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Infinite abelian groups

For infinite abelian groups G = 〈A,+,0〉
PG 6= NPG

Mihai Prunescu (* 1967)
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Infinite abelian groups

After Prunescu, JSL 2002

Theorem 1 (Bourgarde; Hemmerling and Gassner; Prunescu)
Let G = (A,+A,0A) be an infinite abelian group. Then PG 6= NPG.

This generalizes K. Meer’s Theorem Plin 6= NPlin for the additive group of R
stated in Lecture 1.

For the ordered abelian group of the reals Rovs,
considered as an ordered vector space (ovs) over R we have

Theorem 2 (H. Fournier and P. Koiran 2001)
Povs = NPovs iff P/poly = NP/poly,

resp. P0
ovs = NP0

ovs iff P = NP, for the parameter-free case.

We shall read Prunescu’s proof carefully to see why

it does not work in the ordered case.
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The Nullsack problem

We call the problem NSG ⊆ G∞ below the Nullsack problem:

NSG = {(x1, . . . , xn) : n ∈ N and ∃J 6= ∅, J ⊆ [n] with
∑
j∈J

xj = 0}

• NSG ∈ NPG with boolean guesses and parameter-free.

• NSG is computable in exponential time deterministically.
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Fundamental theorems on abelian groups

AG-1: Every finitely generated abelian group G is isomorphic to

Zn ⊕ Zq1 ⊕ . . .⊕ Zqt
where n is its rank and qs, s ≤ t are powers of primes.

AG-2: G is torsion-free if t = 0.

AG-3: F.W. Levi (1942):
An abelian group is orderable iff it is torsion-free.

AG-4: O. Hölder:
Every archimedian abelian ordered group is an ordered subgroup of the
reals 〈R,+R, <R,0R, 〉.
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Prüfer’s theorems on abelian groups

Ernst Paul Heinz Prüfer (1896–1934)

PT-1: Every finite abelian group is isomorphic to the direct sum of cyclic
gropus of prime order.

PT-2: E. Prüfer: An abelian group of bounded exponent is isomorphic to a
direct sum of cyclic groups.

PT-3: Let G be infinite abelian group of bounded exponent.
There is a prime number p, such that there infinitely many elements on
G of order p.
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p-elementary abelian groups

• Let Hp =
⊕

i∈N Zp, where the elements are infinite sequences of elements
of Zp where all but finitely many are 0.

• Hp =
⊕

i∈N Zp is an infinite dimensional, countable vector space over the
field GF (p), the Galois field of order p.

• Let H = {Z} ∪ {Hp : p a prime}.

• the groups Hp are not finitely generated.
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Prunescu’s Theorem: For G an abelian group PG 6= NPG.

Step 1

The following was proved by K. Meer for the additive group on R,
and by B. Poizat for H2.

We first generalize this to groups in H:

Proposition 3 (M. Prunescu)
Let H ∈ H. Then NSH 6∈ PH, hence PH 6= NPH.
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Proof of NSH 6∈ PH, I

• Let m,n ∈ N and m,n ≥ 1, and ā ∈ {0,1}n, b̄1, . . . , b̄m ∈ Zn.

• The system

ā · x̄ = 0

b̄1 · x̄ 6= 0
...

b̄m · x̄ 6= 0 (1)

has infinitely many solutions in Hn, provided that no b̄i is a multiple of
ā, and in case that H = Hp, no inequation reduces to 0 6= 0 modulo p.
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Proof of NSH 6∈ PH, II

• Assume NSH can be solved deterministically in polynomial time p(n).

• Choose n such that 2n − 1 > p(n).

• Using that the system (1) has infinitely many solutions, we construct
Y,N ∈ Hn such that Y ∈ NSH, N 6∈ NSH, but both traverse the same set
of < p(n) non-trivial tests negatively.

• Thus we reach a contradiction.

Q.E.D.

What happens here in the case of ordered abelian groups?
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Strategy for the proof of NSG 6∈ PG, for any abelian group G.

We proceed as follows:

• We look at ultraproducts of G.

• We show that every (non-trivial) ultrapower G∗ of G is
elementarily equivalent to G.

•
Lemma 4
We show that every (non-trivial) ultrapower G∗ of G
contains both G and some H ∈ H, such that G ∩H = {0}.

• Then we show that NSG∗ 6∈ PG∗.

• Using that G∗ ≡ G we conclude that NSG 6∈ PG.
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Short course on ultraproducts

More details on the blackboard.

(i) Filters and ultrafilters.

(ii) Non-principal ultrafilters.

(iii) Ultraproducts and ultrapowers.

(iv) Proof of Lemma 4.
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Filters and ultrafilters

Let I be an infinite set.

Intuitively, a filter F is a collection of large subsets of I.

A filter F is a family of subsets of I such that

1. The empty set ∅ is not an element of F.

2. If A and B are subsets of I, A is a subset of B, and A is an element of
F, then B is also an element of F.

3. If A and B are elements of I, then so is the intersection of A and B.

F is an ultrafilter if additionally

4. If A is a subset of I, then either A or I −A is an element of F.

Properties 1 and 3 imply that A and I −A cannot both be elements of F.
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Examples of filters and ultrafilters, I.

Let I = N.

• Let A ⊆ N. FA = {B ⊆ N : A ⊆ B}.
FA is an ultrafilter.

• A filter F on a set I is principal if it is of the form FA = {B ⊆ N : A ⊆ B}.
for some subset A ⊆ I.

Every principal filter is an ultrafilter.

• F1 be the family of co-finite sets.
F1 is a non-principal filter but not an ultrafilter.
Neither the set of even numbers nor the set of odd numbers is in F1.
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Examples of filters and ultrafilters, II

Let I = R and

• F2 be the set of uncountable sets.

• F3 be the set of co-countable sets.

• F4 be the set of dense subsets of R.

Discuss the filter properties of Fi for i = 2,3,4.

Discuss ultrafilters on finite sets I.
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Ultraproducts and ultrapowers

Let I be set, serving as an index set,
and F be a non-principal ultrafilter on I.

Let Ai : i ∈ I a family of τ-structures.

• A =
∏
i∈I Ai is the cartesian product of these structures.

• For ā, b̄ we define ā ∼F b̄ iff {i ∈ I : ai = bi} ∈ F.

• The ultraproduct
∏
i∈I Ai/F is the quotient structure A/ ∼F.

• In case all the structures Ai are the same
we speak of the ultrapower

∏
I A/F.

File:e-abelian 15



ESSLLI 2014, August 2014 ABELIAN

The Ultrafilter Theorem

Theorem 5
Every filter F over a set I is contained in some ultrafilter U over I.

Proof: We use the well-ordering theorem, that every set can be well-ordered.

Let Uα : α < β be a well-ordering of the powerset of I.

We put F0 = F. For each 0 < α < β we check whether Uα ∈ Fα or I−Uα ∈ Fα.

If yes, we put Fα+ = Fα.

If no, we put Fα+ = Fα[Uα], which is the smallest filter containing Fα and Uα.

If δ < β is a limit ordinal, we put Fδ =
⋃
α<δ Fα.

It is now easy to check that U = Fβ is an ultrafilter. Q.E.D.
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 Los’ Theorem

J.  Los, 1920-1998

Theorem 6 (Fundamental Theorem of Ultraproducts)

Let
∏
i∈I Ai/F be an ultraproduct of τ-structures Ai : i ∈ I,

and φ(x1, . . . , xn) ∈ FOL(τ) be a first order formula.

Let āj : j ∈ [n].

∏
i∈I

Ai/F |= φ(ā1, . . . , ān)

iff

{i ∈ I : Ai |= φ(ai,1, . . . , ai,n)} ∈ F

The proof is by induction.
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What we need for Prunescu’s Theorem

Let A be a τ-structure.

• Then A ≡
∏
I A/F.

In particular, this holds for A = G, an abelian group.

Let G be an abelian group,and G∗ =
∏
I A/F an ultrapower of G.

• Then G∗ contains a group G′ which is an isomorphic copy of G.

We map a ∈ G into the constant sequence ai = a.

• Then G∗ contains an isomorphic copy of H
for some H ∈ H with H ∩G = {0}.
Let ā consist of infinitely many different coordinates ai.
If the ai’s have unbounded order, we take the H to be the subgroup of G∗ generated
by ā, which is isomorphic to Z and 0 is the only element also in G′.

If all the ai’s have order bounded by m, we use Prüfer’s Theorem.
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Outline of the ESSLLI-course given by

J.A. Makowsky (Haifa) and K. Meer (Cottbus)

LECTURE 1 (JAM): Introduction INTRO (5 slides)
Turing machines over relational structures, NEWBSS, (19 slides)
Short quantifier elimination. SHORTQE (16 slides)

LECTURE 2 (JAM): Introduction to quantifier elimination QE (26 slides)
Fields, rings and other structures TABLE (incomplete, 20 slides)

LECTURE 3 (JAM): Computing with the reals: Removing order or multiplication;
Adding Fortran-libraries. FORTRAN (24 slides)
Comparing Poizat’s Theorem with descriptive complexity FAGIN (20 slides)

LECTURE 4 (KM): Inside NPR and analogues to Ladner’s Theorem, Meer-1 (149 slides)

LECTURE 5 (KM): PCP-Theorem over R, Meer-2 (139 slides)

ADDITIONAL MATERIAL see next slide.
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Additional material for the ESSLLI-course

LECTURE 6 (JAM): Quantifier elimination in algebraically closed fields, ACF-0 (21 slides)
By JAM after Kreisel and Krivine.

LECTURE 7 (JAM): PG 6= NPG for all abelian groups. ABELIAN (18 slides)
By JAM After M. Prunescu

LECTURE 8 (JAM): PG 6= NPG for all boolean algebras. BOOLEAN (23 slides)
By I. Bentov after M. Prunescu

LECTURE 9 (JAM): PG 6= NPG for all real matrix rings. MATRIX (70 slides)
By N. Labai after A. Rybalov
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