Definability in First Order Logic and Second Order Logic

1

Vocabularies

We deal with (possibly many-sorted) relational structures.

Sort symbols are

 $U_{\alpha}: \alpha \in IN$

Relation symbols are

 $R_{i,\alpha}: i \in Ar, \alpha \in IN$

where Ar is a set of *arities*, i.e. of finite sequences of sort symbols.

In the case of one-sorted vocabularies, the arity is just of the form $\langle U, U, \ldots, U \rangle$ which will denoted by n.

A **vocabulary** is a *finite* set of *finitary* **relation symbols**, usually denoted by τ , τ_i or σ .

2

CS 236 331:2001 Lecture 2

au-structures

Graphs: $\langle V; E \rangle$ with vertices as domain and edges as relation.

 $\langle V \sqcup E, R_G \rangle$ with two sorted domain of vertices and edges and incidence relation.

Labeled Graphs: As graphs but with unary predicates for vertex labels and edge labels depending whether edges are elements or tuples.

Binary Words: $\langle V; R_{<}, P_{0} \rangle$ with domain lineraly ordered by $R_{<}$ and colored by P_{0} , marking the zero's.

 τ -structures: General relational structures.

CS 236 331:2001

Lecture 2

Properties of a τ -structure

A **property** of τ -structures is a class $\mathcal P$ of τ -structures closed under τ -isomorphisms.

- All *finite* τ -structures.
- All $\{R_{2,0}\}$ -structures where $R_{2,0}$ is interpreted as a linear order.
- Al finite 3-dimensional matchings 3DM, i.e. all $\{R_{3,0}\}$ -structures with universe A where the interpretation of $R_{3,0}$ contains a subset $M\subseteq A^3$ such that no two triples of M agree in any coordinate.
- All binary words which are palindroms.

A τ -structure \mathcal{A} has property \mathcal{P} iff $\mathcal{A} \in \mathcal{P}$.

4

First Order Logic $FOL(\tau)$:

For structures of the form $\mathcal{A}=\langle V,R_1^V,\dots R_M^V \rangle$ and $\tau=\{R_1',\dots,R_M\}$

Variables: u, v, w, \ldots ranging over elements of the domain V.

 R_j a ho(j)-ary relation symbol whose interpretation is R_i^V .

Atomic formulas: $R_i(\bar{u})$, u = v.

Connectives: $\land, \lor, \neg,$ **Quantifiers:** $\forall v, \exists v$

5

Monadic Second Order Logic $MSOL(\tau)$:

Additionally we have **Variables:** X, Y, Z, ...

ranging over subsets of ${\it V}_{\it \cdot}$

Atomic formulas: $u \in X, v \in Y, \dots$

Quantifiers: $\forall X, \exists X$.

Theorem:[Büchi, Trakhtenbrot, 1961]

A class of binary words is: recognizable by a finite (non-deterministic) automaton iff it is MSOL-definable (iff it is regular).

Example: $(101 \lor 1001)^*$

101 1001 101 101 1001 1001 101......

Exercise: Find the MSOL-formula.

6

CS 236 331:2001 Lecture 2

Second Order Logic $SOL^n(\tau)$ and $SOL(\tau)$:

We extend $MSOL(\tau)$ by the following features:

Variables: X^m, Y^m, Z^m, \dots for $m \le n$

Atomic formulas: $(u_1, \ldots, u_m) \in X^m, \ldots$

Quantifiers: $\forall X^m, \exists X^m$.

 $SOL = \bigcup_n SOL^n$

Clearly we have in expressing power (and syntactically)

$$MSOL(\tau) \subseteq SOL^2(\tau) \subseteq SOL(\tau)$$

In SOL^2 we can quantifier over arbitrary sets of pairs of vertices,

CS 236 331:2001

Lecture 2

Definition 1 ($\mathcal{L}(\tau)$ -**Definability**)

Recall that an $\mathcal{L}(\tau)$ -sentence is an $\mathcal{L}(\tau)$ -formula without free variables.

Given a regular logic $\mathcal L$ and a class of τ -structures K, we say that K is $\mathcal L(\tau)$ -definable if there is a $\mathcal L(\tau)$ -sentence θ such that for every τ -structure $\mathcal A$

 $\mathcal{A} \models \theta \text{ iff } \mathcal{A} \in K.$

We write $Mod_{\mathcal{L}(\tau)}(\theta)$ for the class of τ -structures \mathcal{A} such that $\mathcal{A} \models \theta$.

Proving definability

The class of τ -structures of finite even cardinality, $EVEN(\tau)$, is definable in Second Order Logic:

- Let $\tau_1 = \{R, S, P\}$ with R, S binary and P unary, none of them in τ .
- We write a $FOL(\tau_1)$ -formula $\phi_{bij}(R,P)$ which says that R is a bijection between P and its complement.
- We write a $FOL(\tau_1)$ -formula $\psi_{inj}(S)$ which says that S is a proper injection of the domain into itself.
- Now the required formula is

$$\exists R \exists P \phi_{bij}(R, P) \land \forall S \neg \psi_{inj}(S)$$

9

Cographs graphs

A graph G is a **cograph** if and only if there is no induced subgraph of G isomorphic to a P_4 .

10

CS 236 331:2001

Lecture 2

P_4 -sparse Graphs

A G is P_4 -sparse if no set of 5 vertices induced more than one P_4 in G.

Cliques and Cographs are P_4 -sparse.

CS 236 331:2001

Lecture 2

Recall

Example 2 (3 Colorability)

The class of 3-colorable graphs is definable by a formula of Monadic Second Order Logic:

$$\exists X_1, X_2, X_3 \phi_{partition}(X_1, X_2, X_3) \land \bigwedge_{i=1}^{3} \phi_{color}(X_i)$$

where

- $\phi_{partition}(X_1,X_2,X_3)$ says that X_1,X_2,X_3 form a partition of the vertices and
- $\phi_{color}(X_i)$ says that there are no edges between two vertices in X_i .

Note that all the second order variables are unary and $\phi_{partition}$ and ϕ_{color} are first order formulas over $\tau = \{E, X_1, X_2, X_3\}$.

Expressibility: $FOL(\tau)$

The following are FOL-definable on graphs:

- Cographs
- P_4 -sparse graphs
- Existence of prescribed (induced) subgraph
 H.
- Non-Existence of prescribed (induced) subgraph H.

13

Expressibility: FOL(au) vs. MSOL(au)

• A graph has bounded degree $\leq k$ is FOL-expressible.

- A graph is regular of degree 17 is *FOL*-expressible.
- ullet A graph is connected is not FOL expressible, but MSOL expressible by

$$\neg \exists X (closed(X) \land \exists v (v \notin X))$$

with

$$closed(X) = \forall v, w((v \in X \land E(v, w)) \rightarrow w \in X)$$

14

CS 236 331:2001

Lecture 2

15

Expressibility:

 $MSOL(\tau)$ - but not $FOL(\tau)$ -expressible

- Chordal graphs are MSOL-definable
- Trees are cycle-free graphs.
 Trees are MSOL-definable
- Bipartite graphs are 2-colorable graphs. Bipartite graphs are *MSOL*-definable
- ullet 3-Colorability is MSOL-expressible:
- There are vertex disjoint paths between the k pairs $(x_1, y_1), \ldots, (x_k, y_k)$ is MSOL-expressible.

We shall see in the next lecture that non of these are FOL definable.

CS 236 331:2001

Lecture 2

Planar Graphs, revisited

A **subdivision of an edge** is a path with now branching.

A **subdivion of a graph** is a graph obtained by replacing all the edges by some subdivions thereof.

Theorem [Kuratowski 1930]:

A graph G is planar if and only if there is no induced subgraph of G isomorphic to a subdivision of K_5 or $K_{3,3}$.

Use this to show:

Proposition:

Planarity is MSOL definable.

For graphs G_2 of the form $\langle V \sqcup E, R \rangle$ with V set of vertices, E set of edges, and $R \subseteq V \times E$ a binary relation expressing that v lies on the edge e.

Monadic Second Order Logic MS_2 :

For graphs G_1 of the form $\langle V, E, \rangle$ with V set of vertices, $E \subseteq V^2$ set of edges (as a binary relation).

Monadic Second Order Logic MS_1 :

17

MS_1 vs MS_2 Definable Graph Properties

- Connectivity (MS_1)
- Planarity (MS_1)
- Perfect matching $(MS_2 \text{ but not } MS_1)$
- Hamiltonian cycle $(MS_2 \text{ but not } MS_1)$

The following are not even MS_2 -definable:

- existence of a clique of size at least $\frac{n}{2}$
- Eulerian graphs

18

CS 236 331:2001

Lecture 2

Expressibility:

 $MSOL(\tau)$ vs. $SOL(\tau)$

• The existence of a hamiltonian circuit is not MS_1 -expressible but SOL^2 -expressible for graphs G=(V,E).

$$\exists X^2(Edges(X^2) \land SimpleCircuit(X^2) \\ \land AllVerticesIn(X^2))$$

- The existence of a clique which is at least half the size of the graph (HALF-CLIQUE) is **not** MSOL-expressible but SOL²-expressible.
- The class of graphs which are disjoint unions of two isomorphic components is not MSOLdefinable, but SOL-definable