we know that
trop(inw(I)) = starΣ(σ), which is a translate of the affine span of σ, and thus
a subspace of Rn of dimension k. After an appropriate change of coordinates
we may assume that this is the subspace L spanned by e1, . . . , ek. Since
inv(inw(I)) = inw+εv(I) = inw(I) for all v ∈ Γn

val ∩ L, I is homogeneous with
respect to the grading given by deg(xi) = ei for 1 ≤ i ≤ k and deg(xi) =
0 for i > k. This means that there is a generating set for inw(I) where
every Laurent polynomial uses only the variables xk+1, . . . , xn. Let J =
inw(I) ∩K[x±1

k+1, . . . , x
±1
n ]. If v′ ∈ Γn−k

val ∩ trop(V (J)), then inv′(J) 6= 〈1〉, so
inv(inw(I)) 6= 〈1〉, where v = (0, v′) ∈ Γn

val has first k coordinates equal to
zero. Thus trop(V (J)) = {0}. It then follows from Lemma 3.3.8 that V (J)
is finite, so dim(inw(I)) ≤ k. By Lemma 3.2.8 dim(inw(I)) = d, so d ≤ k as
required.

Lemma 3.3.8. Let X be a subvariety of Tn. If trop(X) is a finite set of
points, then X is a finite set of points.
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Proof. The proof is by induction on n. When n = 1 all nontrivial varieties
are finite sets of points, so there is nothing to prove. Now suppose that n > 1
and the lemma is true for all smaller n. If X is a finite set of points then
there is nothing to prove, and If X is a hypersurface then Proposition 3.1.6
implies that trop(X) is not a finite set of points, so we may assume that
0 < dim(X) < n− 1. Choose a projection π : Tn → Tn−1 with Y := π(X) =
π(X) as guaranteed by Proposition 3.2.6. After change of coordinates we
may assume that π is projection onto the first n− 1 coordinates.

Suppose first that trop(Y ) is a finite set of points. Then by the induction
hypothesis Y is a finite set of points y1, . . . , ys ∈ Tn−1. This means that
X ⊆

⋃s
i=1 V (x1− (yi)1, . . . , xn−1− (yi)n−1). Since dim(X) > 0 we must then

have V (x1− (yi)1, . . . , xn−1− (yi)n−1) ⊆ X for some i, which implies that the
line {(val(yi), λ) : λ ∈ R} ⊂ Rn lies in the finite set trop(X).

We thus conclude that trop(Y ) is not a finite set. Choose w1, . . . , ws ∈
trop(Y ) distinct with s > | trop(X)|. By Theorem 3.2.4 there is y1, . . . , ys ∈
Y with val(yi) = wi. Choose xi ∈ X with π(xi) = yi for 1 ≤ i ≤ s. Then
π(val(xi)) = val(φ(xi)) = wi, so the points val(xi) are all distinct, and thus
| trop(X)| ≥ s, which is a contradiction. We thus conclude that dim(X) = 0
as required.

3.4 Multiplicities and Balancing

In this section we describe place an extra structure on a tropical variety
which gives it the structure of a weighted balanced polyhedral complex.

Given a subvariety X ⊂ Tn with defining ideal I ⊂ K[x±1
1 , . . . , x±1

n ].
Proposition 3.2.7 implies that the tropical variety trop(X) is the support of
polyhedral complex Σ. This polyhedral complex has the property that for
any polyhedron σ ∈ Σ we have inw(I) constant for all w ∈ relint(σ). The
choice of Σ is not unique (as the choice of homogenization of the ideal I is
not canonical), but we will assume in the first part of this section that a
choice has been made.

We first recall the notion of multiplicity of an associated prime from
commutative algebra.

Definition 3.4.1. Let S = k[x±1
1 , . . . , x±1

n ]. An ideal Q ⊂ S is primary if
for all f, g ∈ S, if fg ∈ Q then f ∈ Q or gm ∈ Q for some m ∈ N. If Q is
primary then the radical of Q is a prime P of S. Given an ideal I ⊂ S we can
write I = ∩s

i=1Qi where Qi is primary with radical Pi, no Qi is redundant,
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and no Pi is repeated. While this decomposition is not unique in general, the
set of Pi appearing is determined, and these are called the associated primes
of I. We write Ass(I) = {P1, . . . , Ps}.

For an S-module M let `(M) denote the length as an S-module of M .
The multiplicity of Pi in I is

mult(Pi, I) = `((S/Qi)Pi
) = `(((I : P∞

i )/I)Pi
).

See [Eis95, Chapter 3] for more details.

Example 3.4.2. Let S = k[x±1], and let f =
∑s

i=0 cix
i. Then we can write

f = α
∏r

i=1(x − λi)
mi for α, λi ∈ k, and mi ∈ N with

∑r
i=1mi = s. The

associated primes of 〈f〉 are then {〈x− λi〉 : 1 ≤ i ≤ r}, and the multiplicity
mult(〈x− λi〉, 〈f〉) of 〈x− λi〉 is mi.

Definition 3.4.3. Let X be a subvariety of Tn, with defining ideal I ⊂
K[x±1

1 , . . . , x±1
n ]. Let Σ be a polyhedral complex that is the support of

trop(X) with the property that inw(I) is constant for w ∈ relint(σ) for all
σ ∈ Σ. For a polyhedron σ ∈ Σ maximal with respect to inclusion, the
multiplicity mult(σ) is defined by

mult(σ) =
∑

P∈Ass(inw(I))

mult(P, inw(I))

for any w ∈ relint(σ).

Remark 3.4.4. Geometrically, for σ maximal with respect to inclusion in
Σ the variety V (inw(I)) is a union of d-dimensional torus orbits. The multi-
plicity m(σ) is the number of such orbits, counted with multiplicity.

Example 3.4.5. Let f = xy2+4y2+3x2y−xy+8y+x4−5x2+4 ∈ C[x±1, y±1].
Then trop(V (f)) is the one-skeleton of the Newton polygon of f , which
consists of four rays, generated by u1 = (1, 0), u2 = (0, 1), u3 = (−2,−3),
and u4 = (0,−1). This is illustrated in Figure 3.6. The initial ideals and
multiplicities are shown in the following table:

w inw(〈f〉) m(pos(w))
(1, 0) 〈4y2 + 8y + 4〉 = 〈(y + 1)2〉 2
(0, 1) 〈x4 − 5x2 + 4〉 = 〈(x− 2)(x− 1)(x+ 1)(x+ 2)〉

= 〈x− 2〉 ∩ 〈x− 1〉 ∩ 〈x+ 1〉 ∩ 〈x+ 2〉 4
(−2,−3) 〈xy2 + x4〉 = 〈y2 + x3〉 1
(0,−1) 〈xy2 + 4y2〉 = 〈x+ 4〉 1
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Figure 3.6: The tropical variety of V (xy2+4y2+3x2y−xy+8y+x4−5x2+4)
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We now make more more precise algebraically the geometric content of
Remark 3.4.4. After a multiplicitive change of variables we may transport
any polyhedron in Σ to one with affine span the span of e1, . . . , ed.

Lemma 3.4.6. Let X ⊂ T n be irreducible of dimension d with ideal I ⊂
K[x±1

1 , . . . , x±1
n ]. Fix a polyhedral structure Σ on trop(X). Let w ∈ Γn

val lies
in a polyhedron σ with affine span e1, . . . , ed. Let S ′ = K[x±1

d+1, . . . , x
±1
n ].

Then mult(σ) = dimK(S ′/(I ∩ S ′)).

Proof.

The multiplicity forces the polyhedral complex trop(X) to be balanced.
We first illustrate this in the constant coefficient case when X is a curve in
the plane. In this case trop(X) is a one-dimensional polyhedral fan, which
has a unique coarsest polyhedral complex structure.

Proposition 3.4.7. Let f ∈ k[x±1, y±1], and let u1, . . . ,us be the first lattice
points on the rays of trop(V (f)). Let mi be the multiplicity of the cone
pos(ui) in trop(V (f)). Then

s∑
i=1

miui = 0.
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Proof. We may assume that the ui are ordered cyclically in a clockwise order.
Let f =

∑
(a,b)∈Z2 cabx

ayb, and let P = conv((a, b) : cab 6= 0) be its Newton

polytope. Then P is a polygon in R2 with s facets. Let Fi be the facet
of P whose inner normal is ui, and let vi be its counter-clockwise vertex.
Then inui

(f) =
∑

(a,b)∈Fi
cabx

ayb. Write ui = (k, l). Then we can write

inui
(f) = xaiybi

∑t
j=0 cj(x

−lyk)j = αix
aiybi

∏t
j=1(x

−lyk − λij). Thus the sum
of the multiplicities of associated primes of 〈inw(f)〉 is t, so t = mi. Note
that mi(−l, k) = vi+1 − vi, where vs+1 = v1.

Now (
∑s

i=1miui)1 =
∑s

i=1mi(ui)1 =
∑s

i=1(vi+1−vi)2 = 0, and (
∑s

i=1miui)2 =∑s
i=1mi(ui)2 =

∑s
i=1(vi − vi+1)1 = 0, so

∑s
i=1miui = 0 as required.

Proposition 3.4.7 is then the base case of the following theorem, which
says that all tropical varieties are weighted balanced polyhedral complexes
with the weight function mult of Definition 3.4.3.

Theorem 3.4.8. Let X be a subvariety of Tn. Fix a polyhedral complex Σ
with support trop(X) with inw(IX) constant for w in the relative interior of
a polyhedron in Σ. Then Σ is a weighted balanced polyhedral complex with
the weight function mult of Definition 3.4.3.

Proof.

3.5 Connectivity

The polyhedral complex underlying a tropical variety has a strong connect-
edness property, which we now describe.

Theorem 3.5.1. Fix char(K) = 0. Let X be an irreducible subvariety of
Tn of dimension d. Then trop(X) is the support of a pure d-dimensional
polyhedral complex that is connected in codimension one.

The proof of Theorem 3.5.1 is by induction on the dimension d of X. The
base case d = 1 is surprisingly nontrivial, and will be proved in Chapter 6.
The hypothesis that char(K) = 0 is almost certainly unnecessary and may
be removed in a later draft.

Proposition 3.5.2. Let X be a one-dimensional irreducible subvariety of
Tn. Then trop(X) is connected.
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Definition 3.5.3. Let Σ1 and Σ2 be two polyhedral complexes in Rn, and let
w ∈ Σ1 ∩Σ2. The point w lies in the relative interior of a unique polyhedron
σi in Σi for i = 1, 2. The complexes Σ1,Σ2 meet transversely at w ∈ Σ1 ∩Σ2

if the affine span of σi is w+Li for i = 1, 2, L1 +L2 = Rn, and σ1∩σ2 6= {w}.

Proposition 3.5.4. Let X, Y be two subvarieties of Tn. If trop(X) and
trop(Y ) meet transversely at w ∈ Γn

val then w ∈ trop(X ∩ Y ).

Proof. Let trop(X) be the support of the polyhedral complex Σ1 ⊂ Rn,
and let trop(Y ) be the support of the polyhedral complex Σ2. Let I =
IX , J = IY ⊂ K[x±1

1 , . . . , x±1
n ]. Let σi ∈ Σi be the polyhedron containing

w in its relative interior for i = 1, 2, with the affine span of σi equal to Li.
The assumption that trop(X) and trop(Y ) meet transversely at w means
that L1 + L2 = Rn. After a change of variables on Tn we may assume that
w = e1, L1 contains e1, e2, . . . , es and L2 contains e1, es+1, en. As in the proof
of Theorem 3.3.7 this means that inw(I) is homogeneous with respect to a
Zdim(L1)-grading, so we can thus find a generating set f1, . . . , fl for inw(I) only
using xs+1, . . . , xn. Similarly there is a generating set g1, . . . , gm for inw(J)
only using x2, . . . , xs. Since inw(I), inw(J) 6= 〈1〉, by the Nullstellensatz there
are y2, . . . , ys ∈ (k∗)s−1 and zs+1, . . . , zn ∈ (k∗)n−s with fi(y) = gj(z) = 0 for
all i, j.

Note that

inw(I) inw(J) ⊆ inw(IJ) ⊆ inw(I ∩ J) ⊆ inw(I) ∩ inw(J).

Since inw(I) and inw(J) have generating sets involving disjoint sets of vari-
ables we have inw(I) inw(J) = inw(I)∩inw(J). This follows, for example, from
considering any algorithm to compute the intersection of these two ideals.
From this we conclude that inw(I ∩ J) = inw(I)∩ inw(J). Since e1 ∈ L1 ∩L2

and w = e1 lies in the relative interior of σ1 and σ2, the same argument
applies to w+ εe1 for all sufficiently small ε, so ine1(inw(I ∩J)) = inw(I ∩J),
and thus by Lemma 2.5.2 inw(I ∩ J) is homogeneous with respect to the
grading given by deg(x1) = 1 and deg(xi) = 0 for i > 0.

We next note that in addition inw(I + J) = inw(I) + inw(J). Since
I, J ⊆ I + J , the inclusion ⊇ is automatic. Fix f ∈ I, g ∈ J . We
want to show that inw(f + g) ∈ inw(I) + inw(J). Suppose not. Since
inw(·) commutes with multiplying by a monomial, we may assume that
both f and g are polynomials rather than Laurent polynomials. Write f =
f0(x2, . . . , xn) + x1f1(x1, . . . , xn), and g = g0(x2, . . . , xn) + x1g1(x1, . . . , xn).
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Write f + g = xa
1h0(x2, . . . , xn) + xa+1

1 h1(x1, . . . , xn). We may assume that
f ∈ I, g ∈ J have been chosen so that a ≥ 0 is minimal over all such polyno-
mial counterexamples. This implies in particular that at least one of f0, g0 6=
0. If a = 0, then inw(f + g) = h0(x2, . . . , xn) = f0 + g0 ∈ inw(I) + inw(J).
If a ≥ 1 then f0 = −g0 ∈ inw(I) ∩ inw(J) = inw(I ∩ J). Since f0 is ho-
mogeneous with respect to the grading given by deg(x1) = 1, deg(xi) = 0
for i > 1, by Lemma 2.5.2 there is p ∈ I ∩ J with inw(p) = f0 = −g0

Then f ′ = (f − p)/x1, g
′ = (g + p)/x1 satisfy f ′ ∈ I, g′ ∈ J , f ′, g′ are both

polynomials, and f ′ + g′ = (f + g)/x1. If inw(f ′ + g′) ∈ inw(I) + inw(J)
then the same is true for inw(f + g), so f ′, g′ give another polynomial coun-
terexample. This contradicts the minimality of a, so we conclude that
inw(I + J) = inw(I) + inw(J).

Now for any t ∈ k∗ the vector (t, y2, . . . , ys, zs+1, . . . , zn) ∈ V (inw(I)) ∩
V (inw(J)) = V (inw(I) + inw(J)) = V (inw(I + J)), so inw(I + J) 6= 〈1〉, and
thus w ∈ trop(V (I + J)) = trop(X ∩ Y ).

Corollary 3.5.5. Let X, Y be two subvarieties of Tn. If trop(X) and trop(Y )
meet transversely at every point of their intersection then trop(X ∩ Y ) =
trop(X) ∩ trop(Y ).

Proof. If w ∈ trop(X ∩ Y ) then there is y ∈ X ∩ Y with val(y) = w by
Theorem 3.2.4, so w = val(y) ∈ trop(X) and w ∈ trop(Y ), and thus trop(X∩
Y ) ⊆ trop(X)∩trop(Y ). The reverse inclusion follows from Proposition 3.5.4.

Remark 3.5.6. The hypothesis that trop(X) and trop(Y ) meet transversely
is essential in Corollary 3.5.5. For example, let X = {1} ⊂ K∗ and let
Y = {2} ⊂ K∗. Then trop(X) = trop(Y ) = trop(X) ∩ trop(Y ) = {0}, but
X ∩ Y = ∅, so trop(X ∩ Y ) = ∅.

Proof of Theorem 3.5.1. That trop(X) is the support of a pure d-dimensional
polyhedral complex is the content of Theorem 3.3.7, so we need only show
that this complex is connected in codimension one. The proof is by induction
on d = dim(X), with the base case d = 1 being Proposition 3.5.2, since con-
nected in codimension-one means connected for a one-dimensional polyhedral
complex.

We may thus suppose that d = dim(X) ≥ 2, and that the theorem is true
for all smaller dimensions. We may also assume that X is not contained in
any translate of proper subtorus T′ of Tn, and that X 6= Tn. Thus for any
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facet σ of Σ there is a facet σ′ whose affine span is not equal to that of σ, as
if not Σ would be contained in a d-dimensional proper affine subspace L of
Rn, so X would be contained in {y ∈ Tn : val(y) ∈ L}, which is a translate
of a subtorus. Thus for any pair σ, σ′ of facets of Σ with the same affine span
there is a facet σ′′ ∈ Σ whose affine span is not equal to that of σ or σ′. It
thus suffices to show that σ and σ′ are connected by a facet-ridge path when
their affine spans are different.

Fix polyhedra σ, σ′ ∈ Σ with different affine spans. Pick w ∈ relint(σ) ∩
Γn

val and w′ ∈ relintσ′ ∩ Γn
val such that the line joining them does not pass

through any vertices of Σ. Pick an affine hyperplane H with rational nor-
mal vector that contains w,w′ but not any vertices of Σ. To see that this is
possible note that after translating by −w the line through w and w′ passes
through the origin, so is a subspace of Rn not containing any of the translated
vertices. After quotienting by this subspace, we just need to choose a hy-
perplane through the origin in Rn−1 not containing the finitely many images
of these translated vertices. Write H = {u ∈ Rn :

∑n
i=1 aiui = b}. For any

y ∈ (K∗)n with val(y) = 0 we set fy = (
∏

i:ai>0(yixi)
ai)− (

∏
i:ai<0(yixi)

ai)tb.
Note that H = trop(V (fy)) for all such choices of y. Note also that H inter-
sects Σ transversely, so trop(X ∩V (fy)) = trop(X)∩H by Proposition 3.5.4.

SinceX is irreducible andX 6⊆ V (fy) the varietyX∩V (fy) has dimension
d − 1. For generic choices of y the intersection X ∩ V (fy) is irreducible
by [Har77, Theorem III.10.8]. In such a case, fix polyhedra σH , σ

′
H in the

polyhedral complex structure on trop(X ∩H) contained in σ∩H and σ′∩H
respectively. By induction we have a facet-ridge path connecting σH to σ′H .
Since H does not contain any vertices of Σ, it does not contain any (d− 2)-
dimensional polyhedra of Σ, so every ridge and facet of this path is contained
the intersection of a unique ridge of facet of Σ with H, and thus give a facet-
ridge path between σ and σ′. This shows that Σ is connected in codimension-
one.

3.6 Exercises
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Chapter 4

The Tropical Rain Forest

In this chapter we explore some of the diversity of the tropical rain forest.
We first revisit the plane curves of Section 1.3, and show how these can be
used to give a proof of the classical Bézout and Bernstein theorems. We
then investigate surfaces in three dimensions, and see the tropical shadow of
such classical phenomena as the 27 lines on the cubic surface. Linear spaces
are the simplest possible classical varieties, and their tropical counterparts
are similarly fundamental. Similarly, the Grassmannian, which is the most
fundamental moduli space in algebraic geometry, has a beautiful tropicaliza-
tion. The case Gr(2, n) parameterizing two-planes in an n-dimensional space
tropicalizes to the space of phylogenetic trees from computational biology.
Finally, we study the tropicalization of a generic intersection. We show how
the tropicalization of a variety defined by generic equations is determined
purely by the Newton polytopes of the equations.

4.1 Plane Curves

In this section we revisit the plane curves of Section 1.3. We first describe
explicitly the algorithm to draw a plane curve given its polynomial, and then
discuss how we can see the intersection theory of plane curves tropically.

4.2 Surfaces

In this section we consider the tropicalization of surfaces in T 3. This allows
us to see tropically the shadows of classical theorems for surfaces, such as

117
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the existence of 27 lines on a cubic surface.

4.3 Linear Spaces

We first consider the class of varieties X ⊂ T n whose equations are all linear.
Let S = K[x±1

1 , . . . , x±1
n ], and let I = 〈f1, . . . , fr〉 ⊂ S be an ideal in S

minimally generated by linear forms f1, . . . , fr. Write fi = ai0 + ai1x1 +
. . . ainxn for 1 ≤ i ≤ r. We assume here that all coefficients aij live in
subfield of K with valuation zero. The reader will not lose any generality by
assuming thatK is the field C{{t}} of Puiseux series with complex coefficients
(see 2.1.2), and all coefficients live in C. We now describe the tropical variety
of X = V (I) ⊂ T n.

Example 4.3.1. Let I = 〈x1+x2+x3+x4+1, x1+2x2+3x3〉 ⊂ K[x±1
1 , x±1

2 , x±1
3 , x±1

4 ].
Then X = V (I) is a two-dimensional subvariety of T ∼= (K∗)4.

It is easier to work with Iproj = 〈ai0x0 + ai1x1 + · · · + ainxn : 1 ≤ i ≤
r〉 ⊆ K[x0, . . . , xn]. The support supp(`) of a linear form ` =

∑
aixi ∈ Iproj

is {i : ai 6= 0}. A non-empty subset C of {0, 1, . . . , n} is said to be circuit of
X if C = supp(`) for some linear form ` in the ideal I, and C is inclusion-
minimal with this property. Note that C uniquely determines the linear form
` up to scaling. The number of circuits of a d-dimensional linear X in T n is
is at most

(
n+1
d+1

)
, and this bound is attained for generic subspaces X. Our

first result says that the circuits give a tropical basis for I.

Proposition 4.3.2. Let X ⊂ T n be a constant coefficient linear space. The
set of linear polynomials in I = I(X) whose support is a circuit of X forms
a tropical basis for I. This means a vector w ∈ Rn lies in trop(X) if and
only if, for any circuit C of the subspace X, the minimum of the numbers
wi, as i ranges over C, is attained at least twice.

Proof. The only-if direction is immediate from the definition of a tropical
variety because every circuit is the support of a linear form ` that lies in
the ideal I. For the if direction suppose that w is not in trop(X). Compute
the reduced Gröbner basis of Iproj with respect to a term order that refines
w. Since we are in the constant coefficient case in a polynomial ring and
Iproj is homogeneous this is the “classical” (non-valuation) Gröbner basis of
[CLO07]. Computing such a Gröbner basis is Gaussian elimination, so we the
elements of that reduced Gröbner basis are linear forms that are supported
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on circuits. Moreover, the initial ideal inw(Iproj) is generated by the leading
forms of these linear forms, so is prime. In addition these leading forms form
a Gröbner basis for inw(Iproj). Our hypothesis states that w 6∈ trop(X), so
inw(Iproj) contains a monomial by 2.5.1. Since inw(Iproj) is prime, this implies
that some variable xi lies in inw(Iproj). There must thus be an element f of
the reduced Gröbner basis with this as a leading term. In fact the entire
leading form must be xi, as otherwise the remainder on division of xi by
inw(Iproj) would not be zero. This means that the minimum of wi for i in the
corresponding circuit C = supp(f) is attained only once.

Example 4.3.3. Let I be as in in Example 4.3.1. The circuits are {{1, 2, 3},
{0, 2, 3, 4}, {0, 1, 3, 4}, {0, 1, 2, 4}}, which correspond to the linear forms {x1+
2x2 + 3x3, x2 + 2x3−x4− 1, x1−x3 + 2x4 + 2, 2x1 +x2 + 3x4 + 3}. Note that
the circuits do not all have the same size here. Proposition 4.3.2 says that

trop(X) = trop(V (x1 + 2x2 + 33)) ∩ trop(V (x2 + 2x3 − x4 − 1))

∩ trop(V (x1 − x3 + 2x4 + 2)) ∩ trop(V (2x1 + x2 + 3x4 + 3)).

We now give a combinatorial description of the tropical variety of a linear
space X. A key ingredient will be the lattice of flats of X. Let A be the
r × n+ 1 matrix with entries the coefficients aij of the defining polynomials
fi, and let B be a (n + 1 − r) × n + 1 matrix whose rows are a basis for
ker(A). Thus X is equal to the intersection of the row space of B with the
torus T . Let B = {b0, . . . ,bn} ⊂ Kn−r+1 be the columns of the matrix B.
While B depends on the choice of the matrix B, it is determined up to the
action of GL(n− r + 1, K).

The lattice of flats L(B) of the linear space row(B) has elements the
subspaces (flats) of Kn+1−r spanned by subsets of B. We make L(B) into a
poset (partially ordered set) by setting S1 � S2 if S1 ⊆ S2 for two subspaces
S1, S2 of Kn−r spanned by subsets of B. The poset L(B) is actually a lattice
of rank n+ 1− r. This means that every maximal chain in L(B) has length
n+ 1− r. See, for example, [Sta97, Chapter 3] for more on lattices.

Example 4.3.4. We continue Example 4.3.1. In this case the matrices A
and B are

A =

(
1 1 1 1 1
0 1 2 3 0

)
, B =

 0 −2 1 0 1
1 −2 1 0 0
0 −1 −1 1 1

 .
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1 2 3 4 5

123 14 15 24 25 34 35 45

Figure 4.1: The lattice of flats for the linear space of Example 4.3.1

Figure 4.2:

We thus have b0 = (0, 1, 0), b1 = (−2,−2,−1), b2 = (1, 1,−1), b3 = (0, 0, 1),
and b4 = (1, 0, 1). There are fifteen subspaces of K3 spanned by subsets
of B = {(−2,−2,−1), (1, 1,−1), (0, 0, 1), (1, 0, 1), (0, 1, 0)}. These are {0} ∪
{span(bi) : 1 ≤ i < j ≤ 5}∪{span(b1,b2,b3}, span(b1,b4), span(b1,b5), span(b2,b4),
span(b2,b5), span(b3,b4), span(b3,b5), span(b4,b5)}. This gives the lattice
shown in Figure 4.1.

There is a simplicial complex, called the order complex, associated to any
poset. This has vertices the elements of the poset, and simplices all proper
chains, which are totally ordered subsets of the poset not using the bottom
or top elements (0 or Rn in our case). The order complex of L(B) is pure of
dimension n−r. In the case of our poset there is a nice geometric realization
of this simplicial complex, which we now describe.

Definition 4.3.5. Let ei be the ith standard basis vector on Rn. Given a
subset σ ⊂ [n] we set eσ =

∑
i∈σ ei. If V is a subspace of Rn−r spanned by

some of the bi, set σ(V ) to be {i : bi ∈ V }. Map the order complex of the
lattice of flats of B into Rn by sending a subspace V to pos(eσ(V ))+ span(1),
and a simplex {V1, . . . , Vs} to pos(eσ(Vi) : 1 ≤ i ≤ s) + span(1), where
1 = (1, . . . , 1) ∈ Rn.

Example 4.3.6. We continue Example 4.3.1. The fan δ(B) has 13 rays,
corresponding to the five rays spanned by the bi and the eight planes spanned
by them. There is a two-dimensional cone for every inclusion of a ray into
a plane, of which there are 17 in total. The intersection of this fan with the
3-sphere is a graph, which is illustrated in Figure 4.2.

We next show that the tropical variety trop(V (I)) is equal to ∆(B).
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Theorem 4.3.7. Let I be a linear ideal in S. The tropical variety of X =
V (I) ⊂ T is equal to ∆(B).

Proof. We first show that trop(X) ⊆ ∆(B). Suppose v 6∈ ∆(B). Let V j =
{i : vi ≥ j}. We denote by span(V j) the subspace spanned by those bi with
i ∈ V j. Let l = min{j : there exists bi ∈ span(V j) \ V j}. If no such l
existed, then the subspaces span(V j) as j varies would form a chain in the
lattice of flats L(B), and v would live in the corresponding cone of ∆(B).
Let F = span(V l). Pick bk ∈ F \ V l. Then vk < l by the definition of V l.
Since {bi : i ∈ V l} spans F , we can write bk =

∑
i∈V l λibi for λ ∈ K. This

means that ek −
∑
λiei ∈ ker(B) = row(A). Thus f = xk −

∑
i∈V l λixi ∈ I.

Now inv(f) = xk, so inv(I) = 〈1〉, and so v 6∈ trop(X).

We next show that ∆(B) ⊆ trop(X) by exhibiting for each v ∈ ∆(B)
an element y ∈ VK(I) with val(y) = v. Given v ∈ ∆(B), let V1 ⊂ V2 ⊂
· · · ⊂ Vn−r = Kn−r be the chain of flats labelling a maximal cone of ∆(B)
containing v, so dim(Vi) = i. Pick bi1 ∈ V1, and bij ∈ Vj \ Vj−1 for 2 ≤
j ≤ n − r. Note that vij ≥ vij+1

. After renumbering if necessary we may
assume that ij = j, and that the matrix B has been chosen so that the
first (n − r) × (n − r) square submatrix is the identity, which is possible
as the bij are linearly independent by construction. This implies that the
last r × r submatrix of A must be invertible, so we may assume that it is
the identity matrix (since performing row operations on A corresponds to
choosing a different generating set for I). Set yi = tvi for 1 ≤ i ≤ n − r.
For n − r + 1 ≤ i ≤ n, set yi =

∑n−r
j=1 −a(i−n+r)jt

vj . Then Ay = 0 by
construction, so y ∈ VK(I). The valuation val(yi) = vi for 1 ≤ i ≤ n− r by
construction. For n − r + 1 ≤ i ≤ n we have val(yi) = min{vj : a(i−n+r)j 6=
0, 1 ≤ j 6= n− r} = vs for s = max{j : a(i−n+r)j 6= 0, 1 ≤ j ≤ n− r}. Now if
val(yi) = vj, then bi ∈ Vj \ Vj−1, so by the choice of v we have vi = vj, and
thus val(yi) = vi. So y is the desired element of VK(I) with val(y) = v, and
so ∆(B) ⊆ trop(X).

Example 4.3.8. Let I = 〈x3−x1+1, x4−x2+1, x5−x2+x1〉 ⊂ K[x±1
1 , . . . , x±1

5 ].
Then the matrix A is

A =

 1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1


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Figure 4.3: The tropical variety of Example 4.3.8

and B is

B =

 1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1

 .

The lattice of flats has elements {0, 1, 2, 3, 4, 5} at the lowest level, and
then {05, 14, 23, 013, 024, 125, 345} at the next level.

The complex ∆(B) is thus a two-dimensional fan in R5 = R6/1 with 13
rays and 18 two-dimensional cones. The intersection with the 4-sphere is a
graph with 13 vertices and 18 edges. This is the well-studied Peterson graph
with three edges (unnecessarily) subdivided. See Figure 4.3.

Every initial ideal inw(I) ⊂ k[x±1
1 , . . . , x±1

n ] is generated by linear forms,
so is prime, and thus all the multiplicities are one. Note that the dimension
of ∆(B) is n − r by construction, so dim(trop(X)) = dim(X) as expected.
We leave it as an exercise to verify the balancing condition and the rest of
the conditions guaranteed by Theorem 3.3.4.

4.4 Grassmannians

The Grassmannian G(r, n) is one of the fundamental moduli spaces in al-
gebraic geometry. It is a smooth projective variety of dimension r(n − r)
for which each point corresponds to an r-dimensional subspaces of a fixed
n-dimensional vector space. The Grassmannian G(r, n) naturally embeds
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into P(n
r)−1. In this section we discuss tropicalizing the subvariety G0(r, n) =

G(r, n) ∩ T (n
r)−1 ⊂ T (n

r)−1 ⊂ P(n
r)−1.

We first review the construction of the Grassmannian. Given a vector
space V over a field K, we can represent an r-dimensional subspace by the
row-space of an r × n matrix of rank r. An issue with this representation is
that different matrices can have the same row-space; specifically, if A and B
are two r × n matrices with the same row-space, then one can be obtained
from the other by row operations, so there is an element G ∈ GL(r,K) with
A = GB. We solve this problem by mapping these matrices to the length(

n
r

)
vector of their r× r minors. This has coordinates indexed by all subsets

I of size r of [n] = {1, . . . , n}, where the coordinate indexed by I is the
determinant of the r × r submatrix with columns indexed by I. If A = GB
for some G ∈ GL(r,K) then the Ith minor of A is deg(G) times the Ith

minor of B, so these represent the same point of P(n
r)−1.

Example 4.4.1. Let U ⊂ C4 be the rowspace of the matrix

A =

(
1 1 1 1
0 1 2 3

)
.

Note that U is also the rowspace of the matrix

B =

(
3 2 1 0
0 1 2 3

)
.

The 2×2 minors of a 2×4 matrix are indexed by the sets {{1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4}. The vector of minors of A, listed in this order, is
(1, 2, 3, 1, 2, 1), while the one for B is (3, 6, 9, 3, 6, 3). Note that

(1 : 2 : 3 : 1 : 2 : 1) = (3 : 6 : 9 : 3 : 6 : 3) ∈ P5.

Miraculously the set of all such minor-vectors forms a variety. We denote

by K[pI ] = K[pI : I ⊂ [n], |I| = r] the coordinate ring of P(n
r)−1. The Plücker

ideal Ir,n is the set of all polynomials vanishing on such a minor-vector, so
is the set of all polynomial relations among the minors of an r × n matrix.
It is generated by the Plücker relations, which are defined as follows. Fix a
subset I ⊂ [n] of size r− 1, and a subset J ⊂ [n] of size r+ 1. For I ⊂ [n] of
size r and j ∈ J the sign sgn(I, j) of the pair {I, j} is the sum of the number
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of i ∈ I with i > j and the number of i ∈ J with i < J . Then the Plücker
relation pI,J is

pI,J =
∑
j∈J

(−1)sgn(I,j)pI∪jpJ\j,

where pI∪j = 0 if j ∈ I. If I = I ′∪{i} and J = I ′∪{j, k, l} with i < j < k < l
then pI,J = pI′ijpI′kl − pI′ikpI′jl + pI′ilpI′jk. Such Plücker relations (for any
order of i, j, k, l with the signs appropriately permuted) are called three-term
Plücker relations.

The Plücker ideal Ir,n is

Ir,n = 〈pI,J : I, J ⊆ [n], |I| = r − 1, |J | = r + 1〉.

The Grassmannian G(r, n) is the variety V (Ir,n) ⊂ P(n
r)−1.

Example 4.4.2. Consider the case r = 2, n = 4. We denote the six variables
of K[pI ] by p12, p13, p14, p23, p24, p34. The Plücker relation p1,234 is p12p34 −
p13p24 + p14p23. This is equal, up to sign, to p2,134, p3,124, and p4,123. All other
Plücker relations, such as p1,123 are zero, so

I2,4 = 〈p12p34 − p13p24 + p14p23〉.

Note that the points (1 : 2 : 3 : 1 : 2 : 1) ∈ P5 of Example 4.4.1 lies in V (I2,4).

The torus T (n
r)−1 of P(n

r)−1 is the set of all points in P(n
r)−1 with all

coordinates nonzero. This is the quotient of the torus (K∗)(
n
r) by the di-

agonal action of K∗. We now consider the tropicalization of the intersec-

tion G0(r, n) = G(r, n) ∩ T (n
r)−1. By Theorem 3.3.4 trop(G0(r, n)) is a pure

r(n− r)-dimensional rational polyhedral fan in R(n
r)−1 ∼= R(n

r)/R1.

The Plücker ideal is homogeneous with respect to a Zn-grading given by

deg(pI) =
∑

i∈I ei ∈ Zn. This means that lift of trop(G0(r, n)) to R(n
r) has

an n-dimensional lineality space, given by the row-space of the (n ×
(

n
r

)
)-

grading matrix. Explicitly, this is V = span(
∑

i∈I eI : 1 ≤ i ≤ n) ⊆ R(n
r).

Since 1 ∈ V , this descends to give an (n− 1)-dimensional lineality space for
trop(G0(2, n)). Geometrically this comes from the (n− 1)-dimensional torus
action on G(r, n) induced from the (n−1)-dimensional torus action on Pn−1,
where we view G(r, n) as parameterizing (r− 1)-dimensional planes in Pn−1.
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Figure 4.4: The combinatorics of trop(G0(2, 5)).
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Example 4.4.3. The tropical variety trop(G0(2, 4)) is the image in R6/1 of
the tropical hypersurface defined by the polynomial p12p34 − p13p24 + p14p23.
The tropical hypersurface in R6 has lineality space V = span((1, 1, 1, 0, 0, 0),
(1, 0, 0, 1, 1, 0), (0, 1, 0, 1, 0, 1), (0, 0, 1, 0, 1, 1)). There are three cones: V +
pos((1, 0, 0, 0, 0, 1)), V + pos((0, 1, 0, 0, 1, 0)) and V + pos((0, 0, 1, 1, 0, 0, 0)).
We can identify R6/V with R2 by sending e12, e34 to (1, 0), e13, e24 to (0, 1),
and e14, e23 to (−1,−1). The image of trop(G0(2, 4)) is then the standard
tropical line.

Example 4.4.4. The tropical variety trop(G0(2, 5)) is a six-dimensional
fan in R9 with a four-dimensional lineality space. The quotient of the
trop(G0(2, 5)) by the lineality space is a two-dimensional fan in R5 with
10 rays and 15 two-dimensional cones that has an action of the symmetry
group S5 on it. When this is intersected with the 4-sphere we get a graph
with 10 vertices and 15-edges with an S5-action. This is again the Peterson
graph; see Figure 4.4. Compare also Example 4.3.8.

When r = 2 the tropicalization trop(G0(2, n)) has a particularly nice
description. There is a unique coarsest fan structure on trop(G0(2, n))/L,
which is known as the space of phylogenetic trees.

When r > 2 the tropical variety trop(G0(r, n)) is not as nice as when
r = 2, as the following examples illustrate. Example 4.4.5 shows that G0(r, n)
can depend on the characteristic of K, while Example 4.4.6 shows that the
simplicial complex structure on trop(G0(r, n)) is not determined by its edges.



126 CHAPTER 4. THE TROPICAL RAIN FOREST

5

3

4

5

1

2

35

45

132534

24 14

15 23

12

1

2

3

4

5

1

2
3

4

Figure 4.5: The tropical variety trop(G0(2, 5)) as a space of phylogenetic
trees

Example 4.4.5. This will have the content of [SS04, Section 7].

Example 4.4.6. This will contain the example of G(3, 6) (see [SS04, Theo-
rem 5.4]) showing that the tropical Grassmannian is not always a flag com-
plex.

We will then follow with some of the content of [SS04, Section 6].

4.5 Complete Intersections

In this section we will describe how to compute combinatorially the tropical
variety of the intersection of generic hypersurfaces.

4.6 Exercises



Chapter 5

Linear Algebra

In classical linear algebra over a field K, there are many equivalent ways
of representing a d-dimensional linear subspace of an n-dimensional vector
space Kn. For instance, V is the span of d linearly independent vectors, or
it is the solution set of n − d independent linear equations. Both of these
notions translate naturally to the tropical semiring (R̄,⊕,�), but, it turns
out that they give rise to different concepts in tropical geometry. The image
of a tropically linear map is called a tropical polytope, and this is the basic
object in tropical convexity theory. The solution set of a finite system of
tropical linear equations is a linear prevariety, and this is an important ob-
ject in combinatorial applications of the tropical semiring. From a geometric
perspective, it it is more natural to consider tropicalized linear spaces and
tropical linear spaces. They are parametrized by the tropical Grassmannian
and the tropical Dressian. The former arise from classical linear spaces over
a field K with a valuation, while the latter are more general polyhedral com-
plexes that share the same good properties. Each of these different definitions
has interesting geometric features, and one goal of this chapter is to explain
their differences. Our point of departure is the tropical eigenvalue problem.

5.1 Eigenvalues and Eigenvectors

Let A be an n×n-matrix with entries in the tropical semiring (R̄,⊕,�). An
eigenvalue of A is a real number number λ such that

A� v = λ� v (5.1)

127
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for some v ∈ Rn. We say that v an eigenvector of the tropical matrix A.
The arithmetic operations in the equation (5.1) are tropical. For instance,
for n = 2, with A = (aij), the left hand side of (5.1) equals(
a11 a12

a21 a22

)
�

(
v1

v2

)
=

(
a11 � v1 ⊕ a12 � v2

a21 � v1 ⊕ a22 � v2

)
=

(
min(a11 + v1, a12 + v2)
min(a21 + v1, a22 + v2)

)
,

while the right hand side of (5.1) is equal to

λ�
(
v1

v2

)
=

(
λ� v1

λ� v2

)
=

(
λ+ v1

λ+ v2

)
.

We represent the matrix A = (aij) by a weighted directed graph G(A)
with n nodes labeled 1, 2, . . . , n. There is an edge from node i to node j if
and only if aij < ∞, and we assign the length aij to each such edge (i, j).
The normalized length of a directed path i0, i1, . . . , ik in G is the sum (in
classical arithmetic) of the lengths of the edges divided by the length of the
path: (ai0i1 +ai1i2 +· · ·+aik−1ik)/k. If ik = i0 then the path is a directed cycle
and we refer to this quantity as the normalized length of the cycle. Recall
that a directed graph is strongly connected if there is a directed path from
any vertex to any other vertex.

Theorem 5.1.1. Let A be a tropical n × n-matrix whose graph G(A) is
strongly connected. Then A has precisely one eigenvalue λ(A). That eigen-
value equals the minimal normalized length of any directed cycle in G(A).

Proof. Let λ = λ(A) be the minimum of the normalized lengths over all
directed cycles in G(A). We first prove that λ(A) is the only possibility for
an eigenvalue. Suppose that z ∈ Rn is any eigenvector of A, and let γ be the
corresponding eigenvalue. For any cycle (i1, i2, . . . , ik, i1) in G(A) we have

ai1i2 + zi2 ≥ γ + zi1 , ai2i3 + zi3 ≥ γ + zi2 ,

ai3i4 + zi4 ≥ γ + zi3 , . . . , aiki1 + zi1 ≥ γ + zik .

Adding the left hand sides and the right hand sides, we find that the normal-
ized length of the cycle is greater than or equal to γ. In particular, we have
λ(A) ≥ γ. For the reverse inequality, start with any index i1. Since z is an
eigenvector with eigenvalue γ, there exists i2 such that ai1i2 + zi2 = γ + zi1 .
Likewise, there exists i3 such that ai2i3 + zi3 = γ + zi2 . We continue in this
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manner until we reach an index il which was already in the sequence, say,
ik = il for k < l. By adding the equations along this cycle, we find that

(aik,ik+1
+ zik+1

) + (aik+1,ik+2
+ zik+2

) + · · ·+ (ail−1,il + zil)

= (γ + zik) + (γ + zik+1
) + · · · + (γ + zil).

We conclude that the normalized length of the cycle (ik, ik+1, . . . , il = ik) in
G(A) is equal to γ. In particular, γ ≥ λ(A). This proves that γ = λ(A).

It remains to prove the existence of an eigenvector. Let B be the matrix
obtained from A by (classically) subtracting λ from every entry in A. Then
all cycles in the weighted graph G(B) have non-negative length, and there
exists a cycle of length zero. Using tropical matrix operations we compute

B∗ = B ⊕B2 ⊕B3 ⊕ · · · ⊕Bn

The entry B∗
ij in row i and column j of the matrix B∗ is the length of a

shortest path from node i to node j in the directed graph G(B). Since the
graph is strongly connected, we have B∗

ij <∞. Moreover,

(Id⊕B)�B∗ = B∗ (5.2)

Here Id = B0 is the tropical identity matrix whose diagonal entries are 0 and
whose off-diagonal entries are ∞. Fix any node j that lies on a zero length
cycle of G(B), and let x = B∗

·j denote the jth column vector of the matrix
B∗. We have xj = B∗

jj = 0. This property together with (5.2) implies

x = (Id⊕B)� x = x ⊕ B � x = B � x,

and we conclude that x is an eigenvector with eigenvalue λ of our matrix A:

A� x = (λ�B)� x = λ� (B � x) = λ� x.

This completes the proof of Theorem 5.1.1.

It appears that the computation of the eigenvalue λ of a tropical n×n-
matrix requires inspecting all cycles in G(A). However, this is not the case.
There is an efficient algorithm, first proposed in [Kar78], for computing λ(A)
from the matrix A = (aij) based on linear programming. The idea is to set
up the following linear program with n + 1 decision variables v1, . . . , vn and
λ:

Maximize γ subject to aij + vj ≥ γ + vi for all 1 ≤ i, j ≤ n. (5.3)
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Proposition 5.1.2 (Karp 1978). The unique eigenvalue λ(A) of the matrix
A = (aij) coincides with the optimal value γ∗ of the linear program (5.3).

Proof. The dual linear program to (5.3) takes the form

Minimize
∑n

i=1

∑n
i,j=1 aijxij subject to xij ≥ 0 for 1 ≤ i, j ≤ n,∑n

i,j=1 xij = 1 and
∑n

j=1 xij =
∑n

k=1 xki for all 1 ≤ i ≤ n.

Here the xij are the decision variables, and the problem is to find a probability
distribution (xij) on the edges of G(A) that represents a flow in the directed
graph. The vertices of the polyhedron defined by these constraints are the
uniform probability distributions on the directed cycles in G(A). Hence the
objective function value of the dual linear program equals the minimum of
the normalized lengths over all directed cycles in G(A). By strong duality,
the primal linear program (5.3) has the same optimal value γ∗ = λ(A).

We next determine the eigenspace of the matrix A, which is the set

Eig(A) =
{
x ∈ Rn : A� x = λ(A)� x

}
.

Clearly, Eig(A) is closed under tropical scalar multiplication, that is, if x ∈
Eig(A) and c ∈ R then c� x is also in Eig(A). We can thus identify Eig(A)
with its image in Rn/R(1, 1, . . . , 1). We use the short-hand 1 for the vector
(1, . . . , 1) ∈ Rn, and write Rn/1 for this quotient.

Every eigenvector of the matrix A is also an eigenvector of the matrix
B = (−λ(A))� A and vice versa. Hence the eigenspace Eig(A) is equal to

Eig(B) =
{
x ∈ Rn : B � x = x

}
.

Theorem 5.1.3. Let B∗
0 be the submatrix of B∗ given by the columns whose

diagonal entry B∗
jj is zero. The image of this matrix (with respect to tropical

multiplication of vectors on the right) is equal the desired eigenspace:

Eig(A) = Eig(B) = Image(B∗
0).

Example 5.1.4. Before proving Theorem 5.1.3, we present three examples
of 4 × 4-matrices and their eigenspaces in R4/1. Each point in R4/1 is
represented by a vector in R4 with last coordinate zero, and we here write
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“Image” for the operator that computes the image in R4/1 of a matrix with
four rows.

If A =


3 1 4 5
5 2 4 2
4 1 6 3
2 6 3 6

 then λ(A) = 5/3 and Eig(A) = Image


−1/3

1/3
−1/3

0



If A =


1 4 4 6
1 1 1 2
4 2 1 3
6 3 6 4

 then λ(A) = 1 and Eig(A) = Image


−2 1 1
−2 −2 −2
−1 −1 −2

0 0 0



If A =


4 5 3 3
3 5 4 6
6 1 5 3
5 5 2 5

 then λ(A) = 9/4 and Eig(A) = Image


3/4
3/2
1/4
0



If A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 then λ(A) = 0 and Eig(A) = Image(A).

For this last example matrix, we have A = B = B∗ = B∗
0 , and the eigenspace

Eig(A) is a certain 3-dimensional convex polytope in R4/1 which is known as
the standard polytrope. We will discuss such polyt(r)opes in Section 5.4.

Proof of Theorem 5.1.3. We saw in the proof of Theorem 5.1.1 that every
column vector x of B∗

0 satisfies B�x = x. Since tropical linear combinations
of such eigenvectors x are again eigenvectors, we have Image(B∗

0) ⊆ Eig(B).

To prove the reverse inclusion, consider any vector z ∈ Eig(B). Then
B∗� z = z. Let z̃ be the vector obtained from z by erasing all coordinates j
such that B∗

jj > 0. We claim that z = B∗
0� z̃. This will show z ∈ Image(B∗

0).

Consider any index i ∈ {1, . . . , n}. We have zi = min{B∗
ij + zj : j =

1, . . . , n}. If zi = B∗
ij+zj and zj = B∗

jk+zk then B∗
ij+B

∗
jk+zk = zi ≤ B∗

ik+zk,
and the triangle inequality B∗

ij + B∗
jk ≥ B∗

ik implies that zi = B∗
ik + zk.

Continuing in this manner, we eventually obtain the equality zi = B∗
il + zl

for some index l which lies in a cycle of length 0, that is, B∗
ll = 0. This

equality can be rewritten as zi = ((B∗
0)�z)i, and the proof is complete.
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In classical linear algebra, the eigenvalues of a square matrix are the roots
of its characteristic polynomial, and we seek to extend this to tropical linear
algebra. The characteristic polynomial of our n×n-matrix A equals

fA(t) = det
(
A ⊕ t� Id

)
,

where “det” denotes the tropical determinant. We have the following result.

Corollary 5.1.5. The eigenvalue λ(A) of a tropical n × n-matrix A is the
smallest root of its characteristic polynomial fA(t).

Proof. Consider the expansion of the characteristic polynomial:

fA(t) = tn ⊕ c1 � tn−1 ⊕ c2 � tn−2 ⊕ · · · ⊕ cn−1 � t ⊕ cn.

The coefficient ci is the minimum over the lengths of all cycles on i nodes in
G(A). The smallest root of the polynomial fA(t) equals

min{ c1, c2/2, c3/3, . . . , cn/n }.

This minimum is the smallest normalized cycle length λ(A).

Our discussion raises the question of how the tropical eigenvalue problem
is related to the classical eigenvalue problem for a matrix over a field K
with a valuation. Let M be an n × n-matrix with entries in K and let
A = val(M) be its tropicalization. If the entries inM are general enough then
the characteristic polynomial fA(t) of A coincides with the tropicalization of
the classical characteristic polynomial of M . Assuming this to be the case,
let us consider an arbitrary solution (µ, v) of the eigenvalue equation for M :

M · v = µ · v

This equation does not tropicalize, i.e., there will be cancellations of lowest
terms in the matrix-vector product M · v, unless µ is an eigenvalue of mini-
mal order λ(A). Furthermore, the eigenvector v must satisfy the non-trivial
combinatorial constraint imposed by Theorem 5.1.3, namely, the order of v
must lie in the image of the matrix B∗

0 . Here is an example to show this.

Example 5.1.6. Let n = 3, K = Q(ε), and consider the matrix

M =

ε 1 ε
1 ε −ε2
ε ε2 ε


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This matrix has three distinct eigenvalues µ in K, and we list each of them
with a generator v for the corresponding one-dimensional eigenspace:

µ v
ε (ε2,−ε, 1)T

√
1 + ε2 − ε4 + ε

(
ε−

√
1 + ε2 − ε4, ε

√
1 + ε2 − ε4 − 1, ε(ε2 − 1)

)T

−
√

1 + ε2 − ε4 + ε
(
ε3 −

√
1 + ε2 − ε4, ε4 − 1, ε2

√
1 + ε2 − ε4 − ε

)T

The tropicalization of the matrixM equals A =

1 0 1
0 1 2
1 2 1

, and the tropical

characteristic polynomial fA(z) = z3 ⊕ 1�z2 ⊕ 0�z ⊕ 1 factors as follows
as a polynomial function:

fA(z) = (z ⊕ 0)2 � (z ⊕ 1).

This reflects the fact thatM has two eigenvalues of order 0 and one eigenvalue
of order 1. By Theorem 5.1.1, λ(A) = 0 is the only eigenvalue of the matrix
A. The eigenspace Eig(A) is computed using Theorem 5.1.3. We have

B∗ = A∗ = A⊕ A2 ⊕ A3 =

0 0 1
0 0 1
1 1 1

 .

Hence Eig(A) is spanned by the column vector (0, 0, 1)T . Equivalently, the
eigenspace of A consists of the vectors (a, a, a+1)T for all a ∈ R. Each of these
arises as the order of an eigenvector of the classical matrix M . For instance,
the last two eigenvectors v listed above both have order (0, 0, 1)T .

We close this section with the remark that the geometric interpretation
of the determinant as a coplanarity criterion is the same in both classical
and tropical geometry. An n× n-matrix is said to be tropically singular if it
lies on the tropical hypersurface defined by the determinant, which is here
regarded as polynomial of degree n in n2 unknowns having n! terms.

Proposition 5.1.7. Let A be a real n × n-matrix. Then A is tropically
singular if and only if the rows of A lie on a tropical hyperplane in Rn/1

Proof. Suppose that A is tropically singular. By the Fundamental Theorem
for hypersurfaces, there exists a singular n×n-matrix U with entries in a field
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K with valuation such that val(U) = A. Pick a non-zero vector in Kn that
lies in the kernel of U and consider the classical hyperplane H perpendicular
to that vector. Then the rows of A lie in the tropical hyperplane trop(H).

Conversely, suppose that the rows of A lie in a tropical hyperplane H.
We wish to show that A is tropically singular. Both statements are invariant
under tropically multiplying A = (aij) by a diagonal matrix on the left or on
the right, so we may assume that A is non-negative and it has a zero in each
row and each column of A. We may further assume that H is the hyperplane
defined by the tropical linear form by 0� x1 ⊕ · · · ⊕ 0� xn. Then each row
of A = (aij) actually contains two zero entries. Consider the bipartite graph
on [n] × [n] with an edge (i, j) whenever aij = 0. This graph is connected
and it has ≥ 2n edges. Hence it contains a cycle. A combinatorial argument
shows that such a bipartite graph must contain a matching. This means that
the tropical determinant of A is zero. Moreover, the bipartite graph must
contain a cycle, and from this we conclude that A is tropically singular.

5.2 Matroids

Matroid theory is a branch of discrete mathematics that is fundamental for
tropical linear algebra. Matroids aim to characterize the combinatorial struc-
ture of dependence relations among vectors in a linear space over a field K.
Tropical linear algebra can be viewed as a extension to the situation when
the field K comes with a valuation. In matroid theory, one distinguishes
between matroids and realizable matroids, and the extension here will be the
distinction between tropical linear spaces and tropicalized linear spaces.

Definition 5.2.1. A tropicalized linear space over K is a the tropical variety
of the form trop(X) where X is any linear subspace of Kn. The points in
trop(X) are vectors w ∈ Rn such that inw(f) is not a monomial for any f in
the ideal IX ⊂ K[x1, . . . , xn] of polynomials that vanish on X.

In this section we shall restrict ourselves to the constant coefficient case,
and we take our field to be the complex numbers C. Our aim is to explain
the distinction between tropicalized linear spaces and tropical linear spaces
when the field is C. The general case will be discussed in Section 5.5.

Let X be a linear subspace of dimension d in Cn. The corresponding
ideal IX in C[x1, . . . , xn] is generated by the linear forms that vanish on X.
A non-empty subset C of {1, . . . , n} is said to be circuit of X if C = { i :
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xi appears in ` } for some linear form ` in the ideal IX , and C is inclusion-
minimal with this property. Note that C uniquely determines the linear form
` up to scaling. The number of circuits of a d-dimensional linear subspace of
Kn is at most

(
n

d+1

)
, and this bound is attained for generic subspaces X. Our

first lemma says that the circuits determine the tropical variety trop(X).

Proposition 5.2.2. A vector w ∈ Rn lies in the tropicalized linear space
trop(X) if and only if, for any circuit C of the subspace X ⊂ Cn, the mini-
mum of the numbers wi, as i ranges over C, is attained at least twice.

Proof. The only-if direction is obvious because every circuit is the support
of a linear form ` that lies in the ideal IX . For the if direction suppose that
w is not in trop(X). Compute the reduced Gröbner basis of IX with respect
to a term order that refines w. By Gaussian elimination, the elements of
that reduced Gröbner basis are linear forms that are supported on circuits.
Moreover, the initial ideal inw(I) is generated by the leading forms of these
linear forms. Our hypothesis states that some monomial lies in inw(I). Since
inw(I) is prime, this implies that some variable xi lies in inw(I), and from
this we conclude that xi actually appears in the reduced Gröbner basis.

There are many different but equivalent axiom systems for defining a
matroid. One of them is the following axiom system for the circuits.

Definition 5.2.3. A matroid is a pair M = (E, C) where E is a finite set
and C is a collection of subsets of E, called the circuits of M , that satisfies:

(C1) No proper subset of a circuit is a circuit.

(C2) If C1, C2 are circuits, C1 6= C2, and e ∈ C1 ∩ C2 then (C1 ∪ C2)\{e}
contains a circuit.

Clearly, the circuits of a linear subspace X ⊂ Cn satisfy (C1) and (C2).
A matroid M that arises from such a subspace is said to be realizable over
C. Matroids provide a convenient language for linear algebra. Here are some
basic definitions. An independent set of M is a subset of E that contains no
circuit. A basis of M is a maximal independent set. All bases of M have the
same cardinality d. That number is called the rank of M . A flat of a matroid
M is a set F such that #(C\F ) 6= 1 for any circuit C. The set of all flats is
ordered by inclusion is a poset known as the geometric lattice of M . Each of
these objects comes with its own axiom system for matroids. For example:
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Definition 5.2.4. A matroid is a pair M = (E, ρ) where E is a finite set
and ρ is a function E → N, called the rank function of M , that satisfies:

(R1) ρ(A) ≤ |A| for all subsets A of E.

(R2) If A and B are subset of E with A ⊆ B then ρ(A) ≤ ρ(B).

(R3) ρ(A∪B)+ρ(A∩B) ≤ ρ(A)+ρ(B) for any two subsets A and B of E.

The rank of the matroid M is defined to be the rank of E, and we write
ρ(M) := ρ(E). Starting with the axiom system (R1)–(R3), the other descrip-
tions of matroids are derived as follows. A subset A of E is independent if
ρ(A) = |A|, and dependent otherwise. A basis is a maximal independent set,
and a circuit is a minimal dependent set. A flat is a subset A ⊆ E such that
ρ(A) < ρ(A ∪ {e}) for all e ∈ E\A. In light of Proposition 5.2.2, it makes
sense to associate a tropical linear space trop(M) with any matroid M .

Definition 5.2.5. Let M be a matroid on a finite set E, which we identify
with {1, 2, . . . , n}. The corresponding tropical linear space trop(M) is the set
of all points w ∈ Rn such that, for any circuit C of M , the minimum of the
numbers wi is attained at least twice as i ranges over C. Since trop(M) is
invariant under tropical scalar multiplication, we shall from now on regard
it as a subset of the tropical projective space TPn−1 = Rn/R(1, 1, . . . , 1).

We next describe a natural fan structure on the tropical linear space
trop(M). Any flat F of the matroid M is represented by its incidence vector
eF =

∑
i∈F ei. We regard eF as an element in TPn−1. For any chain of proper

flats σ = {∅ ⊂ F1 ⊂ · · · ⊂ Fk ⊂ E}, we consider the closed polyhedral cone
spanned by their incidence vectors:

pos(σ) :=
{
λ1eF1 + λ2eF2 + · · ·+ λkeFk

: λ1, λ2, . . . , λk ≥ 0
}
.

Since eF1 , eF2 , . . . , eFk
are linearly independent, pos(σ) is a k-dimensional

simplicial cone in TPn−1, i.e., it is the cone over a (k−1)-dimensional simplex.

Theorem 5.2.6. The collection of cones pos(σ), where σ runs over all chains
of flats of the matroid M , is a pure simplicial fan of dimension ρ(M)− 1 in
Rn. The support of this fan is precisely the tropical linear space trop(M).

Proof. We first show that pos(σ) ⊂ trop(M) for any chain of proper flats
σ = {F1 ⊂ · · · ⊂ Fk}. Let w = λ1eF1 + · · · + λkeFk

where λ1, . . . , λk ≥ 0.
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Consider any circuit C of M , and let i be the largest index i such that
the set (Fi ∩ C)\Fi−1 is non-empty. We claim that this set has at least
two elements. If not then it is a singleton, and its unique element would
be dependent on Fi−1, and this contradicts the hypothesis that Fi−1 is a
flat. Hence (Fi ∩ C)\Fi−1 has cardinality at least two. This means that the
minimum of the coordinates wi where i ∈ C is attained at least twice. Since
this holds for any circuit C, we conclude that w ∈ trop(M) as desired.

We next show that every vector w ∈ trop(M) lies in the relative interior
of a cone pos(σ) where σ is a unique chain of flats of M . After tropical
scalar multiplication, we may assume that w ∈ Rn is non-negative and its
support is a proper subset of E. Then there exists a unique chain F1 ⊂ F2 ⊂
· · · ⊂ Fk of proper subsets of E such that the image of w in TPn−1 lies in the
relative interior of pos(eF1 , eF2 , . . . , eFk

). Equivalently, the function j 7→ wj

is constant on Fi\Fi−1 and its value decreases as i increases.
We claim that each Fi is a flat. Suppose that Fi is not a flat. By the

characterization of flats in terms of circuits, there exists a circuit C such
that C\Fi = {e} is a singleton. We have we = min{wi : i ∈ C}, and that
minimum is uniquely attained. This is a contradiction to our hypothesis
that w lies in the tropical linear space trop(M). We conclude that the cones
pos(σ) where σ runs over all chains of proper flats is a simplicial fan in TPn−1.

Each chain of flats can be extended to a maximal chain, and each maximal
chain of flats involves precisely ρ(M)−1 proper flats. Hence the fan is a pure
fan of dimension ρ(M)− 1, and the proof is complete.

We have shown that trop(M) has the structure of a fan over a simplicial
complex ∆M of dimension ρ(M)−2, and we sometimes identify trop(M) with
∆M . The simplicial complex ∆M is the order complex of the geometric lattice
ofM . It is known that the order complex ∆M has excellent combinatorial and
topological properties. For instance, ∆M is shellable, and hence its homology
is free abelian and concentrated in the top dimension. The rank of that top
homology group is denoted µ(M) and is known as the Möbius number of the
matroid. It coincides with the Euler characteristic of ∆M , i.e. µ(M) is the
absolute value of the alternating sum of the number of flats of rank i in M .

There is another fan structure on the tropical linear space trop(M), which
is much coarser than the order complex, and which comes from the Gröbner
fan of IX when M is realized by a classical linear space X. That fan struc-
ture is known as the Bergman fan, and it can be defined as follows. Given
w ∈ trop(M) consider the initial matroid Mw whose circuits are the (non-
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singleton) sets
{
j ∈ C : wj = mini∈C(wi)

}
, where C runs over all circuits

of M . The bases of Mw are those bases B of M whose weight
∑

i∈B wi is
maximal. Two vectors w and w′ lie in the same (relatively open) cone of the
Bergman fan on trop(M) if and only if their initial matroids coincide, that
is, Mw = Mw′ . For more details see [AK06, FS05]. We now present some
natural examples of matroids and we discuss their tropical linear spaces.

Example 5.2.7 (Uniform matroids). Suppose that X is a generic linear
subspace of dimension d in Cn. The corresponding matroid is the uniform
matroid M = Ud,n, whose circuits are all the subsets of cardinality n−d+1 in
{1, 2, . . . , n}. The tropical linear space trop(Ud,n) is the union of all orthants
spanned by any d−1 of the basis vectors e1, . . . , en in TPn−1. The associated
simplicial complex ∆Ud,n

is the (d− 2)-skeleton of the (n− 1)-simplex.

Example 5.2.8 (Graphic matroids). Let G be a connected directed graph
with d + 1 vertices and n edges. The associated d-dimensional linear space
X has the parametric representation xij = ti− tj for all directed edges (i, j).
Its matroid MG is called a graphic matroid. Its circuits are precisely the
circuits of the graph. The associated tropical linear space trop(G) is the
set of all edge weights on G such the minimum along each cycle is attained
at least twice. An important special case arises when G the complete graph
Kd+1. Here the elements of the tropical linear space trop(Kd+1) are the tuples

w ∈ R(d+1
2 ) such that wij ≥ min{wik, wjk} for all i, j, k. Up to a global sign

change, these are precisely the ultrametrics on a set with d+ 1 elements.

Example 5.2.9 (The Fano plane). Let n = 7 and d = 3. The following
seven triples are the circuits of a rank 3 matroid M on the set {1, 2, . . . , 7}:

124 , 235 , 346 , 457 , 457 , 561 , 672 , 713. (5.4)

Here ∆M is a one-dimensional simplicial complex, namely, it is a bipartite
graph with 14 vertices and 21 edges. The vertices are the seven points i ∈
{1, 2, . . . , 7} and the seven triples in (5.4). There is an edge from i to each
triple that contains it. This matroid cannot be realized in characteristic zero,
so trop(M) is a tropical linear space that is not a tropicalized linear space, by
which we mean the tropicalization of any classical linear space over C.
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5.3 Tropical Convexity

We now introduce the notions of convexity and convex polytopes in the
setting of tropical geometry. Combinatorial types of tropical polytopes are
shown to be in bijection with regular triangulations of products of two sim-
plices. This section is based on the article [DSS05]. We note that convexity
over arbitrary idempotent semirings, including the min-plus algebra had been
introduced considerably earlier in various contexts of applied mathematics,
notably in the works of Cohen, Gaubert and Quadrat [CGQ04] and Litvinov,
Maslov and Shpiz [LMS01].

A subset S of Rn is called tropically convex if the set S contains the point
a � x ⊕ b � y for all x, y ∈ S and all a, b ∈ R. The tropical convex hull of
a given subset V ⊂ Rn is the smallest tropically convex subset of Rn which
contains V . We shall see in Proposition 5.3.5 that the tropical convex hull
of V coincides with the set of all tropical linear combinations

a1 � v1 ⊕ · · · ⊕ ar � vr , where v1, . . . , vr ∈ V and a1, . . . , ar ∈ R. (5.5)

Any tropically convex subset S of Rn is closed under tropical scalar multi-
plication, R � S ⊆ S. In other words, if x ∈ S then x + λ(1, . . . , 1) ∈ S
for all λ ∈ R. We will therefore identify the tropically convex set S with its
image in the (n− 1)-dimensional tropical projective space TPn−1. A tropical
polytope is the tropical convex hull of a finite subset V in TPn−1. In Theorem
5.1.3 we have seen that Eig(A) is a tropical polytope for any n×n-matrix A:

Remark 5.3.1. The eigenspace of a square matrix is a tropical polytope.

We shall see that every tropical polytope is a finite union of convex poly-
topes in the usual sense: the tropical convex hull of V = {v1, . . . , vr} ⊂ Rn

has a natural polyhedral cell decomposition, called the tropical complex gen-
erated by V . One of our goals in Section 5.3 is to prove the following result:

Theorem 5.3.2. The combinatorial types of tropical complexes generated by
configurations of r points in TPn−1 are in natural bijection with the regular
polyhedral subdivisions of the product of two simplices ∆n−1 ×∆r−1.

This implies a remarkable duality between tropical (n−1)-polytopes with
r vertices and tropical (r−1)-polytopes with n vertices. Another consequence
of Theorem 5.3.2 is a formula for the f -vector of a generic tropical complex.
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Figure 5.1: Tropical convex sets and tropical line segments in TP2.

We begin with pictures of tropical convex sets in the tropical plane TP2. A
point (x1, x2, x3) ∈ TP2 is represented by drawing the point with coordinates
(x2−x1, x3−x1) in the plane of the paper. The triangle on the left hand side
in Figure 5.1 is tropically convex, but it is not a tropical polytope because
it is not the tropical convex hull of finitely many points. The thick edges
indicate two tropical line segments. The picture on the right hand side is
a tropical triangle, namely, it is the tropical convex hull of the three points
(0, 0, 1), (0, 2, 0) and (0,−1,−2) in the tropical plane TP2. The thick edges
represent the tropical segments connecting any two of these three points.

Tropical convex sets enjoy many of the features of ordinary convex sets:

Theorem 5.3.3. The intersection of two tropically convex sets in Rn or in
TPn−1 is tropically convex. The projection of a tropically convex set onto a
coordinate hyperplane is tropically convex. The ordinary hyperplane {xi −
xj = l} is tropically convex, and the projection map from this hyperplane
to Rn−1 given by eliminating xi is an isomorphism of tropical semimodules.
Tropically convex sets are contractible spaces. The Cartesian product of two
tropically convex sets is tropically convex.

Proof. We prove the statements in the order given. If S and T are tropically
convex, then for any two points x, y ∈ S ∩ T , both S and T contain the
tropical line segment between x and y, and consequently so does S ∩ T .
Therefore S ∩ T is tropically convex by definition.

Suppose S is a tropically convex set in Rn. We claim that the image
of S under the coordinate projection φ : Rn → Rn−1, (x1, x2, . . . , xn) 7→
(x2, . . . , xn) is a tropically convex subset of Rn−1. If x, y ∈ S then we have

φ
(
c� x ⊕ d� y

)
= c� φ(x) ⊕ d� φ(y).

This means that φ is a homomorphism of tropical semimodules. Therefore, if
S contains the tropical line segment between x and y, then φ(S) contains the
tropical line segment between φ(x) and φ(y) and hence is tropically convex.
The same holds for the induced map φ : TPn−1 → TPn−2.

Most ordinary hyperplanes in Rn are not tropically convex, but we are
claiming that hyperplanes of the special form xi − xj = k are tropically
convex. If x and y lie in that hyperplane then xi − yi = xj − yj. This last
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equation implies the following identity for any real numbers c, d ∈ R:

(c�x⊕ d�y)i− (c�x⊕ d�y)j = min(xi+c, yi+d)−min(xj+c, yj+d) = k.

Thus the tropical segment between x and y is in the hyperplane {xi−xj = k}.
Consider the map from {xi − xj = k} to Rn−1 given by deleting the i-th

coordinate. This map is injective: if two points differ in the xi coordinate
they must also differ in the xj coordinate. It is surjective because we can
recover the i-th coordinate by setting xi = xj + k. Hence this map is an
isomorphism of R-vector spaces and it is also of (R,⊕,�)-semimodules.

Let S be a tropically convex set in Rn or TPn−1. Consider the family of
hyperplanes Hl = {x1 − x2 = l} for l ∈ R. We know that the intersection
S ∩Hl is tropically convex, and isomorphic to its (convex) image under the
map deleting the first coordinate. This image is contractible by induction on
the dimension n of the ambient space. Therefore, S∩Hl is contractible. The
result then follows from the topological result that if S is connected, which
all tropically convex sets obviously are, and if S ∩Hl is contractible for each
l, then S itself is also contractible.

Suppose that S ⊂ Rn and T ⊂ Rm are tropically convex. Our last
assertion states that S × T is a tropically convex subset of Rn+m. Take any
(x, y) and (x′, y′) in S × T and c, d ∈ R. Then

c� (x, y) ⊕ d� (x′, y′) =
(
c� x⊕ d� x′ , c� y ⊕ d� y′

)
lies in S × T since S and T are tropically convex.

We next give a more precise description of tropical line segments.

Proposition 5.3.4. The tropical line segment between two points x and y
in TPn−1 is the concatenation of at most n− 1 ordinary line segments. The
slope of each line segment is a zero-one vector.

Proof. After relabeling coordinates of x = (x1, , . . . , xn) and y = (y1, . . . , yn),
we may assume y1 − x1 ≤ y2 − x2 ≤ · · · ≤ yn − xn. The following points
lie in the given order on the tropical segment between x and y:

x = (y1 − x1)� x ⊕ y =
(
y1, y1−x1+x2, y1−x1+x3, . . . , y1−x1+xn

)
(y2 − x2)� x ⊕ y =

(
y1, y2, y2−x2+x3, . . . , y2−x2+xn

)
(y3 − x3)� x ⊕ y =

(
y1, y2, y3, . . . , y3−x3+xn−1, y3−x3+xn

)
· · · · · · · · · · · · · · · · · ·

(yn−1 − xn−1)� x ⊕ y =
(
y1, y2, y3, . . . , yn−1, yn−1−xn−1+xn

)
y = (yn − xn)� x ⊕ y =

(
y1, y2, y3, . . . , yn−1, yn

)
.
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Figure 5.2: Tropical polytopes: the first two live in TP2, the last in TP3.

Between any two consecutive points, the tropical line segment agrees with
the ordinary line segment, which has slope (0, 0, . . . , 0, 1, 1, . . . , 1). Hence the
tropical line segment between x and y is the concatenation of at most n− 1
ordinary line segments, one for each strict inequality yi−xi < yi+1−xi+1.

Proposition 5.3.4 shows an important feature of tropical convexity: seg-
ments use a limited set of slopes. We next characterize tropical convex hulls.

Proposition 5.3.5. The smallest tropically convex subset of TPn−1 which
contains a given set V coincides with the set of all tropical linear combinations
(5.5). We denote this set by tconv(V ).

Proof. Let x =
⊕r

i=1 ai� vi be the point in (5.5). If r ≤ 2 then x is clearly
in the tropical convex hull of V . If r > 2 then we write x = a1 � v1 ⊕
(
⊕r

i=2 ai � vi). The parenthesized vector lies the tropical convex hull, by
induction on r, and hence so does x. For the converse, consider any two
tropical linear combinations x =

⊕r
i=1 ci � vi and y =

⊕r
j=1 di � vi. By

the distributive law, a � x ⊕ b � y is also a tropical linear combination
of v1, . . . , vr ∈ V . Hence the set of all tropical linear combinations of V is
tropically convex, so it contains the tropical convex hull of V .

If V is a finite subset of TPn−1 then tconv(V ) is a tropical polytope. In
Figure 5.2 we see three small examples of tropical polytopes. The first and
second are tropical convex hulls of three points in TP2. The third tropical
polytope lies in TP3 and is the union of three squares. One of the basic
results in the usual theory of convex polytopes is Carathéodory’s theorem.
This important theorem holds also in the tropical setting.

Proposition 5.3.6 (Tropical Carathéodory’s Theorem). If x is in the trop-
ical convex hull of a set of r points v1, . . . , vr in TPn−1, with r > n, then x
is in the tropical convex hull of at most n of them.

Proof. Let x =
⊕r

i=1 ai � vi and suppose r > n. For each coordinate
j ∈ {1, . . . , n}, there exists an index i ∈ {1, . . . , r} such that xj = ci + vij.
Take a subset I of {1, . . . , r} composed of one such i for each j. Then we
also have x =

⊕
i∈I ai � vi, where #(I) ≤ n.
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Recall that the tropical hyperplane defined by a tropical linear form a1�
x1 ⊕ a2 � x2 ⊕ · · · ⊕ an � xn consists of all points x = (x1, x2, . . . , xn) in
TPn−1 such that the following holds (in ordinary arithmetic):

ai+xi = aj +xj = min{ak +xk : k = 1, . . . , n} for some indices i 6= j. (5.6)

Just like in ordinary geometry, hyperplanes are convex sets:

Proposition 5.3.7. Tropical hyperplanes in TPn−1 are tropically convex.

Proof. Let H be the hyperplane defined by (5.6). Let x and y be in H and
consider any linear combination z = c� x ⊕ d� y. Let i be an index which
minimizes ai +zi. We need to show that this minimum is attained twice. By
definition, zi is equal to either c+xi or d+yi, and, after permuting x and y,
we may assume zi = c+ xi ≤ d+ yi. Since, for all k, ai + zi ≤ ak + zk and
zk ≤ c+xk, it follows that ai +xi ≤ ak +xk for all k, so that ai +xi achieves
the minimum of {a1 + x1, . . . , an + xn}. Since x is in H, there exists some
index j 6= i for which ai + xi = aj + xj. But now aj + zj ≤ aj + c + xj =
c+ai +xi = ai + zi. Since ai + zi is the minimum of all aj + zj, the two must
be equal, and this minimum is obtained at least twice as desired.

Proposition 5.3.7 implies that if V is a subset of TPn−1 which happens to
lie in a tropical hyperplane H, then its tropical convex hull tconv(V ) will lie
in H as well. The same holds for tropical linear spaces of higher codimension
because these are always finite intersections of tropical hyperplanes:

Corollary 5.3.8. Tropical linear spaces in TPn−1 are tropically convex.

We now concentrate on the combinatorial structure of tropical polytopes.
Let V = {v1, v2, . . . , vr} be a fixed finite subset of tropical projective space
TPn−1. Here vi = (vi1, vi2, . . . , vin). Our objective is to study the tropical
polytope P = tconv(V ). We begin by describing the natural cell decompo-
sition of TPn−1 induced by the fixed finite subset V . Consider any point x
in TPn−1. The type of x relative to V is the ordered n-tuple (S1, . . . , Sn) of
subsets Sj ⊆ {1, 2, . . . , r} which is defined as follows: An index i is in Sj if

vij − xj = min(vi1 − x1, vi2 − x2, . . . , vin − xn).

Equivalently, if we set λi = min{λ ∈ R : λ � vi ⊕ x = x } then Sj is the
set of all indices i such that λi � vi and x have the same j-th coordinate.
We say that an n-tuple of indices S = (S1, . . . , Sn) is a type if it arises in this
manner. Note that every i must be in some Sj.
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Example 5.3.9. Let r = n = 3, v1 = (0, 0, 2), v2 = (0, 2, 0) and v3 =
(0, 1,−2). There are 30 possible types as x ranges over the plane TP2. The
corresponding cell decomposition has six convex regions (one bounded, five
unbounded), 15 edges (6 bounded, 9 unbounded) and 6 vertices. For instance,
the point x = (0, 1,−1) has type(x) =

(
{2}, {1}, {3}

)
and its cell is a

pentagon. The point x′ = (0, 0, 0) has type(x′) =
(
{1, 2}, {1}, {2, 3}

)
and

its cell is one of the six vertices. The point x′′ = (0, 0,−3) has type(x′′) ={
{1, 2, 3}, {1}, ∅

)
and its cell is an unbounded edge.

Our first application of types is the following separation theorem.

Proposition 5.3.10 (Tropical Farkas Lemma). For all x ∈ TPn−1, exactly
one of the following is true:

(i) the point x is in the tropical polytope P = tconv(V ), or
(ii) there exists a tropical hyperplane which separates x from P .

This means: if the hyperplane is given by (5.6) and ak + xk = min(a1 +
x1, . . . , an + xn) then ak + yk > min(a1 + y1, . . . , an + yn) for all y ∈ P .

Proof. Consider any point x ∈ TPn−1, with type(x) = (S1, . . . , Sn), and let
λi = min{λ ∈ R : λ� vi ⊕ x = x } as before. We define

πV (x) = λ1 � v1 ⊕ λ2 � v2 ⊕ · · · ⊕ λr � vr. (5.7)

There are two cases: either πV (x) = x or πV (x) 6= x. The first case implies
(i). Since (i) and (ii) clearly cannot occur at the same time, it suffices to
prove that the second case implies (ii). Suppose that πV (x) 6= x. Then Sk is
empty for some index k ∈ {1, . . . , n}. This means that vik + λi − xk > 0 for
i = 1, 2, . . . , r. Let ε > 0 be smaller than any of these r positive reals. We
now choose our separating tropical hyperplane (5.6) as follows:

ak := −xk − ε and aj := −xj for j ∈ {1, . . . , n}\{k}. (5.8)

This certainly satisfies ak + xk = min(a1 + x1. . . . , an + xn). Now, consider
any point y =

⊕r
i=1 ci�vi in tconv(V ). Pick any m such that yk = cm+vmk.

By definition of the λi, we have xk ≤ λm + vmk for all k, and there exists
some j with xj = λm + vmj. These equations and inequalities imply

ak + yk = ak + cm + vmk = cm + vmk − xk − ε > cm − λm

= cm + vmj − xj ≥ yj − xj = aj + yj ≥ min(a1 + y1, . . . , an + yn).

Therefore, the hyperplane defined by (5.8) separates x from P as desired.
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Figure 5.3: The region X(2,1,3) in the tropical convex hull of v1, v2 and v3.

The construction in (5.7) defines a map πV : TPn−1 → P whose restric-
tion to P is the identity. This map is the tropical version of the nearest point
map onto a closed convex set. If S = (S1, . . . , Sn) and T = (T1, . . . , Tn) are
n-tuples of subsets of {1, 2, . . . , r}, then we write S ⊆ T if Sj ⊆ Tj for
j = 1, . . . , n. We also consider the set of all points whose type contains S:

XS :=
{
x ∈ TPn−1 : S ⊆ type(x)

}
.

Lemma 5.3.11. The set XS is a closed convex polyhedron. More precisely,

XS =
{
x ∈ TPn−1 : xk−xj ≤ vik−vij for 1 ≤ j, k ≤ n and i ∈ Sj

}
. (5.9)

Proof. Let x ∈ TPn−1 and T = type(x). First, suppose x is in XS. Then
S ⊆ T . For every i, j, k such that i ∈ Sj, we also have i ∈ Tj, and so by
definition we have vij − xj ≤ vik − xk, or xk − xj ≤ vik − vij. Hence x
lies in the set on the right hand side of (5.9). For the proof of the reverse
inclusion, suppose that x lies in the right hand side of (5.9). Then, for all
i, j with i ∈ Sj, and for all k, we have vij − xj ≤ vik − xk. This means that
vij − xj = min(vi1 − x1, . . . , vin − xn) and hence i ∈ Tj. Consequently, for
all j, we have Sj ⊂ Tj, and so x ∈ XS.

As an example for Lemma 5.3.11, we consider the region X(2,1,3) in the
tropical convex hull of v1 = (0, 0, 2), v2 = (0, 2, 0), and v3 = (0, 1,−2).
This region is defined by six linear inequalities, one of which is redundant, as
depicted in Figure 5.3. Lemma 5.3.11 has the following immediate corollaries.

Corollary 5.3.12. The intersection XS ∩XT equals the polyhedron XS∪T .

Proof. The inequalities defining XS∪T are the inequalities defining XS and
XT , and points satisfying these inequalities are precisely those inXS∩XT .

Corollary 5.3.13. The polyhedron XS is bounded if and only if Sj 6= ∅ for
all j = 1, 2, . . . , n.

Proof. Suppose Sj 6= ∅ for all j = 1, . . . , n. Then for every j and k, we
can find i ∈ Sj and m ∈ Sk, which via Lemma 5.3.11 yield the inequalities
vmk − vmj ≤ xk − xj ≤ vik − vij. This implies that each xk − xj is bounded
on XS, which means that XS is a bounded subset of TPn−1. Conversely,
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suppose some Sj is empty. Then the only inequalities involving xj are of the
form xj − xk ≤ cjk. Consequently, if x is in Sj, so is x− kej for k > 0, where
ej is the j-th basis vector. Therefore, in this case, XS is unbounded.

Corollary 5.3.14. Suppose S = (S1, . . . , Sn) with S1∪· · ·∪Sn = {1, . . . , r}.
If S ⊆ T then XT is a face of XS, and all faces of XS are of this form.

Proof. For the first part, it suffices to prove that the statement is true when
T covers S in the poset of containment, i.e. when Tj = Sj ∪ {i} for some
j ∈ {1, . . . , n} and i 6∈ Sj, and Tk = Sk for k 6= j. We have the inequality
presentation of XS given by Lemma 5.3.11. The inequality presentation of
XT consists of the inequalities defining XS together with the inequalities

{xk − xj ≤ vik − vij : k ∈ {1, . . . , n}}. (5.10)

By assumption, i is in some Sm. We claim that XT is the face of S given by

xm − xj = vim − vij. (5.11)

Since XS satisfies the inequality xj−xm ≤ vij−vim, (5.11) defines a face F of
S. The inequality xm−xj ≤ vim−vij is in (5.10), so (5.11) is valid on XT and
XT ⊆ F . However, any point in F , being in XS, satisfies xk−xm ≤ vik− vim

for 1 ≤ k ≤ n. Adding (5.11) to these inequalities proves that the inequalities
(5.10) are valid on F , and hence F ⊆ XT . So XT = F as desired.

By the discussion in the proof of the first part, prescribing equality in the
facet-defining inequality xk − xj ≤ vik − vij yields XT , where Tk = Sk ∪ {i}
and Tj = Sj for j 6= k. Therefore, all facets of XS can be obtained as regions
XT , and it follows recursively that all faces of XS are of this form.

Corollary 5.3.15. Let S = (S1, . . . , Sn) be an n-tuple of indices satisfying
S1 ∪ · · · ∪ Sn = {1, . . . , r}. Then XS is equal to XT for some type T .

Proof. Let x be a point in the relative interior of XS, and let T = type(x).
Since x ∈ XS, T contains S, and by Lemma 5.3.14, XT is a face of XS. How-
ever, since x is in the relative interior of XS, the only face of XS containing
x is XS itself, so we must have XS = XT as desired.

Theorem 5.3.16. The collection of convex polyhedra XS, where S ranges
over all types, is a cell decomposition CV of TPn−1. The tropical polytope
P = tconv(V ) equals the union of all bounded cells XS in this decomposition.
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Proof. Since each point has a type, it is clear that the union of the XS is
equal to TPn−1. By Corollary 5.3.14, the faces of XS are equal to XU for
S ⊆ U , and by Corollary 5.3.15, XU = XW for some type W , and hence
XU is in our collection. The only thing remaining to check to show that this
collection defines a cell decomposition is that XS ∩XT is a face of both XS

and XT , but XS ∩XT = XS∪T by Corollary 5.3.12, and XS∪T is a face of XS

and XT by Corollary 5.3.14.
For the second assertion consider any point x ∈ TPn−1 and let S =

type(x). We have seen in the proof of the Tropical Farkas Lemma (Proposi-
tion 5.3.10) that x lies in P if and only if no Sj is empty. By Corollary 5.3.13,
this is equivalent to the polyhedron XS being bounded.

The set of bounded cells XS is referred to as the tropical complex gen-
erated by V . Theorem 5.3.16 states that this provides a polyhedral decom-
position of the polytope P = tconv(V ). Different sets V may have the same
tropical polytope as their convex hull, but generate different tropical com-
plexes; the decomposition of a tropical polytope depends on the chosen V .

Here is a nice geometric construction of the cell decomposition CV of
TPn−1 induced by V = {v1, . . . , vr}. Let F be the fan in TPn−1 defined by
the tropical hyperplane (5.6) with a1 = · · · = an = 0. Two vectors x and y
lie in the same relatively open cone of the fan F if and only if

{ j : xj = min(x1, . . . , xn) }
= { j : yj = min(y1, . . . , yn) }.

If we translate the negative of F by the vector vi then we get a new fan which
we denote by vi − F . Two vectors x and y lie in the same relatively open
cone of the fan vi −F if and only

{ j : xj − vij = max(x1 − vi1, . . . , xn − vin) }
= { j : yj − vij = max(y1 − vi1, . . . , yn − vin) }.

Proposition 5.3.17. The cell decomposition CV is the common refinement
of the r fans vi −F .

Proof. We need to show that the cells of this common refinement are precisely
the convex polyhedra XS. Take a point x, with T = type(x) and define
Sx = (Sx1, . . . , Sxn) by letting i ∈ Sxj whenever

xj − vij = max(x1 − vi1, . . . , xn − vin). (5.12)
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Figure 5.4: Tropical complex expressed as the bounded cells in the refinement
of the fans v1 −F , v2 −F and v3 −F . Cells are labeled with their types.

Two points x and y are in the relative interior of the same cell of the common
refinement if and only if they are in the same relatively open cone of each
fan; this is tantamount to saying that Sx = Sy. However, we claim that
Sx = T . Indeed, taking the negative of both sides of (5.12) yields exactly
the condition for i being in Tj, by the definition of type. Consequently, the
condition for two points having the same type is the same as the condition
for the two points being in the relative interior of the same chamber of the
common refinement of the fans v1 −F , v2 −F , . . . , vr −F .

An instance of this construction is shown for our running example, where
v1 = (0, 0, 2), v2 = (0, 2, 0), and v3 = (0, 1,−2), in Figure 5.4.

The next few results provide additional information about the polyhedron
XS. Let GS denote the undirected graph with vertices {1, . . . , n}, where
{j, k} is an edge if and only if Sj ∩ Sk 6= ∅.

Proposition 5.3.18. The dimension d of the polyhedron XS is one less than
the number of connected components of GS, and XS is affinely and tropically
isomorphic to some polyhedron XT in TPd.

Proof. The proof is by induction on n. Suppose we have i ∈ Sj∩Sk. ThenXS

satisfies the linear equation xk − xj = c where c = vik − vij. Eliminating the
variable xk (projecting onto TPn−2), XS is affinely and tropically isomorphic
to XT where the type T is defined by Tr = Sr for r 6= j and Tj = Sj∪Sk. The
region XT exists in the cell decomposition of TPn−2 induced by the vectors
w1, . . . , wn with wir = vir for r 6= j, and wij = max(vij, vik − c). The graph
GT is obtained from the graph GS by contracting the edge {j, k}, and thus
has the same number of connected components.

This induction on n reduces us to the case where all of the Sj are pairwise
disjoint. We must show that XS has dimension n − 1. Suppose not. Then
XS lies in TPn−1 but has dimension less than n − 1. Therefore, one of the
inequalities in (5.9) holds with equality, say xk − xj = vik − vij for all
x ∈ XS. The inequality “≤” implies i ∈ Sj and the inequality “≥” implies
i ∈ Sk. Hence Sj and Sk are not disjoint, a contradiction.

The following proposition can be regarded as a converse to Lemma 5.3.11.
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Proposition 5.3.19. Let R be any polytope in TPn−1 defined by inequalities
of the form xk − xj ≤ cjk. Then R arises as a cell XS in the decomposition
CV of TPn−1 defined by some set V = {v1, . . . , vn}.

Proof. Define the vectors vi to have coordinates vij = cij for i 6= j, and
vii = 0. (If cij did not appear in the given inequality presentation then
simply take it to be a very large positive number.) Then by Lemma 5.3.11,
the polytope in TPn−1 defined by the inequalities xk−xj ≤ cjk is precisely the
unique cell of type (1, 2, . . . , n) in the tropical conver hull of {v1, . . . , vn}.

The region XS is a polytope both in the ordinary sense and in the tropical
sense. Such polytopes have been called polytropes in [JK08].

Proposition 5.3.20. Every bounded cell XS in the tropical complex gener-
ated by V is itself a tropical polytope, equal to the tropical convex hull of its
vertices. The number of vertices of the polytrope XS is at most

(
2n−2
n−1

)
, and

this bound is tight for all positive integers n.

Proof. By Proposition 5.3.18, if XS has dimension d, it is affinely and trop-
ically isomorphic to a region in the convex hull of a set of points in TPd, so
it suffices to consider the full-dimensional case.

The inequality presentation of Lemma 5.3.11 demonstrates that XS is
tropically convex for all S, since if two points satisfy an inequality of that
form, so does any tropical linear combination thereof. Therefore, it suffices
to show that XS is contained in the tropical convex hull of its vertices.

The proof is by induction on the dimension of XS. All proper faces of
XS are polytopes XT of lower dimension, and by induction are contained
in the tropical convex hull of their vertices. These vertices are a subset of
the vertices of XS, and so this face is in the tropical convex hull. Take any
point x = (x1, . . . , xn) in the interior of XS. We can travel in any direction
from x while remaining in XS. Let us travel in the (1, 0, . . . , 0) direction
until we hit the boundary, to obtain points y1 = (x1 + b, x2, . . . , xn) and y2 =
(x1 − c, x2, . . . , xn) in the boundary of XS. These points are in the tropical
convex hull by the induction hypothesis, which means that x = y1 ⊕ c � y2

is also, completing the proof of the first assertion.
For the second assertion, we consider the convex hull of all differences

of unit vectors, ei − ej. This is a lattice polytope of dimension n − 1 and
normalized volume

(
2n−2
n−1

)
. To see this, we observe that this polytope is

tiled by n copies of the convex hull of the origin and the
(

n
2

)
vectors ei − ej
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with i < j. The other n − 1 copies are gotten by cyclic permutation of
the coordinates. This latter polytope was studied by Gel’fand, Graev and
Postnikov, who showed in [GGP97, Theorem 2.3 (2)] that the normalized
volume of this polytope equals the Catalan number 1

n

(
2n−2
n−1

)
. We conclude

that every complete fan whose rays are among the vectors ei−ej has at most(
2n−2
n−1

)
maximal cones. This applies in particular to the normal fan of XS,

hence XS has at most
(
2n−2
n−1

)
vertices. Since the configuration {ei − ej} is

unimodular, the bound is tight whenever the fan is simplicial and uses all
the rays ei − ej.

Example 5.3.21. The upper bound on the number of vertices of a polytrope
in TP3 is

(
2·4−2
4−1

)
= 20. Figure 8 in [JK08] shows the five distinct combinatorial

types of such extremal three-dimensional polytropes.

Proposition 5.3.22. If P and Q are tropical polytopes in TPn−1 then P ∩Q
is also a tropical polytope.

Proof. Since P and Q are both tropically convex, P ∩Q must also be. Con-
sequently, if we can find a finite set of points in P ∩ Q whose convex hull
contains all of P ∩Q, we will be done. By Theorem 5.3.16, P and Q are the
finite unions of bounded cells {XS} and {XT} respectively, so P ∩ Q is the
finite union of the cells XS∩XT . Consider any XS∩XT . Using Lemma 5.3.11
to obtain the inequality representations of XS and XT , we see that this re-
gion is of the form dictated by Proposition 5.3.19, and therefore obtainable
as a cell XW in some tropical complex. By Proposition 5.3.20, XW is itself
a tropical polytope, and we can find a finite set whose convex hull is equal
to XS ∩XT . Taking the union of these sets over all choices of S and T then
gives us the desired set of points whose convex hull contains all of P ∩Q.

Proposition 5.3.23. Let P ⊂ TPn−1 be a tropical polytope. Then there
exists a unique minimal set V such that P = tconv(V ).

Proof. Suppose that P has two minimal generating sets, V = {v1, . . . , vm}
and W = {w1, . . . , wr}. Write each element of W as wi = ⊕m

j=1cij � vj. We
claim that V ⊆ W . Consider v1 ∈ V and write

v1 =
r⊕

i=1

di � wi =
m⊕

j=1

fj � vj where fj = mini(di + cij). (5.13)
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If the term f1�v1 does not minimize any coordinate in the right-hand side of
(5.13), then v1 is a linear combination of v2, . . . , vm, contradicting the mini-
mality of V . However, if f1� v1 minimizes any coordinate in this expression,
it must minimize all of them, since (v1)j − (v1)k = (f1� v1)j − (f1� v1)k. In
this case we get v1 = f1 � v1, or f1 = 0. Pick any i for which f1 = di + ci1;
we claim that wi = ci1 � v1. Indeed, if any other term in wi = ⊕m

j=1cij � vj

contributed nontrivially to wi, that term would also contribute to the expres-
sion on the right-hand side of (5.13), which is a contradiction. Consequently,
V ⊆ W , which means V = W since both sets are minimal by hypothesis.

Every set V = {v1, . . . , vr} of r points in TPn−1 specifies a tropical poly-
tope P = tconv(V ) equipped with a cell decomposition into the tropical
complex generated by V . Each cell of this tropical complex is labelled by its
type, which is an n-vector of finite subsets of {1, . . . , r}. Two configurations
V and W have the same combinatorial type if the types occurring in their
tropical complexes are identical; note that by Lemma 5.3.14, this implies
that the face posets of these polyhedral complexes are isomorphic.

With the definition in the previous paragraph, the statement of Theorem
5.3.2 has now finally been made precise. We will prove this correspondence
between tropical complexes and subdivisions of products of simplices by con-
structing the polyhedral complex CP in a higher-dimensional space.

Let W = Rr+n/R(1, . . . , 1,−1, . . . ,−1). The natural coordinates on W
are denoted (y, z) = (y1, . . . , yr, z1, . . . , zn). As before, we fix an ordered
subset V = {v1, . . . , vr} of TPn−1. This defines the unbounded polyhedron

PV =
{

(y, z) ∈ W : yi + zj ≤ vij for 1 ≤ i ≤ r and 1 ≤ j ≤ n
}
. (5.14)

Lemma 5.3.24. There is a piecewise-linear isomorphism between the tropical
complex generated by V and the complex of bounded faces of the (r + n −
1)-dimensional polyhedron PV . The image of a cell XS of CP under this
isomorphism is the bounded face {yi+zj = vij : i ∈ Sj} of PV . That bounded
face maps isomorphically to XS via projection onto the z-coordinates.

Proof. Let F be a bounded face of PV , and define Sj via i ∈ Sj if yi+zj = vij

is valid on all of F . If some yi or zj appears in no equality, then we can
subtract arbitrary positive multiples of that basis vector to obtain elements
of F , contradicting the assumption that F is bounded. Therefore, each i
must appear in some Sj, and each Sj must be nonempty.

Since every yi appears in some equality, given a specific z in the projection
of F onto the z-coordinates, there exists a unique y for which (y, z) ∈ F , so
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this projection is an affine isomorphism from F to its image. We need to
show that this image is equal to XS. Let z be a point in the image of this
projection, coming from a point (y, z) in the relative interior of F . We claim
that z ∈ XS. Indeed, looking at the jth coordinate of z, we find

−yi + vij ≥ zj for all i, (5.15)

−yi + vij = zj for i ∈ Sj. (5.16)

The defining inequalities ofXS are xj−xk ≤ vij−vik with i ∈ Sj. Subtracting
the inequality −yi + vik ≥ zk from the equality in (5.16) yields that this
inequality is valid on z as well. Therefore, z ∈ XS. Similar reasoning shows
that S = type(z). We note that the relations (5.15) and (5.16) can be
rewritten in terms of the tropical product of a row vector and a matrix:

z = (−y)� V =
r⊕

i=1

(−yi)� vi. (5.17)

Conversely, suppose z ∈ XS. We define y = V � (−z). This means that

yi = min(vi1 − z1, vi2 − z2, . . . , vin − zn). (5.18)

We claim that (y, z) ∈ F . Indeed, we certainly have yi + zj ≤ vij for all
i and j, so (y, z) ∈ PV . Furthermore, when i ∈ Sj, we know that vij − zj

achieves the minimum in the right-hand side of (5.18), so that vij − zj = yi

and yi + zj = vij is satisfied. Consequently, (y, z) ∈ F as desired.
It follows that the two complexes are isomorphic: if F is a face corre-

sponding to XS and G is a face corresponding to XT , where S and T are
both types, then XS is a face of XT if and only if T ⊆ S. However, by the
discussion above, this is equivalent to saying that the equalities G satisfies
(which correspond to T ) are a subset of the equalities F satisfies (which cor-
respond to S); this is true if and only if F is a face of G. So XS is a face of
XT if and only if F is a face of G, which establishes the assertion.

The boundary complex of the polyhedron PV is polar to the regular
subdivision of the product of simplices ∆r−1 ×∆n−1 defined by the weights
vij. We denote this regular polyhedral subdivision by (∂PV )∗. Explicitly, a
subset of vertices (ei, ej) of ∆r−1 ×∆n−1 forms a cell of (∂PV )∗ if and only
if the equations yi + zj = vij indexed by these vertices specify a face of the
polyhedron PV . We now present the proof of the result stated earlier.
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Proof of Theorem 5.3.2: The poset of bounded faces of PV is antiisomorphic
to the poset of interior cells of the subdivision (∂PV )∗ of ∆r−1×∆n−1. Since
every full-dimensional cell of (∂PV )∗ is interior, the subdivision is uniquely
determined by its interior cells. Hence, the combinatorial type of PV is
determined by the lists of facets containing each bounded face of PV . These
lists are precisely the types of regions in CP by Lemma 5.3.24. This completes
the proof.

Theorem 5.3.2, which establishes a bijection between the tropical com-
plexes generated by r points in TPn−1 and the regular subdivisions of a
product of simplices ∆r−1 ×∆n−1, has many striking consequences. One of
them is the identification of the row span and column span of a matrix:

Theorem 5.3.25. Given any matrix M ∈ Rr×n, the tropical complex gen-
erated by its column vectors is isomorphic to the tropical complex generated
by its row vectors. This isomorphism is gotten by restricting the piecewise
linear maps Rn → Rr, z 7→M � (−z) and Rr → Rn, y 7→ (−y)�M .

Proof. By Theorem 5.3.2, the matrix M corresponds via the polyhedron PM

to a regular subdivision of ∆r−1 × ∆n−1, and the complex of interior faces
of this regular subdivision is combinatorially isomorphic to both the tropical
complex generated by its row vectors, which are r points in TPn−1, and
the tropical complex generated by its column vectors, which are n points in
TPr−1. Furthermore, Lemma 5.3.24 tells us that the cell in PM is affinely
isomorphic to its corresponding cell in both tropical complexes. Finally, in
the proof of Lemma 5.3.24, we showed that the point (y, z) in a bounded face
F of PM satisfies y = M � (−z) and z = (−y)�M . This point projects to y
and z, and so the piecewise-linear isomorphism mapping these two complexes
to each other is defined by the stated maps.

The common tropical complex of these two tropical polytopes is given by
the complex of bounded faces of the common polyhedron PM , which lives in
a space of dimension r + n− 1; the tropical polytopes are unfoldings of this
complex into dimensions r−1 and n−1. Theorem 5.3.25 also gives a natural
bijection between the combinatorial types of tropical convex hulls of r points
in TPn−1 and the combinatorial types of tropical convex hulls of n points in
TPr−1, incidentally proving that there are the same number of each.

Figure 5.5 shows the dual of the convex hull of {(0, 0, 2), (0, 2, 0), (0, 1,−2)},
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Figure 5.5: A demonstration of tropical polytope duality.

also a tropical triangle (here r = n = 3). For instance, we compute: 0 0 2
0 2 0
0 1 −2

  0
0
−2

 =

 0
−2
−4

 .

This point is the image of the point (0, 0, 2) under this duality map. Note
that duality does not preserve the generating set; the polytope on the right
is the convex hull of points {F,D,B}, while the polytope on the left is the
convex hull of points {F,A,C}. This is necessary, of course, since in general
a polytope with r vertices is mapped to a polytope with n vertices, and r
need not equal n as it does in our example.

We now discuss the generic case when the subdivision (∂PV )∗ is a regular
triangulation of ∆r−1 ×∆n−1.

Proposition 5.3.26. For a configuration V of r points in TPn−1 with r ≥ n
the following are equivalent:

1. The regular subdivision (∂PV )∗ is a triangulation of ∆r−1 ×∆n−1.

2. No k of the points in V have projections onto a k-dimensional coordi-
nate subspace which lie in a tropical hyperplane, for any 2 ≤ k ≤ n.

3. No k × k-submatrix of the r × n-matrix (vij) is tropically singular, i.e.
has vanishing tropical determinant, for any 2 ≤ k ≤ n.

Proof. The last equivalence follows from Proposition 5.1.7. We shall prove
that (1) and (3) are equivalent. The tropical determinant of a k by k matrix
M is the tropical polynomial ⊕σ∈Sk

(�k
i=1Miσ(i)). The matrix M is tropically

singular if the minimum minσ∈Sk
(
∑k

i=1Miσ(i)) is achieved twice.
The regular subdivision (∂PV )∗ is a triangulation if and only if the poly-

hedron PV is simple, which is to say if and only if no r + n of the facets
yi +zj ≤ vij meet at a single vertex. For each vertex v, consider the bipartite
graph Gv consisting of vertices y1, . . . , yn and z1, . . . , zj with an edge connect-
ing yi and zj if v lies on the corresponding facet. This graph is connected,
since each yi and zj appears in some such inequality, and thus it will have a
cycle if and only if it has at least r+n edges. Consequently, PV is not simple
if and only there exists some Gv with a cycle.
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If there is a cycle, without loss of generality it is y1, z1, y2, z2, . . . , yk, zk.
Consider the submatrix M of (vij) given by 1 ≤ i, j ≤ k. We have y1 + z1 =
M11, y2 + z2 = M22, and so on, and also z1 + y2 = M12, . . . , zk + y1 =
Mk1. Adding up all of these equalities yields y1 + · · · + yk + z1 + · · · + zk =
M11 + · · ·+Mkk = M12 + · · ·+Mk1. But consider any permutation σ in the
symmetric group Sk. Since Miσ(i) = viσ(i) ≥ yi + zσ(i), we have

∑
Miσ(i) ≥

x1 + · · · + xk + y1 + · · · + yk. Consequently, the permutations equal to the
identity and to (12 · · · k) simultaneously minimize the determinant of the
minor M . This logic is reversible, proving the equivalence of (1) and (3).

If the r points of V are in general position, the tropical complex they
generate is a generic tropical complex. Such a tropical complex is dual to the
co-complex of interior faces in a regular triangulation of ∆r−1 ×∆n−1.

Corollary 5.3.27. All tropical complexes generated by r points in general
position in TPn−1 have the same f -vector. Specifically, the number of faces
of dimension k is equal to the multinomial coefficient(

r + n− k − 2

r − k − 1, n− k − 1, k

)
=

(r + n− k − 2)!

(r − k − 1)! · (n− k − 1)! · k!
.

Proof. By Proposition 5.3.26, these objects are in bijection with regular tri-
angulations of P = ∆r−1 × ∆n−1. The polytope P is unimodular, which
means that all simplices formed by vertices of P are unimodular. This prop-
erty implies that all triangulations of P have the same f -vector. The number
of faces of dimension k of the tropical complex generated by given r points is
equal to the number of interior faces of codimension k in the corresponding
triangulation. Since all triangulations of all products of simplices have the
same f -vector, they also have the same interior f -vector, which can be com-
puted by taking the f -vector and subtracting off the f -vectors of the induced
triangulations on the proper faces of P . These proper faces are products of
simplices and hence equidecomposable, so all of these induced triangulations
have f -vectors independent of the original triangulation as well.

To compute this number, we therefore need only compute it for one trop-
ical complex. Let the vectors vi, 1 ≤ i ≤ r, be given by vi = (i, 2i, · · · , ni).
By Theorem 5.3.11, to count the faces of dimension k in this tropical com-
plex, we enumerate the existing types with k degrees of freedom. Consider
any index i. We claim that for any x in the tropical convex hull of {vi}, the
set {j | i ∈ Sj} is an interval Ii, and that if i < m, the intervals Im and Ii
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Figure 5.6: The 35 symmetry classes of tropical quadrangles in TP2.

meet in at most one point, which in that case is the largest element of Im
and the smallest element of Ii.

Suppose we have i ∈ Sj and m ∈ Sl with i < m. Then we have by
definition vij−xj ≤ vil−xl and vml−xl ≤ vmj−xj. Adding these inequalities
yields vij + vml ≤ vil + vmj, or ij+ml ≤ il+mj. Since i < m, it follows that
we must have l ≤ j. Therefore, we can never have i ∈ Sj and m ∈ Sl with
i < m and j < l. The claim follows immediately, since the Ii cover [1, n].

The number of degrees of freedom of an interval set (I1, . . . , Ir) is easily
seen to be the number of i for which Ii and Ii+1 are disjoint. Given this, it
follows from a simple combinatorial counting argument that the number of
interval sets with k degrees of freedom is the multinomial coefficient given
above. Finally, a representative for every interval set is given by xj = xj+1−
cj, where if Sj and Sj+1 have an element i in common (they can have at most
one), cj = i, and if not then cj = (min(Sj) + max(Sj+1))/2. Therefore, each
interval set is in fact a valid type, and our enumeration is complete.

Corollary 5.3.28. The number of combinatorially distinct generic tropical
complexes generated by r points in TPn−1 equals the number of distinct regular
triangulations of ∆r−1 × ∆n−1. The number of respective symmetry classes
under the natural action of the product of symmetric groups G = Sr × Sn on
both spaces is also the same.

The symmetries in the group G correspond to a natural action on ∆r−1×
∆n−1 given by permuting the vertices of the two component simplices; the
symmetries in the symmetric group Sr correspond to permuting the points
in a tropical polytope, while those in the symmetric group Sn correspond
to permuting the coordinates. (These are dual by Corollary 5.3.25.) The
number of symmetry classes of regular triangulations of the polytope ∆r−1×
∆n−1 is computable via Jörg Rambau’s TOPCOM [Ram02] for small r and
n:

2 3

2 5 35
3 35 7, 955
4 530
5 13, 631
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For example, the (2, 3) entry of the table divulges that there are 35 symme-
try classes of regular triangulations of ∆2 ×∆3. These correspond to the 35
combinatorial types of four-point configurations in TP2, or to the 35 combi-
natorial types of three-point configurations in TP3. These 35 configurations
(with the tropical complexes they generate) are shown in Figure 5.6.

5.4 The Rank of a Matrix

The rank of a matrix M is one of the most important notions in linear
algebra. This number can be defined in many different ways. In particular,
the following three definitions are equivalent in classical linear algebra:

• The rank of M is the smallest integer r for which M can be written
as the sum of r rank one matrices. A matrix has rank one if it is the
product of a column vector and a row vector.

• The rank of M is the smallest dimension of any linear space containing
the columns of M .

• The rank of M is the largest integer r such that M has a non-singular
r × r minor.

Our objective is to examine these familiar definitions over the tropical
semiring (R,⊕,�). The set Rd of real d-vectors and the set Rd×n of real
d× n-matrices are semimodules over the semiring (R,⊕,�). The operations
of matrix addition and matrix multiplication are well defined. All three
definitions of rank make sense over the tropical semiring (R,⊕,�):

Definition 5.4.1. The Barvinok rank of a matrix M ∈ Rd×n is the smallest
integer r for which M can be written as the tropical sum of r rank one
matrices. Here, we say that a d× n-matrix has rank one if it is the tropical
matrix product of a d× 1-matrix and a 1× n-matrix.

Definition 5.4.2. The Kapranov rank of a matrix M ∈ Rd×n is the smallest
dimension of any tropicalization of linear space in T d (in the sense of 4.3) con-
taining the columns of M . Here K is allowed to be any field of characteristic
zero.
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Definition 5.4.3. A square matrix M = (mij) ∈ Rr×r is tropically singular
if the minimum in the evaluation of the tropical determinant⊕
σ∈Sr

m1σ1�m2σ2�· · ·�mrσr = min
{
m1σ1 +m2σ2 + · · ·+mrσr : σ ∈ Sr

}
is attained at least twice. Here Sr denotes the symmetric group on {1, 2, . . . , r}.
See also Proposition 5.1.7. The tropical rank of a matrix M ∈ Rd×n is the
largest integer r such that M has a non-singular r × r minor.

We will show that these three definitions are not equivalent:

Theorem 5.4.4. For every matrix M with entries in the tropical semiring,

tropical rank (M) ≤ Kapranov rank (M) ≤ Barvinok rank (M). (5.19)

Both of these inequalities can be strict.

The proof of Theorem 5.4.4 consists of Propositions 5.4.15, 5.4.17, 5.4.21
and Theorem 5.4.22. As we go along, several alternative characterizations
of the Barvinok, Kapranov and tropical ranks will be offered. One of them
arises from the fact that every d × n-matrix M defines a tropically linear
map Rn → Rd. The image of M is regarded as a tropical polytope in
TPd−1 = Rd/R(1, 1, . . . , 1). We shall see that the tropical rank of M equals
the dimension of this tropical polytope plus one. The discrepancy between
Definitions 5.4.1, 5.4.2 and 5.4.3 comes from the crucial distinction between
tropical polytopes, tropicalized linear spaces, and tropical linear spaces.

We start out by studying the Barvinok rank (Definition 5.4.1). This
notion of rank arises naturally in the context of combinatorial optimiza-
tion. Barvinok, Johnson, Woeginger and Woodrooofe [BJWW98], building
on earlier work of Barvinok, showed that for fixed r, the Traveling Sales-
man Problem can be solved in polynomial time if the distance matrix is the
tropical sum of r matrices of tropical rank one (with ⊕ as “max” instead of
“min”). This motivates the definition and nomenclature of Barvinok rank
as the smallest r for which M ∈ Rd×n is expressible in this fashion. Since
matrices of tropical rank one are of the form X�Y T , for two column vectors
X ∈ Rd and Y ∈ Rn, this is equivalent to saying that M has a representation

M = XT
1 � Y1 ⊕ XT

2 � Y2 ⊕ · · · ⊕ XT
r � Yr. (5.20)



5.4. THE RANK OF A MATRIX 159

For example, here is a 3× 3-matrix which has Barvinok rank two:

M =

0 4 2
2 1 0
2 4 3

 =

0
2
2

� (0, 4, 2) ⊕

3
0
3

� (2, 1, 0). (5.21)

This matrix also has tropical rank 2 and Kapranov rank 2. The column
vectors lie on the tropical line in TP2 defined by 2� x1 ⊕ 3� x2 ⊕ 0� x3.

We next present two reformulations of Barvinok rank: in terms of tropical
convex hulls as in Section 5.3, and via a “tropical morphism” in matrix space.

Proposition 5.4.5. For a real d×n-matrix M , the following are equivalent:

(a) M has Barvinok rank at most r.

(b) The columns of M lie in the tropical convex hull of r points in TPd−1.

(c) There are matrices X ∈ Rd×r and Y ∈ Rr×n such that M = X � Y .
Equivalently, M lies in the image of the following tropical morphism,
which is defined by matrix multiplication:

φr : Rd×r × Rr×n → Rd×n , (X, Y ) 7→ X � Y. (5.22)

Proof. Let M1, . . . ,Mn ∈ Rd be the column vectors of M . Let X1, . . . , Xr ∈
Rd and Y1, . . . , Yr ∈ Rn be the columns of two unspecified matrices X ∈ Rd×r

and Y ∈ Rn×r. Let Yij denote the jth coordinate of Yi. The following three
algebraic identities are easily seen to be equivalent:

(a) M = X1 � Y T
1 ⊕ X2 � Y T

2 ⊕ · · · ⊕ Xr � Y T
r ,

(b) Mj = Y1j �X1 ⊕ Y2j �X2 ⊕ · · · ⊕ Yrj �Xr for all j = 1, . . . , n, and

(c) M = X � Y T .

Statement (b) says that each column vector of M lies in the tropical convex
hull of X1, . . . , Xr. The entries of the matrix Y are the multipliers in that
tropical convex combination. This shows that the three conditions (a), (b)
and (c) in the statement of the proposition are equivalent.

We next take a closer look at the structure of the multiplication map φr.
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Proposition 5.4.6. The map φr is piecewise-linear. The domains of linear-
ity form a fan in Rd×r × Rr×n. This fan is the common refinement of the
normal fans of dn simplices of dimension r − 1.

Proof. Let U = (uij) and V = (vjk) be matrices of indeterminates of format
d× r and r× n respectively. The entries of the classical matrix product UV
are the dn quadratic polynomials ui1v1k + ui2v2k + · · ·+ uirvrk. The Newton
polytope of each such quadric is an (r − 1)-dimensional simplex Pik. Let
P =

∑d
i=1

∑n
k=1 Pik denote the Minkowski sum of these dn simplices. This

is a polytope of dimension
(
2·min(d, n)−1

)
(r−1) sitting inside Rd×r×Rr×n.

The ik-coordinate of the tropical map φr takes a pair of matrices (X, Y )
to the real number min(xi1 +y1k, . . . , xir +yrk). This function is the support
function of the simplex Pik. It is linear on each cone in the normal fan of Pik.
Hence φr is a linear map on the common refinement of the normal fans of the
simplices Pik. This common refinement is the normal fan of their Minkowski
sum P . We conclude that φr is piecewise-linear on the normal fan of P .

Corollary 5.4.7. If r = 2 then the map φ2 is piecewise-linear with respect
to the regions in an arrangement of dn hyperplanes in Rd×2 × R2×n.

Proof. If r = 2 then each Pij is a line segment, and their Minkowski sum P
is a zonotope of dimension 2 ·min(d, n)− 1. The normal fan of the zonotope
P is a hyperplane arrangement, and it follows from the previous proof that
φr is piecewise linear on that hyperplane arrangement.

Example 5.4.8. Let d = n = 3 and r = 2. Then P is a four-dimensional
zonotope with nine zones in R12 = R3×2 × R2×3. This zonotope has 230
vertices, so the dual hyperplane arrangement has 230 maximal regions. The
tropical morphism φ2 maps each of these 230 regions linearly onto an 8-
dimensional cone in R3×3. The image of φ2 is the set of all tropically singular
3 × 3-matrices. This is a polyhedral fan with 15 maximal cones. It is the
codimension one skeleton of the normal fan of the four-dimensional Birkhoff
polytope (the convex hull of all six 3× 3-permutation matrices).

By Proposition 5.4.5, the set of all Barvinok matrices of rank ≤ r is the
image of the tropical morphism φr. In particular, this set is a polyhedral fan
in Rd×n, as in the previous example. The distinction between the Barvinok
rank and the Kapranov rank can be explained by the following general fact
of tropical algebraic geometry: For most polynomial maps, the image of the
tropicalization is strictly contained in the tropicalization of the image.
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We next demonstrate that the Barvinok rank can be much larger than the
other two notions of rank. The example to be considered is the n×n-matrix

Cn =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 . (5.23)

This looks like the identity matrix (in classical arithmetic) but it is not the
identity matrix in tropical arithmetic. That honor belongs to the n×n-matrix
whose diagonal entries are 0 and whose off-diagonal entries are ∞.

Theorem 5.4.9. The Barvinok rank of the matrix Cn is the smallest positive
integer r such that

n ≤
(
r⌊
r
2

⌋).
Proof. Let r be an integer and assume that n ≤

(
r

br/2c

)
. We first show that

Barvinok rank (Cn) ≤ r. Let S1, . . . , Sn be distinct subsets of {1, . . . , r} each
having cardinality br/2c. For each k ∈ 1, . . . , r, we define an n × n-matrix
Xk = (xk

ij) with entries in {0, 1, 2} as follows:

xk
ij = 0 if k ∈ Si\Sj , xk

ij = 2 if k ∈ Sj\Si, and xk
ij = 1 otherwise.

The matrix Xk has tropical rank one. To see this, let Vk ∈ {0, 1}n denote
the vector with ith coordinate equal to one or zero depending on whether k
is an element of Si or not. Then we have

Xk = V T
k � ( 1� (−Vk) ).

To prove Barvinok rank (Cn) ≤ r, it now suffices to establish the identity

Cn = X1 ⊕ X2 ⊕ · · · ⊕ Xr.

Indeed, all diagonal entries of the matrices on the right hand side are 1, and
the off-diagonal entries of the right hand side are min(x1

ij, x
2
ij, . . . , x

r
ij) = 0,

because Si\Sj is non-empty for i 6= j.
To prove the converse direction, we consider an arbitrary representation

Cn = Y1 ⊕ Y2 ⊕ · · · ⊕ Yr
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where the matrices Yk = (yk
ij) have tropical rank one. For each k we set

Tk := {(i, j) : yk
ij = 0}. Since the matrices Yk are non-negative and have

tropical rank one, it follows that each Tk is a product Ik × Jk, where Ik and
Jk are subsets of {1, . . . , n}. Moreover, we have Ik ∩ Jk = ∅ because the
diagonal entries of Yk are not zero. For each i = 1, . . . , n we set

Si := {k : i ∈ Ik} ⊆ {1, . . . , r}.

We claim that no two of the sets S1, . . . , Sn are contained in one another.
Sperner’s Theorem [AZ04, Chapter 23] then proves that n ≤

(
r

br/2c

)
. To

prove the claim, observe that if Si ⊂ Sj then the entry yk
i,j cannot be zero

for any k. Indeed, if k ∈ Si ⊆ Sj then j ∈ Ik implies j 6∈ Jk. And if k 6∈ Si

then i 6∈ Ik.

Example 5.4.10. The matrix C6 has Barvinok rank 4. The upper bound is
shown by the following tropical sum decomposition of C6:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 =


1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 2 2 2
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

⊕


1 1 0 0 0 1
1 1 0 0 0 1
2 2 1 1 1 2
2 2 1 1 1 2
2 2 1 1 1 2
1 1 0 0 0 1



⊕


1 0 1 0 1 0
2 1 2 1 2 1
1 0 1 0 1 0
2 1 2 1 2 1
1 0 1 0 1 0
2 1 2 1 2 1

⊕


1 2 2 2 1 1
0 1 1 1 0 0
0 1 1 1 0 0
0 1 1 1 0 0
1 2 2 2 1 1
1 2 2 2 1 1

 .

Similarly, C36 has Barvinok rank 8, its 35 × 35 minors have Barvinok rank
7, and its 8× 8 minors have Barvinok rank at most 5. Asymptotically,

Barvinok rank (Cn) ∼ log2 n.

We will see in Examples 5.4.14 and 5.4.19 that the Kapranov rank and trop-
ical rank of the matrix Cn are both two.

We now fix an algebraically closed field K of characteristic zero that has
a surjective valuation val : K∗ → R. If I is any ideal in K[x1, . . . , xd] then



5.4. THE RANK OF A MATRIX 163

we write V (I) for its variety in the d-dimensional algebraic torus (K∗)d. The
tropical variety T (I) ⊂ Rd is the image of V (I) under the map deg, and,
by the Fundamental Theorem, it coincides with the set of vectors w ∈ Rn

such that the initial ideal inw(I) = 〈inw(f) : f ∈ I〉 contains no monomial.
The initial ideal inw(I) can be computed from any generating set of I by
computing a Gröbner basis with respect to any term order that refines w.
This shows that trop(I) is a polyhedral subcomplex of the Gröbner fan of I,
and, as discussed earlier, it leads to an algorithm for computing trop(I).

Recall from Definition 5.4.2 that the Kapranov rank of a matrix M ∈
Rd×n is the smallest dimension of any tropical linear space containing the
columns of M . It is not completely apparent in this definition that the
Kapranov rank of a matrix and its transpose are the same, but this follows
from our next result. Let Jr denote the ideal generated by all the (r + 1)×
(r+1)-subdeterminants of an d×n-matrix of indeterminates (xij). This is a
prime ideal of dimension rd+ rn− r2 in the polynomial ring K[xij], and the
generating determinants form a Gröbner basis. The variety V (Jr) consists
of all d× n-matrices with entries in K∗ whose (classical) rank is at most r.

Theorem 5.4.11. For a matrix M = (mij) ∈ Rd×n the following statements
are equivalent:

(a) The Kapranov rank of M is at most r.

(b) The matrix M lies in the tropical determinantal variety trop(Jr).

(c) There exists a d× n-matrix F =
(
fij

)
with entries in K∗ such that the

rank of F is less than or equal to r and deg(fij) = mij for all i and j.
We call F a lift of M , and we write val(F ) = M .

Proof. The equivalence of (b) and (c) is the Fundamental Theorem applied to
the ideal Jr since, over the field K, lying in the variety of the determinantal
ideal Jr is equivalent to having rank at most r. To see that (c) implies
(a), consider the linear subspace of Kd spanned by the columns of F . This
is an r-dimensional linear space over a field, so it is defined by an ideal I
generated by d − r linearly independent linear forms in K[x1, . . . , xd]. The
tropical linear space trop(I) contains all the column vectors of M = deg(F ).

Conversely, suppose that (a) holds, and let L be a tropical linear space of
dimension r containing the columns ofM . Pick a linear ideal I inK[x1, . . . , xd]
such that L = trop(I). By applying the definition of tropical variety to the
ideal I, we see that each column vector of M has a preimage in V (I) ⊂ (K∗)d



164 CHAPTER 5. LINEAR ALGEBRA

under the valuation map. Let F be the d× n-matrix over K whose columns
are these preimages. Then the column space of F is contained in the variety
defined by I, so we have rank(F ) ≤ r, and deg(F ) = M as desired.

Corollary 5.4.12. The Kapranov rank of a matrix M ∈ Rd×n is the smallest
rank of any lift of M .

Example 5.4.13. The following classical 3×3-matrix has rank 2 over K:

F =

 1 t4 t2

t2 t 1
t2 + t5 t4 + t6 t3 + t4


We have val(F ) = M , so F is a lift of the 3×3-matrix M in (5.21).

The ideal J1 is generated by the 2×2-minors xijxkl−xilxkj of the d×n-
matrix (xij). Therefore, a matrix of Kapranov rank one must certainly satisfy
the linear equations mij +mkl = mil +mkj. This happens if and only if there
exist real vectors X = (x1, . . . , xd) and Y = (y1, . . . , yn) with

mij = xi+yj for all i, j ⇐⇒ mij = xi�yj for all i, j ⇐⇒ M = XT�Y.

Conversely, if such X and Y exist, we can lift M to a matrix of rank one by
substituting tmij for mij. Therefore, a matrix M has Kapranov rank one if
and only if it has Barvinok rank one. In general, the Kapranov rank can be
much smaller than the Barvinok rank, as the following example shows.

Example 5.4.14. Let n ≥ 3 and consider the matrix Cn in Theorem 5.4.9.
The matrix Cn does not have Kapranov rank one, so its Kapranov rank is
least two. Let a3, a4, . . . , an be distinct scalars with val(ai) = 0. The matrix

Fn =



t 1 t+ a3 t+ a4 · · · t+ an

1 t 1 + a3t 1 + a4t · · · 1 + ant
t− a3 1 t t− a3 + a4 · · · t− a3 + an

t− a4 1 t− a4 + a3 t · · · t− a4 + an
...

...
...

...
. . .

...
t− an 1 t− an + a3 t− an + a4 · · · t


.

has rank 2 because the i-th column (for i ≥ 3) equals the first column plus
ai times the second column. Since deg(Fn) = Cn, we conclude that Cn has
Kapranov rank two. The tropicalized plane containing the columns of Cn is
trop(U2,n), where U2,n is the uniform matroid as in Example 5.2.7.
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The following proposition establishes half of Theorem 5.4.4.

Proposition 5.4.15. Every matrix M ∈ Rd×n satisfies Kapranov rank (M) ≤
Barvinok rank (M), and this inequality can be strict.

Proof. Suppose that M has Barvinok rank r. Write M = M1 ⊕ · · · ⊕Mr

where each Mi has Barvinok rank one. Then Mi has Kapranov rank one, so
there exists a rank one matrix Fi over K such that deg(Fi) = Mi. Moreover,
by multiplying the matrices Fi by random complex numbers, we can choose
Fi such that there is no cancellation of leading terms in t when we form the
matrix F = F1 + · · · + Fr. This means deg(F ) = M . Clearly, the matrix
F has rank ≤ r. Theorem 5.4.11 implies that M has Kapranov rank ≤ r.
Example 5.4.14 shows that the inequality can be strict.

A general algorithm for computing the Kapranov rank of a matrix M
involves computing a Gröbner basis of the determinantal ideal Jr. Suppose
we wish to decide whether a given real d× n-matrix M = (mij) has Kapra-
nov rank > r. To decide this question, we fix any term order ≺M on the
polynomial ring Q[xij] which refines the partial ordering on monomials given
assigning weightmij to the variable xij, and we compute the reduced Gröbner
basis G of Jr in the term order ≺M . For each polynomial g in G, we consider
its leading form inM(g) with respect to the partial ordering coming from M .
Note that in≺M

(
inM(g)

)
= in≺M

(g) for all g ∈ G.
The ideal generated by the set of leading forms

{
inM(g) : g ∈ G

}
is the

initial ideal inM(Jr). Let xall denote the product of all dn unknowns xij. The
second step in our algorithm is to compute the saturation of the initial ideal:(
inM(Jr) : 〈xall〉∞

)
=

{
f ∈ C[xij] : f(xall)s ∈ Jr for some s ∈ N

}
. (5.24)

Computing such an ideal quotient, given the generators inM(g), is a standard
operation in computational commutative algebra. It is a built-in command
in software systems such as CoCoA, Macaulay 2 or Singular. We conclude:

Corollary 5.4.16. The matrix M has Kapranov rank > r if and only if
(5.24) is the unit ideal 〈1〉.

Our next step is to prove the first inequality in Theorem 5.4.4.

Proposition 5.4.17. Every matrix M ∈ Rd×n satisfies tropical rank (M) ≤
Kapranov rank (M).
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Proof. If the matrix M has a tropically non-singular r × r minor, then any
lift of M to the power series field K must have the corresponding r×r-minor
non-singular over K, since the leading exponent of its determinant occurs
only once in the sum. Consequently, no lift of M to K can have rank less
than r. By Theorem 5.4.11, the Kapranov rank of M must be at least r.

We next present a combinatorial formula for the tropical rank of a zero-
one matrix, or any matrix which has only two distinct entries. We define the
support of a vector in tropical space Rd as the set of its zero coordinates. We
define the support poset of a matrix M to be the set of all unions of supports
of column vectors of M . This set is partially ordered by inclusion.

Proposition 5.4.18. The tropical rank of a zero-one matrix with no column
of all ones equals the maximum length of a chain in its support poset.

The assumption that there is no column of all ones is needed because a
column of zeroes and a column of ones represent the same point in TPd−1.

Proof. There is no loss of generality in assuming that every union of supports
of columns of M is the support of a column. Indeed, the tropical sum of a
set of columns gives a column whose support is the union of supports, and
appending this column to M does not change the tropical rank since the
tropical convex hull of the columns remains the same. Therefore, if there is
a chain of length r in the support poset we may assume that there is a set of
r columns with supports contained in one another. Since there is no column
of ones, from this we can extract an r×r minor with zeroes on and below the
diagonal and 1’s above the diagonal, which is tropically non-singular.

Reciprocally, suppose there is a tropically non-singular r × r minor N .
We claim that the support poset of N has a chain of length r, from which
it follows that the support poset of M also has a chain of length r. Assume
without loss of generality that the unique minimum permutation sum is ob-
tained in the diagonal. This minimum sum cannot be more than one, because
if nii and njj are both 1 then changing them for nij and nji does not increase
the sum. If the minimum is zero, orienting an edge from i to j if entry ij of N
is zero yields an acyclic digraph, which admits an ordering. Rearranging the
rows and columns according to this ordering yields a matrix with 1’s above
the diagonal and 0’s on and below the diagonal. The tropical sum of the last
i columns (which corresponds to union of the corresponding supports) then
produces a vector with 0’s exactly in the last i positions. Hence, there is a
proper chain of supports of length r.
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If the minimum permutation sum in N is 1, then let nii be the unique
diagonal entry equal to 1. The i-th row in N must consist of all 1’s: if nij

is zero, then changing nij and nji for nii and njj does not increase the sum.
Changing this row of ones to a row of zeroes does not affect the support poset
of N , and it yields a non-singular zero-one matrix with minimum sum zero
to which we can apply the argument in the previous paragraph.

Example 5.4.19. The tropical rank of the matrix Cn in Theorem 5.4.9
equals two, since all its 3×3 minors are tropically singular, while the principal
2×2 minors are not. The supports of its columns are all the sets of cardinality
n − 1 and the support poset consists of them and the whole set {1, . . . , n}.
The maximal chains in the poset have indeed length two.

One of the important properties of rank in usual linear algebra is that it
produces a matroid. Unfortunately, the definitions of tropical rank, Kapra-
nov rank, and Barvinok rank all fail to do this.

Example 5.4.20. Consider the configuration of four points in the tropical
plane TP2 given by the columns of

M =

0 0 0 0
0 0 1 2
1 0 0 −1

 .

By any of our three definitions of rank, the maximal independent sets of
columns are {1, 2}, {1, 3, 4}, and {2, 3, 4}. These do not all have the same
size, and so they cannot be the bases of a matroid. The obstruction here is
that the sets {1, 2, 3} and {1, 2, 4} are collinear, but {1, 2, 3, 4} is not.

Despite this failure, there is a strong connection between tropical linear
algebra and matroids. This allows us to construct matrices whose tropical
and Kapranov ranks disagree. The smallest example we know is 7 × 7. It
is based on the Fano matroid. To explain our construction, we need the
following definitions. Let M be a matroid. The cocircuit matrix of M ,
denoted C(M), has rows indexed by the elements of the ground set of M
and columns indexed by the cocircuits of M , that is, the circuits of the dual
matroid M∗. The matrix C(M) has a 0 in entry (i, j) if the i-th element is
in the j-th cocircuit and a 1 otherwise.

In other words, C(M) is the zero-one matrix whose columns have the
cocircuits of M as supports. (Here, the support of a column is its set of
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zeroes.) As an example, the matrix Cn in Theorem 5.4.9 is the cocircuit
matrix of the uniform matroid of rank 2 with n elements. Similarly, the
cocircuit matrix of the uniform matroid Un,r has size n×

(
n

r−1

)
and its columns

are all the zero-one vectors with exactly r − 1 ones. The following results
show that its tropical and Kapranov ranks equal r. The tropical polytopes
associated with these matrices are known as tropical hypersimplices.

Proposition 5.4.21. The tropical rank of the cocircuit matrix C(M) is the
rank of the matroid M .

Proof. This is a special case of Proposition 5.4.18 because the rank of M is
the maximum length of a chain of non-zero covectors, and the supports of
covectors are precisely the unions of supports of cocircuits. Note that C(M)
cannot have a column of ones because every cocircuit is non-empty.

Theorem 5.4.22. The Kapranov rank of C(M) is equal to the rank of M if
and only if the matroid M is realizable over the field K.

Proof. Let M be a matroid of rank r on {1, . . . , d} which has n cocircuits.
We first prove the only if direction. Suppose that F ∈ Kd×n is a rank r
lift of the cocircuit matrix C(M). For each row fi of F , let vi ∈ kd be
the vector of constant terms in fi ∈ Kd. We claim that V = {v1, . . . , vd}
is a representation of M . Here k is the residue field of K, which is also
algebraically closed of characteristic zero. First note that V has rank at
most r since every K-linear relation among the vectors fi translates into a
k-linear relation among the vi. Our claim says that {i1, . . . , ir} is a basis
of M if and only if {vi1 , . . . , vir} is a basis of V . Suppose {i1, . . . , ir} is a
basis of M . Then, as in the proof of Proposition 5.4.18, we can find a square
submatrix of C(M) using rows i1, . . . , ir with 0’s on and below the diagonal
and 1’s above it. This means that the lifted submatrix of constant terms
is lower-triangular with nonzero entries along the diagonal. It implies that
that vi1 , . . . , vir are linearly independent, and, since rank(V ) ≤ r, they must
be a basis. We also conclude rank(V ) = r. If {i1, . . . , ir} is not a basis in
M , there exists a cocircuit containing none of them; this means that some
column of C(M) has all 1’s in rows i1, . . . , ir. Therefore, fi1 , . . . , fir all have
zero constant term in that coordinate, which means that vi1 , . . . , vir are all 0
in that coordinate. Since the cocircuit is not empty, not all vectors vj have
an entry of 0 in that coordinate, and so {v1, . . . , vr} cannot be a basis. This
shows that V represents M over k, which proves the only-direction.
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For the if-direction, let us assume that M has no loops. This is no loss of
generality because a loop corresponds to a row of 1’s in C(M), which does
not increase the Kapranov rank because every column has at least a zero.
Assume M is representable over k and fix a d×n-matrix A ∈ kd×n such that
the rows of A represent M and the sets of non-zero coordinates along the
columns of A are the cocircuits of M . Suppose {1, . . . , r} is a basis of M and
let A′ be the submatrix of A consisting of the first r rows. Write

A =

(
Ir

C

)
· A′

where Ir is the identity matrix and C ∈ k(d−r)×r. Observe that A, hence C,
cannot have a row of zeroes (because M has no loops). Since k is an infinite
field, there exists a matrix B′ ∈ kr×n such that all entries of the d× r-matrix(
Ir

C

)
·B′ are non-zero. We now define

F =

(
Ir

C

)
· (A′ + tB′) ∈ Kd×n.

This matrix has rank r and deg(F ) = C(M). This completes the proof.

Corollary 5.4.23. Let M be a matroid which is not representable over a
given field k. Then the Kapranov rank with respect to k of the tropical matrix
C(M) exceeds its tropical rank.

This corollary furnishes many examples of matrices whose Kapranov rank
exceeds their tropical rank. Consider, for example, the Fano and non-Fano
matroids, depicted in Figure 5.7. They both have rank three and seven

Figure 5.7: The Fano (left) and non-Fano (right) matroids.

elements. The first is only representable over fields of characteristic two, the
second only over fields of characteristic different from two. In particular,
Corollary 5.4.23 applied to these two matroids implies that over every field
there are matrices with tropical rank equal to three and Kapranov rank larger
than that. Also, it shows that the Kapranov rank of a matrix may be different
over two different algebraically closed fields k and k′.
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More explicitly, the cocircuit matrix of the Fano matroid is

C(M) =



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1


.

This matrix is the smallest known example of a matrix whose Kapranov rank
over C (four) is strictly larger than its tropical rank (three). Applied to non-
realizable matroids, such as the Vamos (rank 4, 8 elements, 41 cocircuits) or
the non-Pappus matroid (rank 3, 9 elements, 20 cocircuits), Corollary 5.4.23
yields matrices with different Kapranov and tropical ranks over every field.
One can also get examples in which the difference of the two ranks is arbi-
trarily large. Indeed, given matrices A and B, we can construct the matrix

M :=

(
A ∞
∞′ B

)
where ∞ and ∞′ denote matrices of the appropriate dimensions and whose
entries are sufficiently large. Appropriate choices of these large values will
ensure that the tropical and Kapranov ranks of M are the sums of those of
A and of B. The difference between the Kapranov and tropical ranks of M
is equal to the sum of this difference for A and for B.

The construction in Theorem 5.4.22 is closely related to the tropical linear
space of the matroid M . Theorem 5.2.6 shows that trop(M) is triangulated
by the order complex of the lattice of flats of M . Since flats correspond to
unions of cocircuits, the following result is easily derived:

Proposition 5.4.24. The tropical linear space trop(M) of the matroid M is
equal to the tropical convex hull of the rows of the modified cocircuit matrix
C′(M), where the 1’s in C(M) are replaced by ∞’s.

The set of all tropical linear combinations of a set V = {v1, . . . , vn} ⊆ Rd

determines a tropical polytope tconv(V ) in TPd−1 = Rd/R(1, . . . , 1). For
each sequence S = (S1, . . . , Sd) of subsets Si ⊆ {1, . . . , n}, we denote by XS

the polytrope that is defined by the inequalities xk − xj ≤ vik − vij for all
k ∈ {1, . . . , d} and i, j with i ∈ Sj. According to Theorem 5.3.16, the tropical
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convex hull of V equals the union of theXS which are bounded. The sequence
S is the type of a given point x ∈ XS in the tropical polytope tconv(V ).
The dimension of a cell XS of tconv(V ) computed from the combinatorics
of the set S: let GS be the graph which has vertex set 1, . . . , d, with i and
j connected by an edge if Si ∩ Sj is nonempty. The dimension of XS is one
less than the number of connected components of the graph GS.

Recall from Definition 5.4.3 that the tropical rank of a matrix is the size
of the largest non-singular square minor, and that an r × r matrix M is
non-singular if

⊙r
i=1Mσ(i),i =

∑r
i=1Mσ(i),i achieves its minimum twice as

σ ranges over the symmetric group Sr. Here is another characterization.

Theorem 5.4.25. Let M ⊂ Rd×n be a matrix. Then the tropical rank of M
is equal to one plus the dimension of the tropical convex hull of the columns
of M , viewed as a tropical polytope in TPd−1.

Proof. Let V = {v1, . . . , vn} be the set of columns of M , and let P =
tconv(V ) be their tropical convex hull in TPd−1. Suppose that r is the tropi-
cal rank of M , that is, there exists a tropically non-singular r× r-submatrix
of M , but all larger square submatrices are tropically singular.

We first show that dim(P ) ≥ r−1. We fix a non-singular r×r-submatrix
M ′ of M . Deleting the rows outside M ′ means projecting P into TPr−1, and
deleting the columns outside M ′ means passing to a tropical subpolytope P ′

of the image. Both operations can only decrease the dimension, so it suffices
to show dim(P ′) ≥ r− 1. Hence, we can assume that M is itself a tropically
non-singular r × r-matrix. Also, without loss of generality, we can assume
that the minimum over σ ∈ Sr of

f(σ) =
r∑

i=1

vσ(i),i (5.25)

is uniquely achieved when σ is the identity element e ∈ Sr. We now claim
that the cell X({1},...,{r}) in P = P ′ is of dimension r − 1. The inequalities
defining this cell are xk−xj ≤ vjk−vjj for j 6= k. Suppose that this cell were
not full-dimensional. By Farkas’ Lemma, there would exist a non-negative
linear combination of the inequalities xk−xj ≤ vjk− vjj which equals 0 ≤ c
for some non-positive real c. This linear combination would imply that some
other σ ∈ Sr has f(σ) ≤ f(e), a contradiction.

For the converse, suppose that dim(P ) ≥ r. Pick a region XS of dimen-
sion r. The graph GS has r+ 1 connected components, so we can pick r+ 1
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elements of {1, . . . , n} of which no two appear in a common Sj. Assume
without loss of generality that this set is {1, . . . , r + 1}, so that i ∈ Sj if
and only if i = j, for 1 ≤ i, j ≤ r + 1. We claim that the square submatrix
consisting of the first r+1 rows and columns of M is tropically non-singular.
Indeed, we have:

f(σ)− f(e) =
r+1∑
i=1

vσ(i),i −
r+1∑
i=1

vii =
r+1∑
i=1

(
vσ(i),i − vii

)
,

but whenever σ(i) 6= i, vσ(i),i−vii > 0 since i ∈ Si and i /∈ Sσ(i). Therefore, if
σ is not the identity, we have f(σ)−f(e) > 0, and e is the unique permutation
in Sr+1 minimizing the expression (5.25). So M has tropical rank at least
r + 1. This is a contradiction, and we conclude dim(P ) = r − 1.

A useful tool in tropical convexity is the computation of tropical polytopes
via mixed subdivisions of the Minkowski sum of several copies of a simplex.

Definition 5.4.26. Let ∆d−1 be the standard (d − 1)-simplex in Rd, with
vertex set A = {e1, . . . , ed}. Let n∆d−1 denote its dilation by a factor of n,
which we regard as the convex hull of the Minkowski sum A + A + · · · + A.
Let M = (vij) ⊂ Rd×n be a matrix. Consider the lifted simplices

Pi := conv
{
(e1, v1i), . . . , (ed, vdi)

}
⊂ Rd+1 for i = 1, 2, . . . , n.

The regular mixed subdivision of n∆d−1 induced byM is the set of projections
of the lower faces of the Minkowski sum P1 + · · ·+ Pn. Here, a face is called
lower if its outer normal cone contains a vector with last coordinate negative.

There is natural a bijection between the cells XS in the convex hull of the
columns of M and the interior cells in the regular subdivision of a product
of simplices induced by M . Via the Cayley trick, the latter biject to interior
cells in the regular mixed subdivision defined above. Here we provide a short
direct proof of the composition of these two bijections:

Lemma 5.4.27. Let M ⊂ Rd×n and let S = (S1, . . . , Sd), where each Sj is
a subset of {1, . . . , n}. Then, the following properties are equivalent:

1. The tropical convex hull in TPd−1 of the columns of M contains a cell
of type S.
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2. There is a non-negative matrix M ′ such that M ′ is obtained from M
by adding constants to rows or columns of M , and such that M ′

ji = 0
precisely when i ∈ Sj.

3. The regular mixed subdivision of n∆d−1 induced by M has as a cell the
Minkowski sum τ1 + · · ·+ τn where τi = conv({ej : i ∈ Sj}).

Moreover, the cells in (1) and (3) have complementary dimensions.

Proof. Adding a constant to a row of M amounts to translating the set of
n points in TPn−1, while adding a constant to a column leaves the point set
unchanged. Consider a cell XS in the tropical convex hull, let x be any point
in the relative interior of XS and let M ′ be the (unique) matrix obtained
by translating the point set by a vector −x and normalizing every column
by adding a scalar so that its minimum coordinate equals 0. Conversely,
for a matrix M ′ as in (2), consider the point x whose coordinates are the
amounts added to the columns of M to obtain M ′. The point x is in the
tropical convex hull of the columns of M . Let S be its type. Then the
modified matrix M ′ has zeroes precisely in entries (j, i) with i ∈ Sj, proving
the equivalence of (1) and (2).

For the equivalence of (2) and (3), observe that adding a constant to a
row or column of M does not change the mixed subdivision of

∑
Pi. For a

non-negative matrix M ′ with at least a zero in every column, the positions
of the zero entries define the face of

∑
Pi in the negative vertical direction.

Conversely, for every cell of the regular mixed subdivision, we can apply
a linear transformation to give that cell height zero and all other vertices
positive height (this is what it means to be in the lower envelope.) The
resulting height function is precisely the matrix M ′ in (2), which proves the
equivalence of (2) and (3). The assertion on dimensions is easy to prove.

Corollary 5.4.28. Given a matrix M , the poset of types in the tropical
convex hull of its columns and the poset of interior cells of the corresponding
regular mixed subdivision are antiisomorphic.

Corollary 5.4.29. Let M ⊂ Rn×d. The tropical rank of M equals d minus
the minimal dimension of an interior cell in the regular mixed subdivision of
n∆d−1 induced by M .

We can use these tools to prove that the tropical and Kapranov ranks of
a matrix coincide if the latter is maximal.
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Theorem 5.4.30. If an n × d matrix M has Kapranov rank d then it has
tropical rank d, too.

Proof. By Corollary 5.4.29, M has tropical rank d if and only if the corre-
sponding regular mixed subdivision has an interior vertex. The theorem then
follows from the next two lemmas.

Lemma 5.4.31. A d × n-matrix M has Kapranov rank less than d if and
only if the corresponding regular mixed subdivision has a cell that intersects
all facets of n∆d−1.

Proof. If M has Kapranov rank less than d, then its column vectors lie in
a tropical hyperplane. Since all tropical hyperplanes are translates of one
another, there is no loss of generality in assuming that it is the hyperplane
defined by x1 ⊕ · · · ⊕ xd. That is, after normalization, all columns of M are
non-negative and have at least two zeroes. Then, by Lemma 5.4.27, the zero
entries of M define a cell B in the regular mixed subdivision none of whose
Minkowski summands are single vertices. In particular, for every facet F of
∆d−1 and for every i ∈ {1, . . . , n}, the i-th summand of B is at least an edge
and hence it intersects F . Hence, B intersects all facets of n∆d−1. For the
converse suppose the regular mixed subdivision has a cell B which intersects
all facets of n∆d−1. We may assume that M gives height zero to the points
in that cell and positive height to all the others. The intersection of B with
the j-th facet is given by the zero entries in M after deletion of the j-th row.
In particular, B intersects the j-th facet if and only if every column has a
zero entry outside of the j-th row, and so B intersects all facets if and only if
all columns of M have at least two zeroes, implying that these all lie in the
hyperplane defined by x1 ⊕ · · · ⊕ xd.

The cell in the preceding statement need not be unique. For example, if
a tetrahedron is sliced by planes parallel to two opposite edges, then each
maximal cell meets all the facets of the tetrahedron.

Lemma 5.4.32. In every polyhedral subdivision of a simplex which has no
interior vertices, but arbitrarily many vertices on the boundary, there is a
cell that intersects all of the facets.

Proof. Observe that there is no loss of generality in assuming that the poly-
hedral subdivision S is a triangulation. For a triangulation, we use Sperner’s
Lemma which states the following: If the vertices of a triangulation of ∆



5.4. THE RANK OF A MATRIX 175

are labeled so that (1) the vertices of ∆ receive different labels and (2) the
vertices in any face F of ∆ receive labels among those of the vertices of F ,
then there is a fully labeled simplex. Our task is to give our triangulation a
Sperner labeling with the property that every vertex labeled i lies in the i-th
facet of the simplex. The way to obtain this is: the vertex opposite to facet
i is labeled i+ 1. More generally, the label i of a vertex v is taken so that v
is contained in facet i but not on facet i− 1. All labels are modulo d.

By Theorem 5.4.25, if a matrix has tropical rank two, then the tropical
convex hull of its columns is one-dimensional. Being contractible, this tropi-
cal polytope is a tree. Another way of showing this is via the corresponding
regular mixed subdivision. Tropical rank 2 means that all the interior cells
have codimension zero or one. Hence, the subdivision is constructed by slic-
ing the simplex via a certain number of hyperplanes (which do not meet
inside the simplex) and its dual graph is a tree. The special case when the
matrix has Barvinok rank two is characterized by the following proposition.

Proposition 5.4.33. The following are equivalent for a matrix M :

1. It has Barvinok rank 2.

2. All its 3× 3 minors have Barvinok rank 2.

3. The tropical convex hull of its columns is a path.

Proof. (1)⇒(2) is trivial (the Barvinok rank of a minor cannot exceed that
of the whole matrix) and (3)⇒(1) is easy: if a tropical polytope is a path,
then it is the tropical convex hull of its two endpoints. Proposition 5.4.5 then
implies that the Barvinok rank is two.

For (2)⇒(3) first observe that the case where M is 3 × 3 again follows
from Proposition 5.4.5. We next prove the case where M is d× 3 by contra-
diction. Since the tropical convex hulls of rows and of columns of a matrix
are isomorphic as cell complexes, by Theorem 5.3.25, we can assume that
the tropical convex hull of the rows of M is not a path. Then, there are
three rows whose tropical convex hull is not a path, and their 3 × 3 minor
has Barvinok rank 3. Finally, if M is of arbitrary size d × n and the trop-
ical convex hull of its columns is not a path, consider three columns whose
tropical convex hull is not a path and apply the previous case to them.

Our goal is to show that if M has tropical rank 2 then it has Kapranov
rank 2. We do this by constructing an explicit lift to a rank 2 matrix over K.
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Lemma 5.4.34. Let M be a matrix of tropical rank two. Let x be a point in
the tropical convex hull of the columns of M . Let M ′ be the matrix obtained
by adding −x to every column and then normalizing columns to have zero as
their minimal entry. After possibly reordering the rows and columns, M ′ has
the following block structure:

M ′ :=


0 0 0 · · · 0
0 A1 0 · · · 0
0 0 A2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak

 ,

where the matrices Ai have all entries positive and every 2 × 2 minor has
the property that the minimum of its four entries is achieved twice. Each 0
represents a matrix of zeroes of the appropriate size, and the first row and
column blocks of M ′ may have size zero. Moreover, the tropical convex hull
of the columns of M ′ is the union of the tropical convex hulls of the column
vectors of the blocks augmented by the zero vector 0, and two of these k trees
meet only at the point 0.

Proof. First, adjoin the column x to our matrix if it does not already exist;
since x is in the convex hull of M , this will not change the tropical convex
hull of the columns of M . We can then simply remove it at the end, when it
is transformed into a column of all zeroes. Thus, we can assume that one of
the columns of the matrix M ′ consists of all zeroes.

The asserted block decomposition means that any two given columns of
M ′ have either equal or disjoint cosupports, where the cosupport of a column
is the set of positions where it does not have a zero. To prove this, we observe
that if it didn’t then M ′ would have the following minor, where + denotes a
strictly positive entry. (Recall that each column has a zero in it.) 0 + +

0 0 +
0 ? 0


But this 3 × 3-matrix is tropically non-singular. The assertion of the 2 × 2
minors follows from the fact that the non-negative matrix 0 a b

0 c d
0 0 0


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is tropically singular if and only if the minimum of a, b, c, d is achieved twice.
Finally, the assertion about the convex hulls is trivial, since any linear

combination of column vectors from a given block will have all zero entries
except in the coordinates corresponding to that block. Any path joining two
such points from different blocks will pass through the origin.

We next introduce a technical lemma for perturbing a power series lifting.

Lemma 5.4.35. Let A be a non-negative matrix with no zero column and
suppose that the smallest entry in A occurs the most times in the first column.
Let Ã be the matrix (

0 0
0 A

)
obtained by adjoining a row and a column of zeroes. If Ã has Kapranov
rank two, then Ã has a rank-2 lift F ∈ Kd×n in which every 2 × 2 minor
is non-singular and the i-th column can be written as a linear combination
λiu1 + µiu2 of the first two columns u1 and u2, with deg(λi) ≥ deg(µi) = 0.

Proof. Starting with an arbitrary rank-2 lift, let F be obtained by adding
to every row/column a K-linear combination of all other rows/columns with
coefficients of sufficiently high degree but otherwise generic. This preserves
the rank 2 of the lift and the degree of every entry, but makes every 2 × 2
minor of F non-singular. The i-th column of F is now aK-linear combination
λiu1 +µiu2 of the first two columns. If the degrees of λi and µi are different,
then their minimum must be zero in order to get a degree zero element in the
first entry of column i. But then deg(µi) > deg(λi) = 0 is impossible, because
it would make the i-th column of A all zero. Hence deg(λi) > deg(µi) = 0.

If the degrees are equal, then they are non-positive in order to get degree
zero for the first entry in λiu1+µiu2. But they cannot be equal and negative,
or otherwise entries of positive degree in u2 would produce entries of negative
degree in ui. Hence, deg(λi) = deg(µi) = 0 in this case.

Corollary 5.4.36. Let A and B be non-negative matrices. Assume that

Ã :=

(
A 0
0 0

)
and B̃ :=

(
0 0
0 B

)
have Kapranov rank equal to 2. Then, the matrix

M :=

 A 0 0
0 0 0
0 0 B


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has Kapranov rank equal to 2 as well.

Proof. We may assume that neither A nor B has a zero column. Hence
Lemma 5.4.35 applies to both of them. We number the rows of M from −k
to k′ and its columns from −l to l′, where k× l and k′× l′ are the dimensions
of A and B respectively. In this way, A (respectively B) is the minor of
negative (respectively, positive) indices. The row and column indexed zero
consist of all zeroes. To further exhibit the symmetry between A and B the
columns and rows in Ã will be referred to “in reverse”. That is to say, the
first and second columns of it are the ones indexed 0 and −1 in M .

We now construct a lifting F = (ai,j) ∈ k{{t}}d×n of M . We assume that
we are given rank-2 lifts of Ã and B̃ which satisfy the conditions of Lemma
5.4.35. Furthermore, we assume that the lift of the entry (0, 0) is the same
in both, which can be achieved by scaling the first row in one of them.

We use exactly those lifts of Ã and B̃ for the upper-left and bottom-right
corner minors of M . Our task is to complete that with an entry ai,j for
every i, j with ij < 0, such that deg(ai,j) = 0 and the whole matrix still has
rank 2. We claim that it suffices to choose the entry a−1,1 of degree zero and
sufficiently generic. That this choice fixes the rest of the matrix is easy to
see: The entry a1,−1 is fixed by the fact that the 3× 3 minor a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1


needs to have rank 2. All other entries ai,−1 and ai,1 are fixed by the fact
that the entries ai,−1, ai,0 and ai,1 (two of which come from either Ã or B̃)
must satisfy the same dependence as the three columns of the minor above.
For each j = −l, . . . ,−2 (respectively j = 2, . . . , l′), let λj and µj be the
coefficients in the expression of the j-th column of Ã (respectively, of B̃)
as λju0 + µju−1 (respectively, λju0 + µju1). Then, ai,j = λjai,0 + µjai,−1

(respectively, ai,j = λjai,0 + µjai,1).
What remains to be shown is that if a−1,1 is of degree zero and sufficiently

generic then all the new entries are of degree zero too. For this, observe that
if j ∈ {−l′, . . . , 2} (resp. j ∈ {2, . . . , l} then ai,j is of degree zero as long as
the coefficient of degree zero in ai,−1 (resp. ai,1) are different from the degree
zero coefficients in the quotient −λjai,0/µj (here we are using the assumption
that deg(λj) ≥ deg(µj) ≥ 0). In terms of the choice of a−1,1 this translates
to the following determinant having non-zero coefficient in degree zero:
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 ai,−1 ai,0 −λjai,0/µj

a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

 , (respectively

 a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1

−λjai,0/µj ai,0 ai,1

).

That a−1,1 and a1,−1 sufficiently generic imply non-singularity of these ma-
trices follows from the fact that the 2× 2 minors(

ai,−1 ai,0

a0,−1 a0,0

)
,

(
a0,0 a0,1

ai,0 ai,1

)
.

come from the given lifts of Ã and B̃. Hence they are non-singular.

Theorem 5.4.37. Let M be a matrix of tropical rank 2. Then its Kapranov
rank equals 2 as well.

Proof. The Kapranov rank of M is always at least the tropical rank, so we
need only show that the Kapranov rank is less than or equal to 2. If the
tropical convex hull P of the columns of M is a path, then M has Barvinok
rank 2 (by Proposition 5.4.33) and thus Kapranov rank 2. Otherwise, let x
be a node of degree at least three in the tree P . We apply the method of
Lemma 5.4.34. Since x has degree at least three, it follows that there are at
least three blocks Ai. In particular, M has at least three columns. We induct
on the number of columns of M . If M has exactly three columns, then each
block Ai is a single column, and every row of M has at most one positive
entry. It is easy to construct an explicit lift of rank 2: in each row, lift the
positive entry α as −tα and the zero entries as −1 and 1 + tα. If there are
rows of zeroes, lift them as (−1,−1, 2), for example.

Next, suppose that M has m ≥ 4 columns. The two blocks with the
fewest number of combined columns have at least 2 and at most m− 2 rows
all together. Possibly after adding a row and column of zeroes, this provides
a decomposition of our matrix as

M =

 0 0 0
0 A 0
0 0 B

 ,

where both A and B have at least two columns. It follows that the minors(
0 0
0 A

)
and

(
0 0
0 B

)
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both have fewer columns than the original matrix. By the inductive hypoth-
esis they have Kapranov rank 2. Applying Corollary 5.4.36 completes the
inductive step of the theorem.

5.5 Dressians

Our aim in this last section is to finally define tropical linear spaces. We
introduce

(
n
d

)
unknowns qσ over the tropical semiring that are indexed by

the d-sets σ ∈
(
[n]
d

)
. These will serve as coordinates on the compactified

tropical projective space TP(n
d)−1

. For any ρ ∈
(

[n]
d−1

)
and any τ ∈

(
[n]

d+1

)
we

consider the following quadratic tropical polynomial⊕
i∈τ\ρ

qτ\{i} � qρ∪{i} (5.26)

Each of these quadrics defines a tropical hypersurface in TP(n
d)−1. The in-

tersection of these hypersurfaces is a tropical prevariety. This prevariety is
denoted Dr(d, n) is called the Dressian. This name refers to Andreas Dress,
who studied the elements of Dr(d, n) under the name of valuated matroids.

Fix a point q ∈ Dr(d, n) ⊂ TP(n
d)−1

. With any τ ∈
(

[n]
d+1

)
we associate a

tropical hyperplane Lτ (q) in Rn. It is defined by the tropical linear form⊕
i∈τ

qτ\{i} � wi. (5.27)

We finally consider the intersection of these tropical hyperplanes in Rn:

L(q) :=
⋂

τ∈( [n]
d+1)

Lτ (q).

This definition makes sense for any points w ∈ TP(n
d)−1

, and the set L(q) will
always be a tropical prevariety in Rn. However, this prevariety behaves like
a d-dimensional linear space precisely when w comes from the Dressian.

Definition 5.5.1. A d-dimensional tropical linear space in Rn to be any
prevariety of the form L(q) where w is any point in the Dressian Dr(d, n).

This definition is justified by the following three results.
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Theorem 5.5.2. Every tropicalized linear space is a tropical linear space.

For tropicalized linear spaces, the desirable properties in our next theorem
can be derived from the Fundamental Theorem and the Structure Theorem
for tropical varieties. However, we shall see that these hold more generally.

Theorem 5.5.3. Every tropical linear space L(q) is a pure d-dimensional bal-
anced polyhedral complex in Rn. The image of L(q) in TPn−1 is a contractible
complex. Moreover, that image is a tropical cycle of degree one, which means
that, for any generic point p ∈ Rn, it intersects the complementary linear
space p+ trop(Un−d,n) transversally in precisely one point.

Finally, we need to show that Definition 5.5.1 is consistent with Definition
5.2.5, namely, that it includes the tropical linear spaces arising from matroids.

Theorem 5.5.4. If M is a matroid then trop(M) is a tropical linear space.

We begin by proving the first of the three theorems.

Proof of Theorem 5.5.2. Let X be a linear subspace of dimension d in Kn,
and fix a matrix A ∈ Kd×n whose row space equals X. If σ is an ordered
d-tuple from [n] then we write pσ for the d×d-subdeterminant of the matrix

A. This defines a vector p ∈ K([n]
d ) with coordinates pσ. We write q ∈ R([n]

d )

for the corresponding tropical vector with coordinates qσ = val(pσ). The
circuits of X are the non-zero linear forms in IX that have minimal support.
These have now coefficients in K, so, the valuations of these coefficients will
usually be non-zero. Nevertheless, the argument of Proposition 5.2.2 remains
valid in this case, and we can conclude that the circuits form a tropical basis
of the linear ideal IX . The tropicalization of the circuits are precisely the
tropical linear forms (5.27). Therefore, L(q) = trop(X) as desired.

To complete the proof we need to show that q lies in the Dressian Dr(d, n).
But this follows from the fact that the vector p of maximal minors pσ satisfies
certain quadratic equations known as the quadratic Plücker relations:∑

i∈τ\ρ

(±1) · pτ\{i} · pρ∪{i} = 0.

We shall return to these quadratic Plücker relations in more detail in our later
section on Grassmannians. The only point we need here is that their tropical-
izations are precisely relations (5.26), and this shows that q ∈ Dr(d, n).
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Next, we establish the connections to matroids. To this end, we state yet
one more axiom system for matroids, namely the basis exchange axiom.

Definition 5.5.5. A matroid is a pair M = (E,B) where E is a finite set
and B is a collection of subsets of E, called the bases of M , that satisfies
the following property: whenever σ and σ′ are bases and i ∈ σ\σ′ then there
exists an element j ∈ σ′\σ such that (σ\{i}) ∪ {j} is a basis as well.

Let B ⊂
(
[n]
d

)
be any collection of d-subsets of [n]. We represent B by

its tropical incidence vector q(B) ∈ {0,∞}(
[n]
d ), which is defined by setting

q(B)σ = 0 if σ ∈ B and q(B)σ = ∞ if σ 6∈ B.

Lemma 5.5.6. The vector q(B) lies in the Dressian Dr(d, n) if and only if
the collection B of d-sets is the set of bases of a matroid M = ([n],B).

Proof. The value of each tropical Plücker polynomial is either 0 or ∞:⊕
i∈τ\ρ

qτ\{i}(B)� qρ∪{i}(B) ∈ {0,∞}.

This minimum fails to be attained twice precisely when there is only term
with value 0. If we set σ = ρ ∪ {i} and σ′ = τ\{i} for that particular term,
then σ and σ′ are bases but the basis exchange promised in Definition 5.5.5 is
not possible. This argument is reversible, and we see that (5.26) is precisely

the basis exchange axiom when applied to vectors q in {0,∞}(
[n]
d ).

We can paraphrase this succinctly as follows:

Corollary 5.5.7. The rank d matroids on [n] are the 0-∞-vectors in Dr(d, n).

The derivation of the third theorem stated above has now become easy.

Proof of Theorem 5.5.4. Let M = ([n],B) be a matroid of rank d. Any set
τ ∈

(
[n]

d+1

)
that has rank d in M contains a unique circuit C of M , namely,

the elements of C are the indices such that τ\{i} is a basis. This allows us
to identify the tropical linear equations in (5.27) with the circuits of M :⊕

i∈τ

qτ\{i}(B)� wi =
⊕
i∈C

wi.

A vector w ∈ Rn lies in the tropical hyperplanes defined by these linear forms,
as C runs over all circuits of M , if and only if w lies in the set trop(M) in
Definition 5.2.5. This proves the desired identity trop(M) = L(q(B)).
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We now come to the geometric properties of tropical linear spaces L(q).

Proof of Theorem 5.5.3. Since L(q) is a prevariety, it is a polyhedral com-
plex. Theorem 5.3.3 implies that it is contractible because L(q) is an inter-
section of tropical hyperplanes and hence is tropically convex. We next show
that L(q) is pure of dimension d. This will be accomplished by showing that,
locally at each point w ∈ L(q), the linear space L(q) has the form trop(Mq,w)
for some rank d matroid Mq,w. Finally, we will prove that L(q) is a tropical
cycle of degree one. These last two points still need to be written.

5.6 Exercises
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Chapter 6

Toric Connections

The theory of toric varieties is one of the main interfaces between combina-
torics and algebraic geometry. In this chapter we will see how the tropical
connection between these fields is intimately connected with the toric one.

A toric variety is a variety containing a dense copy of the algebraic torus
Tn with an action of Tn on it. It decomposes into a union of Tn-orbits.
We first see that given a subvariety Z of a toric variety, tropical geometry
answers the question “which torus orbits does Z intersect”?

A normal toric variety is determined by the combinatorial data of a ra-
tional polyhedral fan. For Y ⊂ Tn, a choice of fan structure on trop(Y ) then
determines a toric variety with torus Tn. The closure of Y in this toric variety
is then a good choice of compactification of Y . This extends the story begun
in Section 1.8. Conversely, a good choice of compactification of Y ⊂ Tn leads
to a computation of trop(Y ).

Degenerations of Y are also controlled by the tropical variety. We study
these in Section 6.5, before turning to the tropical and toric approaches to
intersection theory in the last section.

6.1 Toric Background

We assume familiarity with the basics of normal toric varieties as in [Ful93],
[Oda88], or [CLS] and just briefly review notation here.

A toric variety is defined by a fan Σ in NR = N ⊗R for a lattice N ∼= Zn.
We denote by M the dual lattice M = Hom(N,Z). We will work with toric
varieties XΣ defined over k. The torus T of XΣ is N ⊗k ∼= (k∗)n. We denote
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Figure 6.1:

by Σ(k) the set of k-dimensional cones of Σ.
Each cone σ ∈ Σ determines a local chart Uσ = Spec(k[σ∨]), where

σ∨ = {u ∈ M : u · v ≥ 0 for all v ∈ σ} is the dual cone. Note that every
affine normal toric variety has the form Uσ for some cone σ ⊂ NR. The cone
σ also determines a T -orbit Oσ

∼= (k∗)n−dim(σ). The closure in XΣ of the
orbit Oσ is denoted by V (σ).

Example 6.1.1. 1. Let Σ have rays e1, . . . , en, e0 =
∑n

i=1 ei, and cones
generated by any k of these rays for k ≤ n. The case n = 2 is shown
in Figure 6.1. Then XΣ

∼= Pn.

The orbit corresponding to the cone generated by a subset of the ei

indexed by a set σ ⊂ {0, . . . , n} is those points [x0 : · · · : xn] ∈ Pn with
xi = 0 for i ∈ σ and xi 6= 0 for i 6∈ σ.

2. Let Σ be the fan in R2 with rays (1, 0), (1, 1), (0, 1), and maximal cones
pos((1, 0), (1, 1)) and pos((0, 1), (1, 1)). Then XΣ is the blow-up of A2

at the origin.

The only smooth affine normal toric variety is kd × k∗n−d. This corre-
sponds to a d-dimensional cone σ ⊂ NR generated by part of a basis for N .
In general a toric variety XΣ is smooth if and only if every cone σ ∈ Σ is
generated by part of a basis for N . We call such Σ a smooth fan. Resolution
of singularities of toric varieties is a combinatorial operation, and works in
arbitrary characteristic. Specifically, given any fan Σ, there is a smooth fan
Σ̃ that refines Σ, and the refinement of fans induces a proper birational map
π : XΣ̃ → XΣ. See [Ful93, Section 2.2] for details.

6.2 Subvarieties of Toric Varieties

Let Tn = (k∗)n, and let Y ⊆ Tn be a subvariety of Tn. Fix a toric variety XΣ,
and let Y be the closure of Y in XΣ. We emphasize that we do not assume
that XΣ is a complete toric variety, so the support |Σ| of Σ need not be all
of Rn. The following is a natural question in the context of toric geometry:

Question 6.2.1. Which Tn-orbits of XΣ does Y intersect?



6.2. SUBVARIETIES OF TORIC VARIETIES 187

Figure 6.2: The torus orbits intersecting the Y of Example 6.2.2

Example 6.2.2. Let Y = V (x+ y + 1) ⊂ (k∗)2.

1. Let XΣ = P2, with the torus T = {(x : y : 1) : x, y ∈ k∗} and
homogeneous coordinates (x : y : z). Then Y is the subvariety V(x +
y+ z) ⊂ P2. Note that Y = Y ∪ {(1 : −1 : 0), (1 : 0 : −1), (0 : 1 : −1)}.
The closure Y thus intersects all T -orbits of P2 except the torus-fixed
points {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)}.

2. Let PΣ = P1 × P1, with torus T = {(x : 1) × (y : 1) : x, y ∈ k∗},
and homogeneous coordinates (x1 : y1) × (x2 : y2). Then Y is the
subvariety of P1 × P1 defined by the equation x1y2 + x2y1 + x2y2 = 0.
Thus Y = Y ∪ {(−1 : 1) × (0 : 1), (0 : 1) × (−1 : 1), (1 : 0) × (1 :
0)}. The closure Y intersects four of the nine torus orbits of P1 × P1:
T, {(a : 1)× (1 : 0) : a ∈ k∗}, {(1 : 0)× (a : 1) : a ∈ k∗}, (1 : 0)× (1 : 0).

These are illustrated in Figure 6.2.

Perhaps surprisingly, tropical geometry answers Question 6.2.1.

Theorem 6.2.3. Let Y be a subvariety of a toric variety XΣ, and let Y =
Y ∩T . Then for σ ∈ Σ we have Y ∩Oσ 6= ∅ if and only if trop(Y ) intersects
the relative interior of σ.

For the proof we first consider the case where the toric variety XΣ is the
product Am

k × (k∗)n−m of an affine space and a torus.

Proposition 6.2.4. Let σ ⊂ Rn be the cone spanned by the first m basis
vectors e1, . . . , em of Rm, so the affine toric variety Uσ

∼= Am× (k∗)n−m. Let
Y ⊂ Tm be a subvariety, and let Y be the closure of Y inside Uσ. Then
Y ∩ {(0, x) : x ∈ (k∗)n−m} 6= ∅ if and only if trop(Y ) ∩ relint(σ) 6= ∅.

Proof.
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6.3 Tropical Compactifications

Let Y be a subvariety of Tm. In the previous section we introduced the
closure Y of Y in a toric variety XΣ with torus Tm. In this section we
discuss the extra properties Y has if Σ is chosen more carefully.

This section will have more of the content of [Tev07].

6.4 Geometric Tropicalization

Given a subvariety Y ⊂ Tn, we saw in the last section how the tropical
variety determines a good choice of compactifications of Y . In this section
we explore the converse, and see how a sufficiently nice compactification of
Y determines trop(Y ). References include [HKT07] and [ST08].

6.5 Degenerations

The tropical variety of Y ⊂ Tn also determines degenerations of Y , and there
is a beautiful interplay between the compactifications of the previous section
and these degenerations, as we now explain.

6.6 Intersection theory

In this section we explain how some intersection-theoretic computations on
the toric variety can be done tropically, and make the connection with [FS97].

6.7 Exercises
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Elimination and Implicitization

Elimination theory is the art of computing the image of a morphism in alge-
braic geometry. The special case of a morphism from an algebraic torus into
an affine space leads to the problem of implicitization. The operations of
elimination and implicitization are fundamental also from applied and com-
putational point of view. Tropical geometry provides excellent new tools for
both theory and practice. This chapter will describe the successes of trop-
ical geometry in elimination and implicitization, expanding far beyond the
example of parametric plane curves in Section 1.5 of the Introduction. This
will include material from papers including [DFS07, ST08, STY07, SY08].

7.1 Tropical Maps

A tropical map is a function φ : Rd → Rn whose coordinates φi are tropical
polynomials. Such a map arises as the tropicalization φ = trop(f) of a map
f := (K∗)d → Kn whose coordinates f1, . . . , fn are Laurent polynomials
in K[x±1

1 , . . . , x±d
d ]. Here, φi = trop(fi) for i = 1, 2, . . . , n. The following

inclusion always holds, but it is usually strict:

image(trop(f)) ⊂ trop(image(f)).

The right hand side is a tropical variety in Rn, specified by the Zariski closure
X = image(f), and the right hand side is a polyhedral complex inside it.
In this section we study this inclusion, and we characterize the domains of
linearity of the tropical map φ. Particular emphasis placed on the case when
f is the natural parametrization of a secant variety of a toric variety.
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7.2 Projections and Tropical Bases

In this section we examine the pushforward-formula for tropical varieties
and their multiplicities, and we explain how this can be used to compute the
tropicalization of the image of a variety under a monomial map. In practise,
this amounts to a linear projection of balanced polyhedral complexes. When
the projection is generic, this leads to a theorem of Hept and Theobald [HT09]
which states that every Laurent polynomial ideal has a small tropical basis.

7.3 Discriminants and Resultants

Tropical geometry is used to develop a new approach to the theory of dis-
criminants and resultants in the sense of Gelfand, Kapranov and Zelevinsky
[GKZ08]. The tropical A-discriminant is the tropicalization of the dual vari-
ety of the projective toric variety given by an integer matrix A. This tropical
algebraic variety is shown to coincide with the Minkowski sum of the row
space of A and the tropicalization of the kernel of A. This leads to an ex-
plicit positive formula for all the extreme monomials of any A-discriminant.
This section will be developed from the material in [DFS07].

7.4 Mixed Fiber Polytopes

We present the polyhedral approach to elimination developed by Esterov,
Khavanski, Sturmfels, Tevelev and Yu. For a Laurent polynomial map with
generic coefficients, we give an explicit formula for the tropical variety of the
image, along with its multiplicities. When the image is a hypersurface, the
output is the Newton polytope of the defining polynomial. This method be
used to compute mixed fiber polytopes, including secondary polytopes. This
section will be developed from the material in [SY08].

7.5 Parametrized Surfaces

In this section we apply Geometric Tropicalization (Section 6.4) to the prob-
lem of finding the equations of a parametrized surface. The primary appli-
cation is in the case when the surface is embedded in 3-space, and we seek
to find its defining polynomial. This section builds on the work in [ST08], it
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makes a connection to resolution of singularities, and it offers a sneak preview
of material to appear in the dissertation of Angelica Cueto.

7.6 Hadamard Products

The Hadamard product X ? Y of two subvarieties of an algebraic torus Tn

is the Zariski closure of the set of coordinatewise products of points in X
with points in Y . We argue that this operation is important for applications,
notably in algebraic statistics, and we show how tropical geometry can be
used to compute and study Hadamard products. This is based on the identity

trop(X ? Y ) = trop(X) + trop(Y ).

This generalizes Kapranov’s Horn uniformization which underlies Section 4.3.

7.7 Exercises
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Chapter 8

Realizability

In Chapter 3 we introduced a tropical variety as the tropicalization of a
subvariety of an algebraic torus. We then showed in Theorem 3.3.4 that the
tropical variety of an irreducible d-dimensional variety is the support of a
pure d-dimensional weighted balanced polyhedral complex. Many authors
define a tropical variety to be the support of such a polyhedral complex. We
now switch to that definition, and we examine the question which tropical
varieties are realizable by classical varieties over a field K with a valuation.

8.1 Hypersurfaces

A tropical hypersurface is a weighted balanced polyhedral complex of pure
codimension one in Rn. In this section we show that every tropical hyper-
surface is geometrically dual to a regular polyhedral subdivision of a lattice
polytope. This implies that every tropical hypersurface is realizable by a
classical hypersurface in Tn = (K∗)n, and the field K does not matter here.

8.2 Matroids

In Chapter 4 we associated a balanced fan with every matroid. In this section
we extend this construction to matroid subdivisions of matroid polytopes,
and we prove that these tropical linear spaces are precisely the irreducible
tropical varieties of degree one. A tropical linear space is realizable if and
only if the underlying matroid subdivision is realizable over the algebraic
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closure of the residue field k. The smallest example of a non-realizable linear
space lives in R7 and has dimension three. It is based on the Fano matroid.

8.3 Curves

A tropical curve is a balanced weighted graph in Rn. We show that these
curves may fail to be realizable even if n = 3. The question which tropical
curves are realizable is a rich area of current research. Complete answers are
beginning to emerge but they require deep methods from complex geometry
(due to Brugallé and Mikhalkin) or arithmetic geometry (due to Speyer).
The purpose of this section is to offer a first introduction to this topic.

8.4 Prevarieties

A tropical prevariety is a finite intersection of tropical hypersurfaces in Rn. It
follows from the existence of finite tropical bases that every tropical variety is
a prevariety, but the converse is far from true. Many classical varieties, such
as Grassmannians and determinantal varieties, come with nice generating sets
for their prime ideal, and it is natural to ask whether these generators form
a tropical basis. The answer is negative in general: not all naturally defined
prevarieties are tropical varieties. The discrepency between the Grassman-
nian (Section 4.4) and the Dressian (Section 5.5) is the typical scenario. This
issue relates to the realizability problem because non-realizable linear spaces
correspond to those points in the Dressian that are not in the Grassmannian.

8.5 Exercises
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Further Topics

This chapter will contain some brief vignettes of material that has not re-
ceived sufficient coverage in the rest of the book. The section titles below
give some ideas of topics that might be covered here.

9.1 Berkovich Spaces

9.2 Abstract Tropical Intersection Theory

9.3 Tropical Curves and Riemann-Roch

9.4 Tropical Moduli Spaces
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