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P %= NP for all infinite Boolean rings

A ring R (with 1) is a Boolean ring if Vx € R : 2% = .

Theorem:(Marshall H. Stone) Let R be a boolean ring. There exists a
set S and a ring R’ C 25 with the operations

e A+B=(ANB)U(ANB)
e A-B2ANB

° On/é(band 1R/é5

such that R ~ R/. We refer to R’ as a Boolean algebra.

For a Boolean ring R, we assume that an R-machine utilizes only the opera-
tions {7,N}, and branches only via tests of the form A = 0. This is w.l.0.g.,
since de Morgan’'s rule AU B = AN B allows us to translate the U operation
in constant time, and A= B iff (ANB=0)A(ANB =0).
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The Zero-Divisors problem

For aset X, let X2 X and X1 £ X,

For a Boolean algebra R we define the Zero-Divisors problem ZDpr C R,
as follows:

ZDr = {(z1,...,2n) :n €N and Jey,...,e, € {0,1} s.t. 27N --- N = 0}

To take an example, if R = 2{ebed} then ({a,b},{a,c}) ¢ ZDx.
Observe that:

o /Dp € NPx via a parameter-free R-machine that makes Boolean guesses.

e /Dy is computable in exponential time deterministically.
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Prunescu’'s theorem for infinite Boolean rings

Theorem:(Mihai Prunescu) For any infinite Boolean ring R, there does not
exist a deterministic /R-machine using arbitrary fixed constants ci1,...,cc € R
that can decide ZDx in polynomial time.

e Consequently, Pr = NPy for any Boolean ring R.

We shall initially prove this theorem for a parameter-free R-machine.
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Boolean algebras: preliminaries

Definition: x € Ris called an atomof Rifx Z0AVy :y Cx — (y = 0Vy = x).
A Boolean algebra is called atomic if every element contains an atom.

Observation: Every finite Boolean algebra is atomic, and isomorphic to the
power-set of its atoms.

Proof sketch:
o Let R, be a finite Boolean algebra with n elements. Pick any xz € R,.
e If x is not an atom then dy € R,, such that 0 # y C .
e If y is not an atom then Jz € R, such that 0 %= z C y.
e After at most n—1 such iterations, we conclude that x contains an atom.
e Hence R, is atomic, and contains the atoms az,...,a; for some k.

e It is a simple exercise to see that 2{a-a} ~ R,
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Boolean algebras: preliminaries (cont'd)

Definition: A subalgebra R’ of R is a Boolean algebra R’ C R with 1z =
1z,0r = 0g, and {7,U,N} operations induced by R.

Note: in other words, R’ is a subring of a Boolean ring (containing 1) R.

The following lemma will be instrumental in proving Prunescu’s theorem:

Lemma 1
Let R be an infinite Boolean algebra. For every finite algebra B, with n
atoms, R contains a subalgebra that is isomorphic to B,.
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Boolean algebras: preliminaries (cont'd)

Definition: A Boolean algebra R is called an internal product of two Boolean
algebras B and C, denoted by R = B ® C, if:

e BCR and C C R (as sets, not as subrings)

Every element r € 'R can be written in exactly one way as r = b U ¢ with
be B and ce C

(b1 Uc1)N(boUcs) = (b1 Nba) U (c1Nep) for all by,bo € B and c1,c0 € C

(b1Uc1)U(baUcz) = (b1 Ubx)U (c1 Ucp) for all b1,bo € B and c¢1,¢c0 € C

e bUc=bUcforallbe Band cecC

Note that with this notation we mean that for example b1 Nby and b are formed
in B, hence B® C is regarded as an internal decomposition of R.
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Boolean algebras: preliminaries (cont’d)

Definition: The relativization of a Boolean algebra R to an element x € R
is Dr(z) = {zNr:reR}.

Lemma 2
Any nontrivial Boolean algebra R # {0,1} is internally decomposable.

Proof: pick t € R\ {0,1}, B = Dr(x), C = Dr(x).
e We claim that R=B® (.
e Consider an arbitrary r € R, hencernz=be B and rNnz=ce C.

er=rNl1=rNxUuz)=>CnNnz)U(rNz) =bUc, and if r = b U then
b=rNzx=0uUd)nNez=WEnz)u(dNz) =6'U0=". Similarly, ¢ = ¢.

e Via distributive law, Vb1,bs € B,c1,cp € C': (bl Ucl)ﬂ (bQUCQ) = [(blﬂbg)U
(c1Nb2)]U[(b1Ne2)U(e1Nez)] = [(b1Nb2)U0]U[OU(c1Ne2)] = (biNb2)U(c1Ne2).

- _ — = ;i _
o VbeB,ceC:bUc=(bne)N(zuz)=((bNnecNnz)u(ecnbnz)=(bNx)U(cnz).O

==x
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Boolean algebras: Lemma

Reminder: Lemma states that any infinite Boolean algebra R contains
subalgebras isomorphic to B, for all finite subalgebras B,, with n atoms.

Proof of Lemma [1I: By induction on n.
e If n =1 then the subalgebra {0z,1x} C R is isomorphic to Bj.
e Assume that the lemma holds for an integer n.
e Since R is nontrivial, by lemma 2l we can write R=C ® D.
e R is infinite, so at least one of the algebras C, D, say D, is infinite.
e B3 ~{0¢,1c}=C"CC.
e By the induction hypothesis 3D’ C D such that D' ~ B,,.

e QD' ~B1®By~B1@BY ~ Bt ~B,11. (note: logp = 1)

= IR ' =C"® D' C 'R for which R >~ B,,41. O
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Prunescu’s proof for the parameter-free case

Lemma 3

If there exist an infinite Boolean ring 'R and a parameter-free R-machine M
that deterministically decides ZDgx in some polynomial time q(t), then M
decides ZDp in the same deterministic polynomial time q(t), uniformly in n
for all finite Boolean algebras B,,.

Proof:
e By lemma[l], every finite algebra B, is isomorphic to a subalgebra R, C R.

e M is parameter-free = for inputs from R>°, all the computations remain

in the subalgebra R,. O
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Prunescu's proof for the parameter-free case (cont’'d)

Lemma 4
There is no parameter-free deterministic machine M that can decide ZDg, in

some uniform polynomial time q(k) over all finite Boolean algebras B,,.

Note: it may still be possible that for every given finite algebra B,, there
exists a deterministic B,-machine that decides ZDg in polynomial time. In
fact, the claim that Py = NPy holds for every finite Boolean algebra B, is

equivalent to the classical P versus NP question.
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Freely generated finite Boolean algebras

Definition: F, is a Boolean algebra that is freely generated by X;i,..., X,:
e Each atom of F, is of the form X{'N---NX: # 0 for e1,...,e, € {0,1}
e = F, has 2" atoms, hence |F,| = 2%" and F, ~ Bo.

Sidenote: the countably infinite freely generated Boolean algebra is atomless.

To obtain an isomorphism Bo. ~ F,, define for:=1,...,2" andt=1,...,n:

e i € X; «— 21 occurs in the sum of two-powers representing i

Claim: X{'N-.--N X = {¢} for some atom {i} € Bo
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Freely generated finite Boolean algebras (cont'd)

To see this, denote by (b1,...,b,) the bit-representation of an n-bit number,
where by is the least significant bit:

o X0O=X,={i:1<i<2"i=(b1,...,bn), by =1}
e X=X, ={i:1<i<2%i=(b1,...,by), by =0}U{2"}
o Z;‘:l(l—ej);&OﬁX?ﬂ---ﬂXﬁ"Z{i:iz(1—51,...,1—€n)}
e > i 1(1-¢)=0= Xy nN---NXr={2"}
T herefore:
o (e1,...,en) E (¢h,..., )= XN NXS £ XPN---NXy

o | X{'N---NX&| =1

For example, if n = 3 then X; = {1,3,5,7}, X1 = {2,4,6,8}, X0 = {2,3,6,7},...
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Prunescu’s proof for the parameter-free case (cont'd)

Proof of Lemma [4: Assume that there exists a deterministic machine M
with a polynomial time bound ¢(k) that decides ZDpg over all B, uniformly:

e pick k for which 2% > ¢(k), and consider inputs from Fj.

o Let X1,...,X; be the elements that freely generate F;.
e Consider the input tuple X = (X1,..., X%).

e Notice that X ¢ ZDx, thus if our assumption holds then M rejects X.

o M tested < q(k) atoms X7'n---N X} 20 along its computation path.
e Since 2F > q(k), M did not test at least one atom {ig} € {{1},...,{2"}}.

e Let Y; = X;\ {io}, and consider the input tuple Y = (Y1,...,Y}) € BY ;.
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Prunescu's proof for the parameter-free case (cont’'d)

e Notice that Vi # ip : {i} = X7'Nn---NX} = Y N---NY*, therefore
Yi,...,Y, indeed generate Bo_;.

e Hence we obtained that Y € ZDg, _, because the atom {ip} = X&'n---NX
of Fj, corresponds to Y7'N---NY. " =0 in Bo_j.

° M()?) branched by testing the emptiness of sets that either contained
at least two elements or did not contain ¢g, therefore M also rejects Y.

e Even if M(X) tests the emptiness of #, M(Y) will follow the same com-
putation path, but no such tests occur if M runs a minimal program.

e [ hus the positive input Y is rejected by M, which is a contradiction. O
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Prunescu’'s proof for a machine with fixed constants

Lemma 5

Let 'R be an infinite Boolean algebra. If there exist constants ci,...,ct € R
and a deterministic R-machine M that utilizes these constants to decide ZDx
in some polynomial time q(k), then there exist an infinite Boolean algebra
R1 and a parameter-free deterministic Ri-machine M, that decides ZDx, in
O(2tt1 . q(k)) time.

Proof: Let S be an infinite set and R C 27,
e Let C be the subalgebra of R generated by ci,...,c, note that C is finite.
e Let ay,...,aq be the atoms of C, hence d < 2¢.
e It is simple to verify that a1 U---Uayg =S, and that this is a partition.

e [ here must be an a;, say a1, such that the relativized Boolean algebra
R1= Dgr(a1) ={a1nNr:re R} (with Og, =0 and 1z, = a1) is infinite.
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Prunescu’'s proof for a machine with fixed constants (cont’d)

e Consider an input & = (z1,...,2z;) € RY.
o Claim: ¥ € ZDg, — ZE€ZDrVRE=ZTIN ---NTzNa; = 0.

e This holds because if d¢; = 0 then z7'N--- Nz C x; C a1 and therefore

r]N---Naf =0in R, otherwise T1N---NTp =a2U---Uaq in R and then
ZiN---NTrNar =0 in R.

e Claim: we can construct an R-machine M’ with constants cy,..., ¢ that
works over R and decides ZDg, in deterministic time g(k) + O(k).

o M’ on input & = (z1,...,2x) € R will first invoke M(Z) and accept if

M accepted. Otherwise, M’ tests z1N---TrNa1 Z 0, and accepts iff the
test result was positive.

e Notice that a1 is generated by ci,...,c:, therefore M’ can form ai in
constant time via some computation a; =c¢'N---Ncj'.
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Prunescu’'s proof for a machine with fixed constants (cont’d)

o Let C1 = De(arU---Uay)

e When M’ runs with an input from R$° and utilizes the constants cy, ..., ¢,
every element that occurs during its calculations has the form z = 2’ U z”
where '’ € R1 and 2" € C;.

e In other words, M’ cannot quit the internal product R1 ® C;.

e We can modify M’ to construct a parameter-free Ri-machine M that

decides ZDg..
e M; replaces the input xi1,...,z; With 2] = 21,27 =0,...,2) =z}, 2] = 0.
e M; simulates M’ and replaces z :=y Nz with 2/ :=¢y' Nz, 2" ;== 4" N2
J— J— ?
replaces x := vy with 2/ := ¢/, 2" := ¢”, and replaces + = 0 with the two

/l //l
tests " =0 A" = 0.
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Prunescu’'s proof for a machine with fixed constants (cont’d)

e For every ¢; for which it holds that ¢;Na; = 0, M1 replaces x := x Ng;
with 2/ :=0,2" .= 2" Ng¢;.

e For every ¢; for which it holds that ¢; Na1 = a1, M7 replaces z ;= xzNg;
with =" := 2" N (¢; \ a1), and retains z’.

e = All the computations in the registers =’ do not use any constants.

e The computations in the registers z” take place in the finite algebra C;
that has at most 2t — 1 atoms, and therefore at most 221 elements.

e We can hardcode two tables of size < (2271)? for the {7,Nn} operations,
inside the program that My runs.

e Hence M can carry out the computations in C1 by querying these tables
in time that is constant in k, and in time that is logarithmic in 22" by
computing the required index and accessing the memory location of the
corresponding table entry.
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Prunescu’s proof for a machine with fixed constants (cont'd)

e \We obtained that the parameter-free deterministic M7 simulates M’ for
inputs from R, by carrying out all the computations in the internal
product Ri1 ® C;.

e In particular, simulating the last step z1N--- T Naq Z 0 of M’ becomes
straightforward: the Ri-machine M computes the complements z; just
over Ri into registers z, then intersects these z; registers and tests for
emptiness.

e M; has a polynomial time bound of O(2!*! . q(k)). O
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Prunescu’s proof: conclusion

Reminder: Lemmas 3| and 4] imply that for any infinite Boolean algebra 'R, it
holds that a parameter-free ’R-machine cannot decide ZDpx in deterministic

polynomial time.

Reminder: Lemma shows that for an infinite Boolean algebra R, if a
deterministic 'R-machine with access to any arbitrary fixed constants of R
can decide ZDyx in polynomial time, then there exists an infinite Boolean al-
gebra Ry for which ZDx, can be decided in deterministic polynomial time by
a parameter-free Ri-machine.

Conclusion: by combining lemma 5] with lemma [4] and lemma [3], Prunescu’s
theorem follows, i.e. Pr = NPy for every infinite Boolean algebra R. O
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Outline of the ESSLLI-course given by

J.A. Makowsky (Haifa) and K. Meer (Cottbus)

LECTURE 1 (JAM): Introduction INTRO| (5 slides)
Turing machines over relational structures, NEWBSS|, (19 slides)
Short quantifier elimination. SHORTQE| (16 slides)

LECTURE 2 (JAM): Introduction to quantifier elimination (26 slides)
Fields, rings and other structures [TABLE| (incomplete, 20 slides)

LECTURE 3 (JAM): Computing with the reals: Removing order or multiplication;
Adding Fortran-libraries. [FORTRAN| (24 slides)
Comparing Poizat's Theorem with descriptive complexity [FAGIN| (20 slides)

LECTURE 4 (KM): Inside NPgr and analogues to Ladner's Theorem, [Meer-1| (149 slides)
LECTURE 5 (KM): PCP-Theorem over R, (139 slides)

ADDITIONAL MATERIAL see next slide.
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Additional material for the ESSLLI-course

LECTURE 6 (JAM): Quantifier elimination in algebraically closed fields, |]ACF-0| (21 slides)
By JAM after Kreisel and Krivine.

LECTURE 7 (JAM): Pg # NP for all abelian groups. |JABELIAN| (18 slides)
By JAM After M. Prunescu

LECTURE 8 (JAM): Pg # NP for all boolean algebras. | BOOLEAN| (23 slides)
By I. Bentov after M. Prunescu

LECTURE 9 (JAM): Pg # NP for all real matrix rings. [IMAT RIX| (70 slides)
By N. Labai after A. Rybalov
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