BOOLEAN

$\mathbf{P} \neq \mathbf{NP}$ for all infinite Boolean rings

after M. Prunescu

Slides prepared by Iddo Bentov for the Technion advanced course CS-238900 (2013) The question P = NP on arbitrary structures

given by J.A. Makowsky

```
@article{DBLP:journals/mlq/Prunescu03,
    author = {Mihai Prunescu},
    title = {P != NP for all infinite Boolean algebras},
    journal = {Math. Log. Q.},
    volume = {49},
    number = {2},
    year = {2003},
    pages = {210-213},
    ee = {http://dx.doi.org/10.1002/malq.200310020},
    bibsource = {DBLP, http://dblp.uni-trier.de}
}
```

$P \neq NP$ for all infinite Boolean rings

A ring \mathcal{R} (with 1) is a Boolean ring if $\forall x \in \mathcal{R} : x^2 = x$.

Theorem:(Marshall H. Stone) Let \mathcal{R} be a boolean ring. There exists a set S and a ring $\mathcal{R}' \subseteq 2^S$ with the operations

- $A + B \triangleq (A \cap \overline{B}) \cup (\overline{A} \cap B)$
- $A \cdot B \triangleq A \cap B$
- $\mathbf{0}_{\mathcal{R}'} \triangleq \emptyset$ and $\mathbf{1}_{\mathcal{R}'} \triangleq S$

such that $\mathcal{R} \simeq \mathcal{R}'$. We refer to \mathcal{R}' as a **Boolean algebra**.

For a Boolean ring \mathcal{R} , we assume that an \mathcal{R} -machine utilizes only the operations $\{\overline{}, \cap\}$, and branches only via tests of the form A = 0. This is w.l.o.g., since de Morgan's rule $A \cup B = \overline{\overline{A} \cap \overline{B}}$ allows us to translate the \cup operation in constant time, and A = B iff $(\overline{A} \cap B = 0) \land (A \cap \overline{B} = 0)$.

The Zero-Divisors problem

For a set X, let $X^0 \triangleq X$ and $X^1 \triangleq \overline{X}$.

For a Boolean algebra \mathcal{R} we define the Zero-Divisors problem $ZD_{\mathcal{R}} \subseteq \mathcal{R}^{\infty}$, as follows:

$$ZD_{\mathcal{R}} = \{(x_1, \dots, x_n) : n \in \mathbb{N} \text{ and } \exists \varepsilon_1, \dots, \varepsilon_n \in \{0, 1\} \text{ s.t. } x_1^{\varepsilon_1} \cap \dots \cap x_n^{\varepsilon_n} = 0\}$$

To take an example, if $\mathcal{R} = 2^{\{a,b,c,d\}}$ then $(\{a,b\},\{a,c\}) \notin ZD_{\mathcal{R}}$.

Observe that:

- $ZD_{\mathcal{R}} \in \mathbf{NP}_{\mathcal{R}}$ via a parameter-free \mathcal{R} -machine that makes Boolean guesses.
- $ZD_{\mathcal{R}}$ is computable in exponential time deterministically.

Prunescu's theorem for infinite Boolean rings

Theorem: (Mihai Prunescu) For any infinite Boolean ring \mathcal{R} , there does not exist a deterministic \mathcal{R} -machine using arbitrary fixed constants $c_1, \ldots, c_k \in \mathcal{R}$ that can decide $ZD_{\mathcal{R}}$ in polynomial time.

• Consequently, $P_{\mathcal{R}} \neq NP_{\mathcal{R}}$ for any Boolean ring \mathcal{R} .

We shall initially prove this theorem for a parameter-free \mathcal{R} -machine.

Boolean algebras: preliminaries

Definition: $x \in \mathcal{R}$ is called an *atom* of \mathcal{R} if $x \neq 0 \land \forall y : y \subseteq x \rightarrow (y = 0 \lor y = x)$. A Boolean algebra is called *atomic* if every element contains an atom.

Observation: Every finite Boolean algebra is atomic, and isomorphic to the power-set of its atoms.

Proof sketch:

- Let \mathcal{R}_n be a finite Boolean algebra with n elements. Pick any $x \in \mathcal{R}_n$.
- If x is not an atom then $\exists y \in \mathcal{R}_n$ such that $0 \neq y \subsetneq x$.
- If y is not an atom then $\exists z \in \mathcal{R}_n$ such that $0 \neq z \subsetneq y$.
- After at most n-1 such iterations, we conclude that x contains an atom.
- Hence \mathcal{R}_n is atomic, and contains the atoms a_1, \ldots, a_k for some k.
- It is a simple exercise to see that $2^{\{a_1,...,a_k\}} \simeq \mathcal{R}_n$.

Boolean algebras: preliminaries (cont'd)

Definition: A subalgebra \mathcal{R}' of \mathcal{R} is a Boolean algebra $\mathcal{R}' \subseteq \mathcal{R}$ with $1_{\mathcal{R}'} = 1_{\mathcal{R}}, 0_{\mathcal{R}'} = 0_{\mathcal{R}}$, and $\{\bar{}, \cup, \cap\}$ operations induced by \mathcal{R} .

Note: in other words, \mathcal{R}' is a subring of a Boolean ring (containing 1) \mathcal{R} .

The following lemma will be instrumental in proving Prunescu's theorem:

Lemma 1

Let \mathcal{R} be an infinite Boolean algebra. For every finite algebra \mathcal{B}_n with n atoms, \mathcal{R} contains a subalgebra that is isomorphic to \mathcal{B}_n .

Boolean algebras: preliminaries (cont'd)

Definition: A Boolean algebra \mathcal{R} is called an internal product of two Boolean algebras B and C, denoted by $\mathcal{R} = B \otimes C$, if:

- $B \subseteq \mathcal{R}$ and $C \subseteq \mathcal{R}$ (as sets, not as subrings)
- Every element $r \in \mathcal{R}$ can be written in exactly one way as $r = b \cup c$ with $b \in B$ and $c \in C$
- $(b_1 \cup c_1) \cap (b_2 \cup c_2) = (b_1 \cap b_2) \cup (c_1 \cap c_2)$ for all $b_1, b_2 \in B$ and $c_1, c_2 \in C$
- $(b_1 \cup c_1) \cup (b_2 \cup c_2) = (b_1 \cup b_2) \cup (c_1 \cup c_2)$ for all $b_1, b_2 \in B$ and $c_1, c_2 \in C$
- $\overline{b \cup c} = \overline{b} \cup \overline{c}$ for all $b \in B$ and $c \in C$

Note that with this notation we mean that for example $b_1 \cap b_2$ and \overline{b} are formed in *B*, hence $B \otimes C$ is regarded as an internal decomposition of \mathcal{R} .

Boolean algebras: preliminaries (cont'd)

Definition: The relativization of a Boolean algebra \mathcal{R} to an element $x \in \mathcal{R}$ is $D_{\mathcal{R}}(x) \triangleq \{x \cap r : r \in \mathcal{R}\}.$

Lemma 2

Any nontrivial Boolean algebra $\mathcal{R} \neq \{0,1\}$ is internally decomposable.

Proof: pick $x \in \mathcal{R} \setminus \{0, 1\}, B = D_{\mathcal{R}}(x), C = D_{\mathcal{R}}(\overline{x}).$

- We claim that $\mathcal{R} = B \otimes C$.
- Consider an arbitrary $r \in \mathcal{R}$, hence $r \cap x = b \in B$ and $r \cap \overline{x} = c \in C$.
- $r = r \cap 1 = r \cap (x \cup \overline{x}) = (r \cap x) \cup (r \cap \overline{x}) = b \cup c$, and if $r = b' \cup c'$ then $b = r \cap x = (b' \cup c') \cap x = (b' \cap x) \cup (c' \cap x) = b' \cup 0 = b'$. Similarly, c = c'.
- Via distributive law, $\forall b_1, b_2 \in B, c_1, c_2 \in C : (b_1 \cup c_1) \cap (b_2 \cup c_2) = [(b_1 \cap b_2) \cup (c_1 \cap b_2)] \cup [(b_1 \cap c_2) \cup (c_1 \cap c_2)] = [(b_1 \cap b_2) \cup 0] \cup [0 \cup (c_1 \cap c_2)] = (b_1 \cap b_2) \cup (c_1 \cap c_2).$

•
$$\forall b \in B, c \in C: \overline{b \cup c} = (\overline{b} \cap \overline{c}) \cap (x \cup \overline{x}) = (\overline{b} \cap \overline{c} \cap \overline{x}) \cup (\overline{c} \cap \overline{b} \cap \overline{x}) = (\overline{b} \cap x) \cup (\overline{c} \cap \overline{x}). \Box$$

Boolean algebras: Lemma 1

Reminder: Lemma 1 states that any infinite Boolean algebra \mathcal{R} contains subalgebras isomorphic to \mathcal{B}_n , for all finite subalgebras \mathcal{B}_n with n atoms.

Proof of Lemma 1: By induction on *n*.

- If n = 1 then the subalgebra $\{0_{\mathcal{R}}, 1_{\mathcal{R}}\} \subset \mathcal{R}$ is isomorphic to \mathcal{B}_1 .
- Assume that the lemma holds for an integer n.
- Since \mathcal{R} is nontrivial, by lemma 2 we can write $\mathcal{R} = C \otimes D$.
- \mathcal{R} is infinite, so at least one of the algebras C, D, say D, is infinite.
- $\mathcal{B}_1 \simeq \{\mathbf{0}_C, \mathbf{1}_C\} = C' \subseteq C.$
- By the induction hypothesis $\exists D' \subset D$ such that $D' \simeq \mathcal{B}_n$.
- $C' \otimes D' \simeq \mathcal{B}_1 \otimes \mathcal{B}_n \simeq \mathcal{B}_1 \otimes \mathcal{B}_1^n \simeq \mathcal{B}_1^{n+1} \simeq \mathcal{B}_{n+1}$. (note: $1_{C' \otimes D'} = 1_{\mathcal{R}}$)
- $\Rightarrow \exists \mathcal{R}' = C' \otimes D' \subset \mathcal{R}$ for which $\mathcal{R}' \simeq \mathcal{B}_{n+1}$.

 \square

Prunescu's proof for the parameter-free case

Lemma 3

If there exist an infinite Boolean ring \mathcal{R} and a parameter-free \mathcal{R} -machine \mathcal{M} that deterministically decides $ZD_{\mathcal{R}}$ in some polynomial time q(t), then \mathcal{M} decides $ZD_{\mathcal{B}_n}$ in the same deterministic polynomial time q(t), uniformly in n for all finite Boolean algebras \mathcal{B}_n .

Proof:

- By lemma 1, every finite algebra \mathcal{B}_n is isomorphic to a subalgebra $\mathcal{R}_n \subset \mathcal{R}$.
- \mathcal{M} is parameter-free \Rightarrow for inputs from \mathcal{R}_n^{∞} , all the computations remain in the subalgebra \mathcal{R}_n .

Prunescu's proof for the parameter-free case (cont'd)

Lemma 4

There is no parameter-free deterministic machine \mathcal{M} that can decide $ZD_{\mathcal{B}_n}$ in some uniform polynomial time q(k) over all finite Boolean algebras \mathcal{B}_n .

Note: it may still be possible that for every given finite algebra \mathcal{B}_n , there exists a deterministic \mathcal{B}_n -machine that decides $ZD_{\mathcal{B}_n}$ in polynomial time. In fact, the claim that $\mathbf{P}_{\mathcal{B}_n} = \mathbf{NP}_{\mathcal{B}_n}$ holds for every finite Boolean algebra \mathcal{B}_n is equivalent to the classical P versus NP question.

Freely generated finite Boolean algebras

Definition: \mathcal{F}_n is a Boolean algebra that is freely generated by X_1, \ldots, X_n :

- Each atom of \mathcal{F}_n is of the form $X_1^{\varepsilon_1} \cap \cdots \cap X_n^{\varepsilon_n} \neq 0$ for $\varepsilon_1, \ldots, \varepsilon_n \in \{0, 1\}$
- $\Rightarrow \mathcal{F}_n$ has 2^n atoms, hence $|\mathcal{F}_n| = 2^{2^n}$ and $\mathcal{F}_n \simeq \mathcal{B}_{2^n}$

Sidenote: the countably infinite freely generated Boolean algebra is atomless.

To obtain an isomorphism $\mathcal{B}_{2^n} \simeq \mathcal{F}_n$, define for $i = 1, \ldots, 2^n$ and $t = 1, \ldots, n$:

• $i \in X_t \iff 2^{t-1}$ occurs in the sum of two-powers representing i

Claim: $X_1^{\varepsilon_1} \cap \cdots \cap X_n^{\varepsilon_n} = \{i\}$ for some atom $\{i\} \in \mathcal{B}_{2^n}$

Freely generated finite Boolean algebras (cont'd)

To see this, denote by (b_1, \ldots, b_n) the bit-representation of an *n*-bit number, where b_1 is the least significant bit:

- $X_t^0 = X_t = \{i : 1 \le i < 2^n, i = (b_1, \dots, b_n), b_t = 1\}$
- $X_t^1 = \overline{X_t} = \{i : 1 \le i < 2^n, i = (b_1, \dots, b_n), b_t = 0\} \cup \{2^n\}$
- $\sum_{j=1}^{n} (1 \varepsilon_j) \neq 0 \Rightarrow X_1^{\varepsilon_1} \cap \cdots \cap X_n^{\varepsilon_n} = \{i : i = (1 \varepsilon_1, \dots, 1 \varepsilon_n)\}$

•
$$\sum_{j=1}^{n} (1 - \varepsilon_j) = 0 \Rightarrow X_1^{\varepsilon_1} \cap \cdots \cap X_n^{\varepsilon_n} = \{2^n\}$$

Therefore:

- $(\varepsilon_1,\ldots,\varepsilon_n) \neq (\varepsilon'_1,\ldots,\varepsilon'_n) \Rightarrow X_1^{\varepsilon_1} \cap \cdots \cap X_n^{\varepsilon_n} \neq X_1^{\varepsilon'_1} \cap \cdots \cap X_n^{\varepsilon'_n}$
- $|X_1^{\varepsilon_1} \cap \cdots \cap X_n^{\varepsilon_n}| = 1$

For example, if n = 3 then $X_1 = \{1, 3, 5, 7\}, \overline{X_1} = \{2, 4, 6, 8\}, X_2 = \{2, 3, 6, 7\}, \dots$

Prunescu's proof for the parameter-free case (cont'd)

Proof of Lemma 4: Assume that there exists a deterministic machine \mathcal{M} with a polynomial time bound q(k) that decides $ZD_{\mathcal{B}_n}$ over all \mathcal{B}_n uniformly:

- pick k for which $2^k > q(k)$, and consider inputs from \mathcal{F}_k .
- Let X_1, \ldots, X_k be the elements that freely generate \mathcal{F}_k .
- Consider the input tuple $\vec{X} = (X_1, \dots, X_k)$.
- Notice that $\vec{X} \notin ZD_{\mathcal{F}_k}$, thus if our assumption holds then \mathcal{M} rejects \vec{X} .
- \mathcal{M} tested $\leq q(k)$ atoms $X_1^{\varepsilon_1} \cap \cdots \cap X_k^{\varepsilon_k} \stackrel{?}{=} 0$ along its computation path.
- Since $2^k > q(k)$, \mathcal{M} did not test at least one atom $\{i_0\} \in \{\{1\}, \ldots, \{2^k\}\}$.
- Let $Y_j = X_j \setminus \{i_0\}$, and consider the input tuple $\vec{Y} = (Y_1, \dots, Y_k) \in \mathcal{B}_{2^k-1}^{\infty}$.

Prunescu's proof for the parameter-free case (cont'd)

- Notice that $\forall i \neq i_0 : \{i\} = X_1^{\varepsilon_1} \cap \cdots \cap X_k^{\varepsilon_k} = Y_1^{\varepsilon_1} \cap \cdots \cap Y_k^{\varepsilon_k}$, therefore Y_1, \ldots, Y_k indeed generate \mathcal{B}_{2^k-1} .
- Hence we obtained that $\vec{Y} \in ZD_{\mathcal{B}_{2^{k-1}}}$, because the atom $\{i_0\} = X_1^{\varepsilon_1} \cap \cdots \cap X_k^{\varepsilon_k}$ of \mathcal{F}_k corresponds to $Y_1^{\varepsilon_1} \cap \cdots \cap Y_k^{\varepsilon_k} = 0$ in \mathcal{B}_{2^k-1} .
- $\mathcal{M}(\vec{X})$ branched by testing the emptiness of sets that either contained at least two elements or did not contain i_0 , therefore \mathcal{M} also rejects \vec{Y} .
- Even if $\mathcal{M}(\vec{X})$ tests the emptiness of \emptyset , $\mathcal{M}(\vec{Y})$ will follow the same computation path, but no such tests occur if \mathcal{M} runs a minimal program.
- Thus the positive input \vec{Y} is rejected by \mathcal{M} , which is a contradiction. \Box

Prunescu's proof for a machine with fixed constants

Lemma 5

Let \mathcal{R} be an infinite Boolean algebra. If there exist constants $c_1, \ldots, c_t \in \mathcal{R}$ and a deterministic \mathcal{R} -machine \mathcal{M} that utilizes these constants to decide $ZD_{\mathcal{R}}$ in some polynomial time q(k), then there exist an infinite Boolean algebra \mathcal{R}_1 and a parameter-free deterministic \mathcal{R}_1 -machine \mathcal{M}_1 that decides $ZD_{\mathcal{R}_1}$ in $\mathcal{O}(2^{t+1} \cdot q(k))$ time.

Proof: Let S be an infinite set and $\mathcal{R} \subseteq 2^S$.

- Let C be the subalgebra of \mathcal{R} generated by c_1, \ldots, c_t , note that C is finite.
- Let a_1, \ldots, a_d be the atoms of C, hence $d \leq 2^t$.
- It is simple to verify that $a_1 \cup \cdots \cup a_d = S$, and that this is a partition.
- There must be an a_i , say a_1 , such that the relativized Boolean algebra $\mathcal{R}_1 = D_{\mathcal{R}}(a_1) = \{a_1 \cap r : r \in \mathcal{R}\}$ (with $O_{\mathcal{R}_1} = \emptyset$ and $I_{\mathcal{R}_1} = a_1$) is infinite.

Prunescu's proof for a machine with fixed constants (cont'd)

- Consider an input $\vec{x} = (x_1, \ldots, x_k) \in \mathcal{R}_1^{\infty}$.
- Claim: $\vec{x} \in ZD_{\mathcal{R}_1} \iff \vec{x} \in ZD_{\mathcal{R}} \lor \mathcal{R} \models \overline{x_1} \cap \cdots \cap \overline{x_k} \cap a_1 = 0.$
- This holds because if $\exists \varepsilon_i = 0$ then $x_1^{\varepsilon_1} \cap \cdots \cap x_k^{\varepsilon_k} \subseteq x_i \subseteq a_1$ and therefore $x_1^{\varepsilon_1} \cap \cdots \cap x_k^{\varepsilon_k} = 0$ in \mathcal{R} , otherwise $\overline{x_1} \cap \cdots \cap \overline{x_k} = a_2 \cup \cdots \cup a_d$ in \mathcal{R} and then $\overline{x_1} \cap \cdots \cap \overline{x_k} \cap a_1 = 0$ in \mathcal{R} .
- Claim: we can construct an \mathcal{R} -machine \mathcal{M}' with constants c_1, \ldots, c_t that works over \mathcal{R} and decides $ZD_{\mathcal{R}_1}$ in deterministic time $q(k) + \mathcal{O}(k)$.
- \mathcal{M}' on input $\vec{x} = (x_1, \ldots, x_k) \in \mathcal{R}_1^{\infty}$ will first invoke $\mathcal{M}(\vec{x})$ and accept if \mathcal{M} accepted. Otherwise, \mathcal{M}' tests $\overline{x_1} \cap \cdots \overline{x_k} \cap a_1 \stackrel{?}{=} 0$, and accepts iff the test result was positive.
- Notice that a_1 is generated by c_1, \ldots, c_t , therefore \mathcal{M}' can form a_1 in constant time via some computation $a_1 = c_1^{\varepsilon_1} \cap \cdots \cap c_t^{\varepsilon_t}$.

BOOLEAN

Prunescu's proof for a machine with fixed constants (cont'd)

- Let $C_1 = D_C(a_2 \cup \cdots \cup a_d)$
- When \mathcal{M}' runs with an input from \mathcal{R}_1^{∞} and utilizes the constants c_1, \ldots, c_t , every element that occurs during its calculations has the form $x = x' \cup x''$ where $x' \in \mathcal{R}_1$ and $x'' \in \mathcal{C}_1$.
- In other words, \mathcal{M}' cannot quit the internal product $\mathcal{R}_1 \otimes \mathcal{C}_1$.
- We can modify \mathcal{M}' to construct a parameter-free \mathcal{R}_1 -machine \mathcal{M}_1 that decides $ZD_{\mathcal{R}_1}$.
- \mathcal{M}_1 replaces the input x_1, \ldots, x_k with $x'_1 = x_1, x''_1 = 0, \ldots, x'_k = x_k, x''_k = 0$.
- \mathcal{M}_1 simulates \mathcal{M}' and replaces $x := y \cap z$ with $x' := y' \cap z', x'' := y'' \cap z''$, replaces $x := \overline{y}$ with $x' := \overline{y'}, x'' := \overline{y''}$, and replaces $x \stackrel{?}{=} 0$ with the two tests $x' \stackrel{?}{=} 0 \wedge x'' \stackrel{?}{=} 0$.

BOOLEAN

Prunescu's proof for a machine with fixed constants (cont'd)

- For every c_i for which it holds that $c_i \cap a_1 = 0$, \mathcal{M}_1 replaces $x := x \cap c_i$ with $x' := 0, x'' := x'' \cap c_i$.
- For every c_i for which it holds that $c_i \cap a_1 = a_1$, \mathcal{M}_1 replaces $x := x \cap c_i$ with $x'' := x'' \cap (c_i \setminus a_1)$, and retains x'.
- \Rightarrow All the computations in the registers x' do not use any constants.
- The computations in the registers x'' take place in the finite algebra C_1 that has at most $2^t 1$ atoms, and therefore at most 2^{2^t-1} elements.
- We can hardcode two tables of size $\leq (2^{2^t-1})^2$ for the $\{\bar{}, \cap\}$ operations, inside the program that \mathcal{M}_1 runs.
- Hence \mathcal{M}_1 can carry out the computations in \mathcal{C}_1 by querying these tables in time that is constant in k, and in time that is logarithmic in $2^{2^{t+1}}$ by computing the required index and accessing the memory location of the corresponding table entry.

Prunescu's proof for a machine with fixed constants (cont'd)

- We obtained that the parameter-free deterministic \mathcal{M}_1 simulates \mathcal{M}' for inputs from \mathcal{R}_1^{∞} , by carrying out all the computations in the internal product $\mathcal{R}_1 \otimes \mathcal{C}_1$.
- In particular, simulating the last step $\overline{x_1} \cap \cdots \overline{x_k} \cap a_1 \stackrel{?}{=} 0$ of \mathcal{M}' becomes straightforward: the \mathcal{R}_1 -machine \mathcal{M}_1 computes the complements $\overline{x_i}$ just over \mathcal{R}_1 into registers x'_i , then intersects these x'_i registers and tests for emptiness.
- \mathcal{M}_1 has a polynomial time bound of $\mathcal{O}(2^{t+1} \cdot q(k))$.

Prunescu's proof: conclusion

Reminder: Lemmas 3 and 4 imply that for any infinite Boolean algebra \mathcal{R} , it holds that a **parameter-free** \mathcal{R} -machine cannot decide $ZD_{\mathcal{R}}$ in deterministic polynomial time.

Reminder: Lemma 5 shows that for an infinite Boolean algebra \mathcal{R} , if a deterministic \mathcal{R} -machine with access to any arbitrary fixed constants of \mathcal{R} can decide $ZD_{\mathcal{R}}$ in polynomial time, then there exists an infinite Boolean algebra \mathcal{R}_1 for which $ZD_{\mathcal{R}_1}$ can be decided in deterministic polynomial time by a **parameter-free** \mathcal{R}_1 -machine.

Conclusion: by combining lemma 5 with lemma 4 and lemma 3, Prunescu's theorem follows, i.e. $P_{\mathcal{R}} \neq NP_{\mathcal{R}}$ for every infinite Boolean algebra \mathcal{R} . File:e-boolean

BOOLEAN

Outline of the ESSLLI-course given by

J.A. Makowsky (Haifa) and K. Meer (Cottbus)

LECTURE 1 (JAM): Introduction INTRO (5 slides) Turing machines over relational structures, NEWBSS, (19 slides) Short quantifier elimination. SHORTQE (16 slides)

LECTURE 2 (JAM): Introduction to quantifier elimination QE (26 slides) Fields, rings and other structures TABLE (incomplete, 20 slides)

LECTURE 3 (JAM): Computing with the reals: Removing order or multiplication; Adding Fortran-libraries. FORTRAN (24 slides) Comparing Poizat's Theorem with descriptive complexity FAGIN (20 slides)

LECTURE 4 (KM): Inside $NP_{\mathbb{R}}$ and analogues to Ladner's Theorem, Meer-1 (149 slides)

LECTURE 5 (KM): PCP-Theorem over \mathbb{R} , Meer-2 (139 slides)

ADDITIONAL MATERIAL see next slide.

Additional material for the ESSLLI-course

LECTURE 6 (JAM): Quantifier elimination in algebraically closed fields, ACF-0 (21 slides) By JAM after Kreisel and Krivine.

LECTURE 7 (JAM): $P_G \neq NP_G$ for all abelian groups. ABELIAN (18 slides) By JAM After M. Prunescu

LECTURE 8 (JAM): $P_G \neq NP_G$ for all boolean algebras. BOOLEAN (23 slides) By I. Bentov after M. Prunescu

LECTURE 9 (JAM): $P_G \neq NP_G$ for all real matrix rings. MATRIX (70 slides) By N. Labai after A. Rybalov