Lecture 7

Translation Schemes: Main definitions and examples

- The framework of translation schemes
 - The induced maps
 - The fundamental lemma
 - Reductions
- The Museum of examples

1

CS 236 331:2001 Lecture 7

Distinctions

If k = 1 we speak of **scalar** or **non-vectorized** translation schemes.

If $k \ge 2$ we speak of **vectorized** translation schemes.

If ϕ is such that $\forall \overline{x}\phi(\overline{x})$ is a tautology (always true) the translation scheme is **not relativized** otherwise it is **relativized**.

A translation scheme is **simple** if it is neither relativized nor vectorized.

Definition 1 (Translation Schemes Φ)

- Let τ and $\sigma = \{R_1, \dots, R_m\}$ be two vocabularies with $\rho(R_i)$ be the arity of R_i .
- Let \mathcal{L} be a fragment of SOL, such as FOL, MSOL, $\exists MSOL$, etc.
- Let $\Phi = \langle \phi, \psi_1, \dots, \psi_m \rangle$ be formulae of $\mathcal{L}(\tau)$ such that ϕ has exactly k distinct free first order variables and each ψ_i has $k\rho(R_i)$ distinct free first order variables. We say that Φ is k-feasible (for σ over τ).
- A k-feasible $\Phi = \langle \phi, \psi_1, \dots, \psi_m \rangle$ is called a k- τ - σ - \mathcal{L} -translation scheme or, in short, a translation scheme, if the parameters are clear in the context.

2

CS 236 331:2001

Lecture 7

Example 2 (au_{words_3} and au_{graphs})

 τ_{words_3} consists of $\{R_{<}, P_0, P_1, P_2\}$ for three letters $\{0, 1, 2\}$.

 τ_{qraphs} consists of $\{E\}$

Put
$$k = 1$$
,
 $\phi_1(x) = (P_0(x) \lor P_1(x))$ and
 $\psi_E(x, y) = (P_0(x) \land P_1(y))$

$$\Phi_1 = \langle \phi_1(x), \psi_E(x, y) \rangle$$

is a ${\bf scalar}$ and ${\bf relativized}$ translation scheme in FOL.

If instead we look at $\phi_2(x) = (x \approx x)$ then

$$\Phi_2 = \langle \phi_2(x), \psi_E(x, y) \rangle$$

is a **simple** translation scheme.

Example 3 (au_{words_2} and au_{qrids})

 au_{words_2} consists of $\{R_{\leq}, P_0, P_1\}$

 au_{qrids} consists of $\{E_{NS}, E_{EW}\}$

Put k=2,

$$\begin{aligned} \phi(x) &= ((x \approx x) \land (y \approx y)) \\ \psi_{E_{NS}}(x_1, x_2, y_1, y_2) &= (R_{<}(x_1, x_2) \land y_1 \approx y_2) \\ \psi_{E_{ES}}(x_1, x_2, y_1, y_2) &= (R_{<}(y_1, y_2) \land x_1 \approx x_2) \end{aligned}$$

$$\langle \phi(x,y), \psi_{E_{NS}}(x_1,x_2,y_1,y_2), \psi_{E_{EW}}(x_1,x_2,y_1,y_2) \rangle$$

is a **vectorized** but **not** relativized translation scheme in FOL.

5

Definition 4 (The induced transduction Φ^*)

Given a translation scheme Φ

$$\Phi^{\star}: Str(\tau) \to Str(\sigma)$$

is a (partial) function from τ -structures to σ -structures defined by $\Phi^*(\mathcal{A})=\mathcal{A}_\Phi$ and

- 1. the universe of \mathcal{A}_{Φ} is the set $A_{\Phi} = \{ \overline{a} \in A^k : \mathcal{A} \models \phi(\overline{a}) \};$
- 2. the interpretation of R_i in \mathcal{A}_{Φ} is the set

$$\mathcal{A}_{\Phi}(R_i) = \{ \bar{a} \in A_{\Phi}^{\rho(R_i) \cdot k} : \mathcal{A} \models \psi_i(\bar{a}) \}.$$

 \mathcal{A}_{Φ} is a σ -structure of cardinality at most $\mid A\mid^k$.

As Φ is k-feasible for σ over τ , $\Phi^*(\mathcal{A})$ is defined iff $\mathcal{A} \models \exists \bar{x} \phi$.

6

CS 236 331:2001

Lecture 7

Example 5 (Words and graphs)

Let is compute Φ_1^* .

For the word

1001020102001022111

we get the graph

0 1

•

•

.

• •

• •

•

(1)

7

CS 236 331:2001

Lecture 7

Example 6 (Words and grids)

Let is compute Φ_3^* .

For a word

0110101001

we get

 $\bullet \to \bullet \to \bullet$

 $\bullet \rightarrow \bullet \rightarrow \bullet$

 $\bullet \rightarrow \bullet \rightarrow \bullet$

 $\bullet \to \bullet \to \bullet$

 $\bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet \to \bullet$

 $\bullet \to \bullet \to \bullet$

 $\bullet \to \bullet \to \bullet$ $\bullet \to \bullet \to \bullet$

This is independent of the letters $\{0,1\}$.

Ω

Definition 7 (The induced translation Φ^{\sharp})

Given a translation scheme Φ we define a function $\Phi^{\sharp}: \mathcal{L}(\sigma) \to \mathcal{L}(\tau)$ from $\mathcal{L}(\sigma)$ -formulae to $\mathcal{L}(\tau)$ -formulae inductively as follows:

• For $R_i \in \sigma$ and $\theta = R_i(x_1, \ldots, x_m)$ let $x_{j,h}$ be new variables with $i \leq m$ and $h \leq k$ and denote by $\bar{x}_i = \langle x_{i,1}, \ldots, x_{i,k} \rangle$. We put

$$\Phi^{\sharp}(\theta) = \left(\psi_i(\bar{x}_1, \dots, \bar{x}_m) \wedge \bigwedge_i \phi(\bar{x}_i)\right)$$

ullet This also works for equality and relation variables U instead of relation symbols R.

9

Definition 7 (Continued: booleans)

For the boolean connectives, the translation distributes, i.e.

• if
$$\theta = (\theta_1 \vee \theta_2)$$
 then

$$\Phi_{\sharp}(\theta) = (\Phi_{\sharp}(\theta_1) \vee \Phi_{\sharp}(\theta_2))$$

• if
$$\theta = \neg \theta_1$$
 then

$$\Phi_{\sharp}(\theta) = \Phi_{\sharp}(\neg \theta_1)$$

• similarly for \wedge and \rightarrow .

10

CS 236 331:2001 Lecture 7

Definition 7 (Continued: quantification)

• For the existential quantifier, we use relativization to ϕ :

If $\theta = \exists y \theta_1$, let $\bar{y} = \langle y_1, \dots, y_k \rangle$ be new variables. We put

$$\theta_{\Phi} = \exists \overline{y} (\phi(\overline{y}) \wedge (\theta_1)_{\Phi}).$$

This concludes the inductive definition for first order logic FOL.

• For second order quantification of variables U of arity ℓ and \overline{a} a vector of length ℓ of first order variables or constants, we translate $U(\overline{a})$ by treating U as a relation symbol above and put

$$\theta_{\Phi} = \exists V (\forall \overline{v}(V(\overline{v}) \to (\phi(\overline{v_1}) \land \dots \phi(\overline{v_\ell}) \land (\theta_1)_{\Phi})))$$

CS 236 331:2001

Lecture 7

Example 8 (Computing Φ_1^{\sharp})

Recall

$$\Phi_1 = \langle \phi_1(x), \psi_E(x,y) \rangle$$

with k = 1.

$$\phi_1(x) = (P_0(x) \vee P_1(x))$$
 and

 $\psi_E(x,y) = (P_0(x) \wedge P_1(y))$

Let θ_{conn} be the formula which says the graph is connected:

$$\neg (\exists U (\exists x \neg U(x) \land \forall x \forall y (U(x) \land E(x,y) \rightarrow U(y))))$$

11

• U(x) is replaced by $(\phi_1(x) \wedge U(x)) = ((P_0(x) \vee P_1(x)) \wedge U(x))$

• E(x,y) is replaced by

$$(\phi_1(x) \land \phi_1(y) \land E(x,y)) =$$

$$((P_0(x) \lor P_1(x)) \land (P_0(y) \lor P_1(y)) \land E(x,y))$$

• $(x \approx y)$ is replaced by

$$(\phi_1(x) \land \phi_1(y) \land (x \approx y)) =$$

$$((P_0(x) \lor P_1(x)) \land (P_0(y) \lor P_1(y)) \land (x \approx y))$$

• Then we proceed inductively.

 $(x \approx y)$ does not occur in θ_{conn} .

13

Lecture 7

Proposition 9 (Preservation of tautologies I)

Let \mathcal{L} be First Order Logic FOL.

$$\Phi = \langle \phi, \psi_1, \dots, \psi_m \rangle$$

be a $k-(\tau-\sigma)$ — \mathcal{L} -translation scheme, which is not relativizing, i.e. $\forall \overline{x}\phi(\overline{x})$ is a tautology. Let θ a σ -formula.

- If θ is a tautology (not satisfiable), so is $\Phi^{\sharp}(\theta)$.
- ullet If ϕ is not a tautology, this is not true.
- There are formulas θ which are not tautologies (are satsifiable), such that $\Phi^{\sharp}(\theta)$ is a tautology (is not satisfiable).

14

CS 236 331:2001

Proof of proposition 9

Proof:

For FOL, the first two parts are by straight induction using the completeness theorem. What we observe is that proof sequences translate properly using Φ^{\sharp} .

Generalizing to other logics needs regularity conditions.

If ϕ is not a tautology, $\exists x(x=x)$ is a tautology, but $\Phi^{\sharp}(\exists x(x=x)) = \exists x\phi(x) \land x = x$ is not a tautology.

Now let $\Phi = \langle \psi_R, \psi_S \rangle$ be defined by

$$\psi_R(x) = P(x)$$
 and $\psi_S(x) = \neg P(x)$.

 $\exists x\theta_1 \text{ be } R(x) \land S(x) \text{ and } \exists x\theta_2 \text{ be } R(x) \lor S(x)$ are both satisfiable but not tautolgies. But $\Phi^\sharp(\theta_1)$ is not satisfiable and $\Phi^\sharp(\theta_2)$ is a tautology. Q.E.D.

CS 236 331:2001

Lecture 7

Theorem 10 (Fundamental Property)

Let $\Phi = \langle \phi, \psi_1, \dots, \psi_m \rangle$ be a k- $(\tau - \sigma)$ -translation scheme in a logic \mathcal{L} . Then the transduction Φ^* and the translation Φ^\sharp are in linked in \mathcal{L} .

In other words, given

- \bullet \mathcal{A} be a au-structure and
- θ be a $\mathcal{L}(\sigma)$ -formula.

Then

$$\mathcal{A} \models \Phi^{\sharp}(\theta) \text{ iff } \Phi^{\star}(\mathcal{A}) \models \theta$$

Translation Scheme and its induced maps

in the Fundamental Property of theorem 10

	Translation scheme Φ	
	Φ*	
au-structure	\longrightarrow	σ -structure
\mathcal{A}		$\Phi^{\star}(\mathcal{A})$
au-formulae	$\overset{\longleftarrow}{\Phi^{\sharp}}$	σ -formulae
$\Phi^\sharp(heta)$		θ
$\mathcal{A} \models \Phi^\sharp(heta)$	iff	$\Phi^{\star}(\mathcal{A}) \models \theta$
L		17

Definition 11 (\mathcal{L} -Reductions)

Let \mathcal{L} be a regular logic and Φ be a $(\tau_1 - \tau_2)$ translation scheme. We are given

• two classes K_1, K_2 of $\tau_1(\tau_2)$ -structures closed under isomorphism

We say

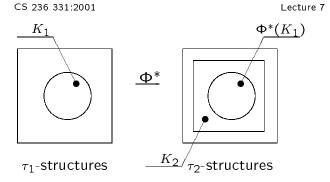
- 1. Φ^* is a weak reduction of K_1 to K_2 if for every τ_1 -structure $\mathfrak A$ with $\mathfrak A \in K_1$ we have $\Phi^*(\mathfrak{A}) \in K_2$.
- 2. Φ^* is a reduction of K_1 to K_2 if for every τ_1 -structure \mathfrak{A} , $\mathfrak{A} \in K_1$ iff $\Phi^*(\mathfrak{A}) \in K_2$.

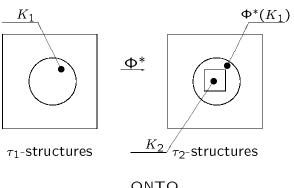
18

CS 236 331:2001 Lecture 7

Definition 11(Continued)

- 3. Φ^* of K_1 to K_2 is *onto* if (additionally) for every $\mathfrak{B} \in K_2$ there is an $\mathfrak{A} \in K_1$ with $\Phi^*(\mathfrak{A})$ isomorphic to \mathfrak{B} .
- 4. By abuse of language we say Φ^* is a *trans*lation of K_1 onto K_2 also if Φ^* is not a weak reduction but only $K_2 \subseteq \Phi^*(K_1)$.
- 5. We say that Φ induces a reduction (a weak reduction) of K_1 to K_2 , if Φ^* is a reduction (a weak reduction) of K_1 to K_2 . For simplicity, we also say Φ is a reduction (a weak reduction) instead of saying that Φ induces a reduction (a weak reduction).





ONTO

Definition 12 (\mathcal{L} -Reducibility)

1. Let $k \in \mathbb{N}$.

We say that K_1 is \mathcal{L} -k-reducible to K_2 $(K_1 \triangleleft_{\mathcal{L}-k} K_2)$, if there is a \mathcal{L} -k-translation scheme Φ for τ_2 over τ_1 , such that Φ^* is a reduction of K_1 to K_2 .

- 2. We say that K_1 is \mathcal{L} -reducible to K_2 $(K_1 \triangleleft_{\mathcal{L}} K_2)$, if $K_1 \triangleleft_{\mathcal{L}-k} K_2$ for some $k \in \mathbb{N}$.
- 3. We say that K_1 is \mathcal{L} -bi-reducible to K_2 and write $K_1\bowtie_{\mathcal{L}} K_2$, if $K_1\triangleleft_{\mathcal{L}-k} K_2$ and $K_2\triangleleft_{\mathcal{L}-k} K_1$ for some $k\in \mathbf{N}$. Clearly, bi-reducibility is a symmetric relation.

21

Theorem 13 (Definability and Reducibility)

Let Φ^* be an \mathcal{L} -reduction of K_1 to K_2 . If K_2 is \mathcal{L} -definable then K_1 is -definable.

Recall that a class of τ -structures K_2 is \mathcal{L} -definable if there is a $\mathcal{L}(\tau)$ -sentence θ such that $K_2 = Mod(\theta)$.

Proof:

We use the Fundamental Property of Φ .

If K_2 is defined by θ , so K_1 is defined by $\Phi^{\sharp}(\theta)$.

22

CS 236 331:2001

Lecture 7

Proposition 14

Hamiltonian graphs are not MSOL-definable (both in au_{graphs_1} and au_{graphs_2}).

Proof:

We use Φ_2 from example 2.

 Φ_2^{\star} is a reduction from words 0^n1^m over $\{0,1\}$ to complete bipartite graphs $K_{n,m}$, which are MSOL-defined by θ_{co-bi} .

 $K_{n,m}$ is Hamiltonian iff n=m.

So, if θ_{hamil} defined all Hamiltonian graphs,

$$\Phi_2^{\sharp}(\theta_{hamil} \wedge \theta_{co-bi})$$

defined the language $\{0^n1^n\}$.

But $\{0^n1^n\}$ is not regular, and hence, by Büchi's theorem, not MSOL-definable.

Q.E.D.

Proposition 15

CS 236 331:2001

Lecture 7

Eulerian graphs are not MSOL-definable (both in τ_{graphs_1} and τ_{graphs_2}).

Proof: Let SET be the class of finite sets and $ODD \subseteq SET$ those of odd cardinality. Let CLIQUE be the class of complete graphs. CLIQUE is FOL-definable by some θ_{clique} .

Let the simple FOL translation scheme Φ be given by $\phi(x)=(x\approx x)$ and $\psi_E(x,y)=(\neg x\approx y)$.

 Φ^{\star} is a reduction from SET to CLIQUE.

Now assume that there is $\theta_{euler} \in MSOL$, with $EULER = Mod(\theta_{euler})$. Put $\theta = (\theta_{clique} \land \theta_{euler})$. $\Phi^\sharp(\theta)$ is equivalent to $\theta_{odd} \in MSOL$.

But this contradicts the fact that ODD (EVEB) is not MSOL-definable.

Q.E.D.

Proof of theorem 10

We use induction over the construction of θ .

- If all the formulas ϕ, ψ_i of Φ and θ are atomic. both $\Phi^*(\mathfrak{A}) = \mathfrak{A}$ and $\Phi^{\sharp}(\theta) = \theta$.
- Next we keep θ atomic and assume

$$\Phi = \langle \phi(\bar{x}), \psi_{S_1}(\bar{x}), \dots \psi_{S_m}(\bar{x}) \rangle$$

$$\Phi^*(\mathfrak{A}) \models S_i(\bar{a}) \text{ iff } \mathfrak{A} \models \psi_{S_i}(\bar{a})$$
 by definition of Φ^* .

• Now the induction on θ uses that Φ^{\sharp} commutes with the logical constructs.

> Q.E.D. 25

CS 236 331:2001 Lecture 7

Example 17 (Renaming)

One of the simplest translations encountered in logic is the renaming of basic relations.

Let $\tau_1 = \{R_i : i \le k\}$ and $\tau_2 = \{S_i : i \le k\}$, where R_i and S_i are of the same arity, respectively.

Let Φ be the (τ_1, τ_2) translation scheme given by $\Phi = \langle x = x, R_1(\bar{u}), \dots, R_k(\bar{v}) \rangle$.

Such a translation scheme and as well as its induced maps Φ^* and Φ^{\sharp} are called **renaming**.

Proposition 16 (Preservation of tautologies II)

Let \mathcal{L} be First Order Logic FOL.

$$\Phi = \langle \phi, \psi_1, \dots, \psi_m \rangle$$

be a $k-(\tau-\sigma)$ — \mathcal{L} -translation scheme. Let θ a σ -formula.

Assume that Φ^* is onto all σ -structures, i.e. for every σ -structure ${\mathfrak B}$ there is a au-structure \mathfrak{A} such that $\Phi^*(\mathfrak{A}) = cong\mathfrak{B}$

- If θ is a tautology, so is $\Phi^{\sharp}(\theta)$.
- If additionally $\exists \overline{x} \phi(\overline{x})$ is a tautology and $\Phi \sharp (\theta)$ is a tautology then θ is a tautology.

Proof:

Use the fundamental property. Q.E.D.Note that here the proof is semantical.

26

Lecture 7

CS 236 331:2001

Example 18 (Cartesian Product)

Let us consider one example of vectorized translation scheme that defines Cartesian Product.

For simplicity, we assume that k=2.

Let
$$\tau_1 = \{R_1(x_1, x_2)\}$$
 with R_1 binary and $\tau_2 = \{R_2(x_1, x_2)\}$ with R_2 binary.

$$\Phi = \langle (x_1 = x_1 \lor x_2 = x_2), (R_1(x_1, x_2) \land R_2(x_3, x_4)) \rangle$$

It is easy to see that $\Phi^*(A)$ is isomorphic to the Cartesian product A^2 .

The n-hold Cartesian product is defined in the same way.

Example 19 (Graphs)

 $Graphs_1$ is the class of structures of the form $\langle V, E \rangle$ where E is a binary irreflexiv relation on the set of vertices V.

 $Graphs_2$ is the class of structures of the form $\langle V \sqcup E; Src(v,e), Tgt(v,e) \rangle$ with the universe consisting of **disjoint** sets of vertices and edges and Src(v,e) (Tgt(v,e)) indicates that v is the source (target) of the directed edge e.

For a graph G we denote its representations by G_i for $G_i \in Graphs_i$ respectively.

We define a scalar translation scheme $\Phi = \langle \phi, \psi_E \rangle$ from $Graphs_2$ to $Graphs_1$ by

$$\phi(v) = (\exists e(Src(v, e) \lor eTgt(v, e)) \lor (v = v \land \neg \exists x(Src(x, v) \lor Tgt(x, v))$$

$$\phi_E(x, y) = \exists e((Src(x, e) \land Tgt(y, e))$$

Clearly, for every graph G we have

$$\Phi^{\star}(G_2) \cong G_1$$

Theorem 20 (Complexity of transductions)

If Φ is in FOL (or $\exists HornSOL$) then Φ^* is computable in polynomial time.

Proof:

We test all k-tuples \overline{a} in $\mathfrak A$ of size n for

$$\mathfrak{A} \models \phi(\overline{a})$$

This takes $n^k \cdot TIME(\mathfrak{A}, \phi)$ time.

But we know that $TIME(\mathfrak{A}, \phi)$ is a polynomial in n.

For the ψ_{S_i} this is the same.

Q.E.D.

By a theorem of Grädel, this also holds for HornSOL, cf. the project page.

30