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P 6= NP for all infinite Boolean rings

A ring R (with 1) is a Boolean ring if ∀x ∈ R : x2 = x.

Theorem:(Marshall H. Stone) Let R be a boolean ring. There exists a
set S and a ring R′ ⊆ 2S with the operations

• A + B , (A ∩B) ∪ (A ∩B)

• A ·B , A ∩B

• 0R′ , ∅ and 1R′ , S

such that R ' R′. We refer to R′ as a Boolean algebra.

For a Boolean ring R, we assume that an R-machine utilizes only the opera-

tions {̄ ,∩}, and branches only via tests of the form A = 0. This is w.l.o.g.,

since de Morgan’s rule A ∪ B = A ∩B allows us to translate the ∪ operation

in constant time, and A = B iff (A ∩B = 0) ∧ (A ∩B = 0).
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The Zero-Divisors problem

For a set X, let X0 , X and X1 , X.

For a Boolean algebra R we define the Zero-Divisors problem ZDR ⊆ R∞,
as follows:

ZDR = {(x1, . . . , xn) : n ∈ N and ∃ε1, . . . , εn ∈ {0,1} s.t. xε1

1 ∩ · · · ∩ xεn

n = 0}

To take an example, if R = 2{a,b,c,d} then ({a, b}, {a, c}) /∈ ZDR.

Observe that:

• ZDR ∈ NPR via a parameter-free R-machine that makes Boolean guesses.

• ZDR is computable in exponential time deterministically.
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Prunescu’s theorem for infinite Boolean rings

Theorem:(Mihai Prunescu) For any infinite Boolean ring R, there does not
exist a deterministic R-machine using arbitrary fixed constants c1, . . . , ck ∈ R
that can decide ZDR in polynomial time.

• Consequently, PR 6= NPR for any Boolean ring R.

We shall initially prove this theorem for a parameter-free R-machine.
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Boolean algebras: preliminaries

Definition: x ∈ R is called an atom of R if x 6= 0∧∀y : y ⊆ x→ (y = 0∨y = x).
A Boolean algebra is called atomic if every element contains an atom.

Observation: Every finite Boolean algebra is atomic, and isomorphic to the
power-set of its atoms.

Proof sketch:

• Let Rn be a finite Boolean algebra with n elements. Pick any x ∈ Rn.

• If x is not an atom then ∃y ∈ Rn such that 0 6= y ( x.

• If y is not an atom then ∃z ∈ Rn such that 0 6= z ( y.

• After at most n−1 such iterations, we conclude that x contains an atom.

• Hence Rn is atomic, and contains the atoms a1, . . . , ak for some k.

• It is a simple exercise to see that 2{a1,...,ak} ' Rn.
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Boolean algebras: preliminaries (cont’d)

Definition: A subalgebra R′ of R is a Boolean algebra R′ ⊆ R with 1R′ =
1R,0R′ = 0R, and {̄ ,∪,∩} operations induced by R.

Note: in other words, R′ is a subring of a Boolean ring (containing 1) R.

The following lemma will be instrumental in proving Prunescu’s theorem:

Lemma 1
Let R be an infinite Boolean algebra. For every finite algebra Bn with n
atoms, R contains a subalgebra that is isomorphic to Bn.
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Boolean algebras: preliminaries (cont’d)

Definition: A Boolean algebra R is called an internal product of two Boolean
algebras B and C, denoted by R = B ⊗ C, if:

• B ⊆ R and C ⊆ R (as sets, not as subrings)

• Every element r ∈ R can be written in exactly one way as r = b ∪ c with
b ∈ B and c ∈ C

• (b1 ∪ c1) ∩ (b2 ∪ c2) = (b1 ∩ b2) ∪ (c1 ∩ c2) for all b1, b2 ∈ B and c1, c2 ∈ C

• (b1 ∪ c1) ∪ (b2 ∪ c2) = (b1 ∪ b2) ∪ (c1 ∪ c2) for all b1, b2 ∈ B and c1, c2 ∈ C

• b ∪ c = b ∪ c for all b ∈ B and c ∈ C

Note that with this notation we mean that for example b1∩b2 and b are formed

in B, hence B ⊗ C is regarded as an internal decomposition of R.
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Boolean algebras: preliminaries (cont’d)

Definition: The relativization of a Boolean algebra R to an element x ∈ R
is DR(x) , {x ∩ r : r ∈ R}.
Lemma 2
Any nontrivial Boolean algebra R 6= {0,1} is internally decomposable.

Proof: pick x ∈ R \ {0,1}, B = DR(x), C = DR(x).

• We claim that R = B ⊗ C.

• Consider an arbitrary r ∈ R, hence r ∩ x = b ∈ B and r ∩ x = c ∈ C.

• r = r ∩ 1 = r ∩ (x ∪ x) = (r ∩ x) ∪ (r ∩ x) = b ∪ c, and if r = b′ ∪ c′ then
b = r ∩ x = (b′ ∪ c′) ∩ x = (b′ ∩ x) ∪ (c′ ∩ x) = b′ ∪ 0 = b′. Similarly, c = c′.

• Via distributive law, ∀b1, b2 ∈ B, c1, c2 ∈ C : (b1∪ c1)∩ (b2∪ c2) = [(b1∩ b2)∪
(c1∩b2)]∪[(b1∩c2)∪(c1∩c2)] = [(b1∩b2)∪0]∪[0∪(c1∩c2)] = (b1∩b2)∪(c1∩c2).

• ∀b∈B,c∈C:b ∪ c=(b∩ c)∩ (x∪x)=(b∩
=x︷ ︸︸ ︷

c ∩ x)∪ (c∩

=x︷ ︸︸ ︷
b ∩ x)=(b∩x)∪ (c∩x).2
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Boolean algebras: Lemma 1

Reminder: Lemma 1 states that any infinite Boolean algebra R contains
subalgebras isomorphic to Bn, for all finite subalgebras Bn with n atoms.

Proof of Lemma 1: By induction on n.

• If n = 1 then the subalgebra {0R,1R} ⊂ R is isomorphic to B1.

• Assume that the lemma holds for an integer n.

• Since R is nontrivial, by lemma 2 we can write R = C ⊗D.

• R is infinite, so at least one of the algebras C,D, say D, is infinite.

• B1 ' {0C,1C} = C ′ ⊆ C.

• By the induction hypothesis ∃D′ ⊂ D such that D′ ' Bn.

• C ′ ⊗D′ ' B1 ⊗ Bn ' B1 ⊗ Bn
1 ' B

n+1
1 ' Bn+1. (note: 1C ′⊗D′ = 1R)

• ⇒ ∃R′ = C ′ ⊗D′ ⊂ R for which R′ ' Bn+1. 2
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Prunescu’s proof for the parameter-free case

Lemma 3
If there exist an infinite Boolean ring R and a parameter-free R-machine M
that deterministically decides ZDR in some polynomial time q(t), then M
decides ZDBn

in the same deterministic polynomial time q(t), uniformly in n
for all finite Boolean algebras Bn.

Proof:

• By lemma 1, every finite algebra Bn is isomorphic to a subalgebra Rn ⊂ R.

• M is parameter-free ⇒ for inputs from R∞n , all the computations remain
in the subalgebra Rn. 2
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Prunescu’s proof for the parameter-free case (cont’d)

Lemma 4
There is no parameter-free deterministic machine M that can decide ZDBn

in
some uniform polynomial time q(k) over all finite Boolean algebras Bn.

Note: it may still be possible that for every given finite algebra Bn, there

exists a deterministic Bn-machine that decides ZDBn
in polynomial time. In

fact, the claim that PBn
= NPBn

holds for every finite Boolean algebra Bn is

equivalent to the classical P versus NP question.
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Freely generated finite Boolean algebras

Definition: Fn is a Boolean algebra that is freely generated by X1, . . . , Xn:

• Each atom of Fn is of the form Xε1

1 ∩ · · · ∩Xεn
n 6= 0 for ε1, . . . , εn ∈ {0,1}

• ⇒ Fn has 2n atoms, hence |Fn| = 22n

and Fn ' B2n

Sidenote: the countably infinite freely generated Boolean algebra is atomless.

To obtain an isomorphism B2n ' Fn, define for i = 1, . . . ,2n and t = 1, . . . , n:

• i ∈ Xt ⇐⇒ 2t−1 occurs in the sum of two-powers representing i

Claim: Xε1

1 ∩ · · · ∩Xεn
n = {i} for some atom {i} ∈ B2n
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Freely generated finite Boolean algebras (cont’d)

To see this, denote by (b1, . . . , bn) the bit-representation of an n-bit number,
where b1 is the least significant bit:

• X0
t = Xt = {i : 1 ≤ i < 2n, i = (b1, . . . , bn), bt = 1}

• X1
t = Xt = {i : 1 ≤ i < 2n, i = (b1, . . . , bn), bt = 0} ∪ {2n}

•
∑n

j=1(1− εj) 6= 0⇒ Xε1

1 ∩ · · · ∩Xεn
n = {i : i = (1− ε1, . . . ,1− εn)}

•
∑n

j=1(1− εj) = 0⇒ Xε1

1 ∩ · · · ∩Xεn
n = {2n}

Therefore:

• (ε1, . . . , εn) 6= (ε′1, . . . , ε
′
n)⇒ Xε1

1 ∩ · · · ∩Xεn
n 6= X

ε′1
1 ∩ · · · ∩X

ε′n
n

• |Xε1

1 ∩ · · · ∩Xεn
n | = 1

For example, if n = 3 then X1 = {1,3,5,7}, X1 = {2,4,6,8}, X2 = {2,3,6,7}, . . .

File:e-boolean 13



ESSLLI 2014, August 2014 BOOLEAN

Prunescu’s proof for the parameter-free case (cont’d)

Proof of Lemma 4: Assume that there exists a deterministic machine M
with a polynomial time bound q(k) that decides ZDBn

over all Bn uniformly:

• pick k for which 2k > q(k), and consider inputs from Fk.

• Let X1, . . . , Xk be the elements that freely generate Fk.

• Consider the input tuple ~X = (X1, . . . , Xk).

• Notice that ~X /∈ ZDFk
, thus if our assumption holds then M rejects ~X.

• M tested ≤ q(k) atoms Xε1

1 ∩ · · · ∩Xεk

k

?
= 0 along its computation path.

• Since 2k > q(k), M did not test at least one atom {i0} ∈ {{1}, . . . , {2k}}.

• Let Yj = Xj \ {i0}, and consider the input tuple ~Y = (Y1, . . . , Yk) ∈ B∞2k−1.
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Prunescu’s proof for the parameter-free case (cont’d)

• Notice that ∀i 6= i0 : {i} = Xε1

1 ∩ · · · ∩ Xεk

k = Y ε1

1 ∩ · · · ∩ Y εk

k , therefore
Y1, . . . , Yk indeed generate B2k−1.

• Hence we obtained that ~Y ∈ ZDB2k−1
, because the atom {i0} = Xε1

1 ∩· · ·∩X
εk

k
of Fk corresponds to Y ε1

1 ∩ · · · ∩ Y εk

k = 0 in B2k−1.

• M( ~X) branched by testing the emptiness of sets that either contained
at least two elements or did not contain i0, therefore M also rejects ~Y .

• Even if M( ~X) tests the emptiness of ∅, M(~Y ) will follow the same com-
putation path, but no such tests occur if M runs a minimal program.

• Thus the positive input ~Y is rejected by M, which is a contradiction. 2
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Prunescu’s proof for a machine with fixed constants

Lemma 5
Let R be an infinite Boolean algebra. If there exist constants c1, . . . , ct ∈ R
and a deterministic R-machineM that utilizes these constants to decide ZDR
in some polynomial time q(k), then there exist an infinite Boolean algebra
R1 and a parameter-free deterministic R1-machine M1 that decides ZDR1

in
O(2t+1 · q(k)) time.

Proof: Let S be an infinite set and R ⊆ 2S.

• Let C be the subalgebra of R generated by c1, . . . , ct, note that C is finite.

• Let a1, . . . , ad be the atoms of C, hence d ≤ 2t.

• It is simple to verify that a1 ∪ · · · ∪ ad = S, and that this is a partition.

• There must be an ai, say a1, such that the relativized Boolean algebra
R1 = DR(a1) = {a1 ∩ r : r ∈ R} (with 0R1

= ∅ and 1R1
= a1) is infinite.
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Prunescu’s proof for a machine with fixed constants (cont’d)

• Consider an input ~x = (x1, . . . , xk) ∈ R∞1 .

• Claim: ~x ∈ ZDR1
⇐⇒ ~x ∈ ZDR ∨R |= x1 ∩ · · · ∩ xk ∩ a1 = 0.

• This holds because if ∃εi = 0 then xε1

1 ∩ · · · ∩ xεk

k ⊆ xi ⊆ a1 and therefore
xε1

1 ∩ · · · ∩ xεk

k = 0 in R, otherwise x1 ∩ · · · ∩ xk = a2 ∪ · · · ∪ ad in R and then
x1 ∩ · · · ∩ xk ∩ a1 = 0 in R.

• Claim: we can construct an R-machine M′ with constants c1, . . . , ct that
works over R and decides ZDR1

in deterministic time q(k) +O(k).

• M′ on input ~x = (x1, . . . , xk) ∈ R∞1 will first invoke M(~x) and accept if

M accepted. Otherwise, M′ tests x1 ∩ · · ·xk ∩ a1
?
= 0, and accepts iff the

test result was positive.

• Notice that a1 is generated by c1, . . . , ct, therefore M′ can form a1 in
constant time via some computation a1 = cε1

1 ∩ · · · ∩ cεt

t .
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Prunescu’s proof for a machine with fixed constants (cont’d)

• Let C1 = DC(a2 ∪ · · · ∪ ad)

• WhenM′ runs with an input from R∞1 and utilizes the constants c1, . . . , ct,
every element that occurs during its calculations has the form x = x′∪x′′
where x′ ∈ R1 and x′′ ∈ C1.

• In other words, M′ cannot quit the internal product R1 ⊗ C1.

• We can modify M′ to construct a parameter-free R1-machine M1 that
decides ZDR1

.

• M1 replaces the input x1, . . . , xk with x′1 = x1, x′′1 = 0, . . . , x′k = xk, x
′′
k = 0.

• M1 simulates M′ and replaces x := y ∩ z with x′ := y′ ∩ z′, x′′ := y′′ ∩ z′′,

replaces x := y with x′ := y′, x′′ := y′′, and replaces x
?
= 0 with the two

tests x′
?
= 0 ∧ x′′

?
= 0.
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Prunescu’s proof for a machine with fixed constants (cont’d)

• For every ci for which it holds that ci ∩ a1 = 0, M1 replaces x := x ∩ ci
with x′ := 0, x′′ := x′′ ∩ ci.

• For every ci for which it holds that ci ∩ a1 = a1, M1 replaces x := x ∩ ci
with x′′ := x′′ ∩ (ci \ a1), and retains x′.

• ⇒ All the computations in the registers x′ do not use any constants.

• The computations in the registers x′′ take place in the finite algebra C1

that has at most 2t − 1 atoms, and therefore at most 22t−1 elements.

• We can hardcode two tables of size ≤ (22t−1)2 for the {̄ ,∩} operations,
inside the program that M1 runs.

• Hence M1 can carry out the computations in C1 by querying these tables
in time that is constant in k, and in time that is logarithmic in 22t+1

by
computing the required index and accessing the memory location of the
corresponding table entry.
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Prunescu’s proof for a machine with fixed constants (cont’d)

• We obtained that the parameter-free deterministic M1 simulates M′ for
inputs from R∞1 , by carrying out all the computations in the internal
product R1 ⊗ C1.

• In particular, simulating the last step x1 ∩ · · ·xk ∩ a1
?
= 0 of M′ becomes

straightforward: the R1-machine M1 computes the complements xi just
over R1 into registers x′i, then intersects these x′i registers and tests for
emptiness.

• M1 has a polynomial time bound of O(2t+1 · q(k)). 2
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Prunescu’s proof: conclusion

Reminder: Lemmas 3 and 4 imply that for any infinite Boolean algebra R, it

holds that a parameter-free R-machine cannot decide ZDR in deterministic

polynomial time.

Reminder: Lemma 5 shows that for an infinite Boolean algebra R, if a

deterministic R-machine with access to any arbitrary fixed constants of R
can decide ZDR in polynomial time, then there exists an infinite Boolean al-

gebra R1 for which ZDR1
can be decided in deterministic polynomial time by

a parameter-free R1-machine.

Conclusion: by combining lemma 5 with lemma 4 and lemma 3, Prunescu’s

theorem follows, i.e. PR 6= NPR for every infinite Boolean algebra R. 2
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Outline of the ESSLLI-course given by

J.A. Makowsky (Haifa) and K. Meer (Cottbus)

LECTURE 1 (JAM): Introduction INTRO (5 slides)
Turing machines over relational structures, NEWBSS, (19 slides)
Short quantifier elimination. SHORTQE (16 slides)

LECTURE 2 (JAM): Introduction to quantifier elimination QE (26 slides)
Fields, rings and other structures TABLE (incomplete, 20 slides)

LECTURE 3 (JAM): Computing with the reals: Removing order or multiplication;
Adding Fortran-libraries. FORTRAN (24 slides)
Comparing Poizat’s Theorem with descriptive complexity FAGIN (20 slides)

LECTURE 4 (KM): Inside NPR and analogues to Ladner’s Theorem, Meer-1 (149 slides)

LECTURE 5 (KM): PCP-Theorem over R, Meer-2 (139 slides)

ADDITIONAL MATERIAL see next slide.
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Additional material for the ESSLLI-course

LECTURE 6 (JAM): Quantifier elimination in algebraically closed fields, ACF-0 (21 slides)
By JAM after Kreisel and Krivine.

LECTURE 7 (JAM): PG 6= NPG for all abelian groups. ABELIAN (18 slides)
By JAM After M. Prunescu

LECTURE 8 (JAM): PG 6= NPG for all boolean algebras. BOOLEAN (23 slides)
By I. Bentov after M. Prunescu

LECTURE 9 (JAM): PG 6= NPG for all real matrix rings. MATRIX (70 slides)
By N. Labai after A. Rybalov
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