Enter first order logic

- We now establish the connection to first order logic
- We define vocabularies as set of function, relation and constant symbols.
- We define structures and formulas.
- We introduce quantifier elimination.

Lecture 1: SHORTQE

First order structures \mathfrak{A} over a vocabulary τ (reminder)

- A vocabulary is a set of function symbols, relation symbols and constant symbols of arity $rf(i), rr(i) \in \mathbb{N}$.
- Constant symbols: c_i of arity 0 Relation symbols: $R_{i,rr(i)}$ of arity $rr(i) \ge 1$. Function symbols: $F_{i,rf(i)}$ of arity $rf(i) \ge 1$. Vocabulary: $\tau \subseteq \{c_i : i \in \mathbb{N}\} \cup \{R_{i,rr(i)} :\in \mathbb{N}\} \cup \{F_{i,rr(i)} :\in \mathbb{N}\}$
- A τ -structure \mathfrak{A} is an interpretation of a vocabulary. The universe of \mathfrak{A} is a non-empty set A. The interpretation of c_i is an element $c_i^A \in A$. The interpretation of $R_{i,rr(i)}$ is a relation $R_{i,rr(i)}^A \subseteq A^{rr(i)}$. The interpretation of $F_{i,rf(i)}$ is a function $F_{i,rf(i)}^A \colon A^{rf(i)} \to A$.

Unless otherwise stated, vocabularies are finite.

τ -formulas.

Let τ be a set of function and relation symbols.

- Variables are $v_0, v_1, \ldots, v_i, \ldots$ for $i \in \mathbb{N}$
- Terms are either variables, constant symbols, or of the form $F(t_1, \ldots, t_{rf(F)})$ for terms t_i and $F \in \tau$.
- Atomic formulas are $t_i \approx t_j$ or of the form $R(t_1, \ldots, t_{rf(F)})$ for terms t_i and $R \in \tau$.
- Quantifier-free formulas are boolean combinations of atomic formulas.
- existential formulas are of the form $\exists v_1, \ldots \exists v_\ell \phi$ with ϕ a quantifier-free formula.
- τ -formulas are closed under boolean combinations and quantification of free variables.

The size of a τ -formula is the number of connectives and quantifiers occuring in it.

Lecture 1: SHORTQE

Accepting sets for circuits

Let \mathbf{M}_{τ} be a non-deterministic τ -machine on \mathfrak{A} with running time t(n). For $b \in A^m$ let $\operatorname{Acc}_n(\mathbf{M}, b)$ be the set $\operatorname{Acc}_n(\mathbf{M}, b) = \{a \in A^n : \mathbf{M} \text{ accepts input } a \text{ with guess } b \in A^m\}$ and $\operatorname{NAcc}_n(\mathbf{M})$ be the set $\operatorname{NAcc}_n(\mathbf{M}) = \{a \in A^n : \text{ there is a guess } b \in A^m \text{ s.t. } \mathbf{M} \text{ accepts input } a\}$

Theorem 4

- (i) $\operatorname{Acc}_n(\mathbf{M}, b)$ is definable by a quantifier-free τ -formula with equality $\phi(v_1, \ldots, v_n, u_1, \ldots, u_m)$.
- (ii) NAcc_n(M) is definable by the existential τ -formula $\exists u_1, \ldots, u_m \phi(v_1, \ldots, v_n, u_1, \ldots, u_m)$.

Both formulas are of size polynomial in t(n).

Proof sketch: Induction using Theorem 2. We replace M for input of size n by its circuit.

- Single gates: write down the input/output relation.
- Use induction over the depth of the DAG.

Lecture 1: SHORTQE

From τ -formulas to τ -circuits

Let C = C(a, b) be a τ -circuit for input a and guess b. Acc_n(C, b) and NAcc_n(C) are defined as for τ -machines.

Proposition 5

Let $\phi(a, b)$ be a quantifier-free τ -formula of size s(n) in n variables. There exists a τ -circuit C(a, b) such that

- The size of C(a, b) is polynomial in the size s(n),
- $Acc_n(C, b)$ is the formula $\phi(a, b)$.
- NAcc_n(C) is the formula $\exists b\phi(a,b)$.

Proof: We have to implement the gates of the boolean operations of truth values 0, 1 using explicit truthtables and use relation gates for testing equality and the relations. Then we follow the tree presentation of ϕ .

All quantifier-free formulas occur as descriptions of accepting sets

Lemma 6

Let $\phi(a, b)$ be a quantifier free formula with input a of size n guess b.

There are τ -machines \mathbf{M}_D and \mathbf{M}_N solving $P_D \in \mathbf{P}_{\mathfrak{A}}$ and $P_N \in \mathbf{NP}_{\mathfrak{A}}$ such that

- Acc_n(\mathbf{M}_D, b) is the formula $\phi(a, b)$.
- NAcc_n(\mathbf{M}_N) is the formula $\exists b\phi(a,b)$.

FSAT

 $FSAT_{\mathfrak{A}}$ is the following problem:

Input $w(\phi)a \in A^*$, with $w(\phi)$ a binary encoding of a quantifier-free formula ϕ .

Problem (q) Is there $b \in A^*$ such that

$$\langle \mathfrak{A}, a, b \rangle \models \phi(a, b)$$

Problem (e) Is it true that

 $\langle \mathfrak{A}, a \rangle \models \exists b \phi(a, b)$

Clearly the two problems are equivalent.

Theorem 7 For every τ -structure \mathfrak{A} the problem $\mathsf{FSAT}_{\mathfrak{A}}$ is $\mathbf{NP}_{\mathfrak{A}}$ -complete.

Lecture 1: SHORTQE

Proof of Theorem 7

Clearly $\mathsf{FSAT}_{\mathfrak{A}} \in \mathbf{NP}_{\mathfrak{A}}$.

Conversely, we interpret CSAT in FSAT. Let $w(C(x, y)), a \in A^*$ be an instance of CSAT.

For a gate γ in *C* of in-degree k let $\gamma_1, \ldots, \gamma_k$ the predecessor gates of γ . For each gate γ in *C* which is not an input gate, a constant gate or an output gate let z_{γ} be a new variable and z be the sequence of all these.

Consider the quantifier-free formula

$$\phi_C = \left(\bigwedge_{\gamma} z_{\gamma} pprox \gamma(\gamma_1, \dots, \gamma_k)
ight) \wedge \gamma_{output} pprox 1$$

 ϕ_C is of size polynomial in the size of C.

Now $\exists y(C(a,y) = 1 \text{ iff } \exists y \exists \overline{z} \phi_C(y,z) \text{ which is of the form of Problem (e).} \square$

Quantifier elimination over \mathfrak{A}

Let ${\mathfrak A}$ be a $\tau\text{-structure}$ and

 $\mathsf{Th}(\mathfrak{A}) = \{ \theta \in \mathsf{FOL}(\tau) : \mathfrak{A} \models \theta \text{ where } \theta \text{ has no free variables} \}$

Let ϕ and ψ vary over τ -formulas with free variables x_1, \ldots, x_n . We say that \mathfrak{A} allows

• Elimination of quantifiers (QE(\mathfrak{A})) if for every ϕ there is a quantifier-free ψ such that

$$\mathsf{Th}(\mathfrak{A}) \models \forall x (\phi \Leftrightarrow \psi)$$

- Elimination of existential quantifiers (EQE(\mathfrak{A})) if for every existential ϕ there is such a quantifier-free ψ .
- Short elimination of quantifiers (SQE(\mathfrak{A})) if for every existential ϕ there is such a quantifier-free ψ whose size is polynomial in the size of ϕ .
- Fast elimination of quantifiers (FQE(\mathfrak{A})) if there is a polynomial time algorithm giving the result of SQE(\mathfrak{A}).

Quantifier elimination

• Clearly we have

$$\mathsf{FQE}(\mathfrak{A}) \Rightarrow \mathsf{SQE}(\mathfrak{A}) \Rightarrow \mathsf{EQE}(\mathfrak{A}) \Rightarrow \mathsf{QE}(\mathfrak{A})$$

- There are quite a few τ -strutures \mathfrak{A} with QE(\mathfrak{A}):
 - Infinite set (with $\tau = \emptyset$).
 - The field of complex numbers and the ordered field of real numbers.
 - Dense linear orders with prescribed extreme elements (4 cases)
- Every finite τ -structure \mathfrak{F} has EQE(\mathfrak{F}) but SQE(\mathfrak{F}) is equivalent to $\mathbf{P} = \mathbf{NP}$ in the Turing model of computation.
- M. Prunescu showed that there is an infinite structure \mathfrak{A} with FQE(\mathfrak{A}).

Lecture 1: SHORTQE

Poizat's fast QE Theorem

Theorem 8 (Poizat)

Let \mathfrak{A} be a τ -structure.

The following are equivalent.

- $P_{\mathfrak{A}} = NP_{\mathfrak{A}}$
- A allows fast quantifier elimination (FQE).
- A allows short quantifier elimination (SQE).

(i): $P_{\mathfrak{A}} = NP_{\mathfrak{A}}$ implies $SQE(\mathfrak{A})$

• Let $\exists b\phi(x,b)$ be an existential formula with n free variables. By Lemma 6 there is a polynomial time non-deterministic machine \mathbf{M}_N such that

 $\exists b\phi(x,b)$ describes $\mathsf{NAcc}_n(\mathbf{M}_N)$

- As $P_{\mathfrak{A}} = NP_{\mathfrak{A}}$ there is a polynomial time deterministic machine M_D which accepts the same inputs as M_N .
- Let $\psi(x)$ be a quantifier-free formula which describes $Acc_n(M_D)$.
- $\psi(x)$ is of size polynomial in n and is equivalent to $\exists b\phi(x,b)$, which proves $SQE(\mathfrak{A})$.

Lecture 1: SHORTQE

(ii): $P_{\mathfrak{A}} = NP_{\mathfrak{A}}$ implies $FQE(\mathfrak{A})$

- By $P_{\mathfrak{A}} = NP_{\mathfrak{A}}$ we have also $F SAT_{\mathfrak{A}} \in P_{\mathfrak{A}}$.
- We use Poizat's Theorem (Theorem 2) from lecture NEWBSS.
- Let C_n be the polynomial time computable family of circuits which solves $F SAT_{\mathfrak{A}}$, and $(\exists b\phi(a, b), a)$ be an instance.
- Let $w = w(\exists b\phi(a, b))$ be the code of $\exists b\phi(a, b)$. $w \in \{0, 1\}^*$, and C_w the circuit obtained from C_n by replacing the input gates for w by the corresponding constants of w. C_w is a circuit wich accepts a iff C_n accepts wa.
- So $a \in Acc_n(\mathbf{M})$ iff $\langle \mathfrak{A}, a, b \rangle \models \exists b \phi(a, b)$.
- Finally the quantifier-free formula $\psi(a)$ describing $Acc_n(M)$ is the required formula.

File:e-formulas

(iii): SQE(\mathfrak{A}) implies $P_{\mathfrak{A}} = NP_{\mathfrak{A}}$

- It suffices to show that $F SAT_{\mathfrak{A}} \in P_{\mathfrak{A}}$.
- Let $(\exists b\phi(x,b),a)$ be an instance of $F SAT_{\mathfrak{A}}$. By SQE(\mathfrak{A}) there is a polynomial size quantifier-free formula $\psi(x)$ equivalent to $\exists b\phi(x,b)$.
- Evaluation of quantifier-free can be done in polynomial time.

To prove the theorem we need (ii) and (iii) and $FQE(\mathfrak{A}) \Rightarrow SQE(\mathfrak{A})$.

(i) and (iii) give SQE(\mathfrak{A}) iff $\mathbf{P}_{\mathfrak{A}} = \mathbf{NP}_{\mathfrak{A}}$

File:e-formulas

The **true** challenge!

- For τ -structures \mathfrak{A} with QE(\mathfrak{A}): Find **lower** and **upper** bounds for the length of the quantifier eliminating formulas.
- The Million Dollar Problems: Prove or disprove SQE(A) for A

any finite structure the field of complex numbers the ordered field of real numbers

Note: The field of the real numbers without order has no QE.

Lecture 1: SHORTQE

Outline of the ESSLLI-course given by

J.A. Makowsky (Haifa) and K. Meer (Cottbus)

LECTURE 1 (JAM): Introduction INTRO (5 slides) Turing machines over relational structures, NEWBSS, (19 slides) Short quantifier elimination. SHORTQE (16 slides)

LECTURE 2 (JAM): Introduction to quantifier elimination QE (26 slides) Fields, rings and other structures TABLE (incomplete, 20 slides)

LECTURE 3 (JAM): Computing with the reals: Removing order or multiplication; Adding Fortran-libraries. FORTRAN (24 slides) Comparing Poizat's Theorem with descriptive complexity FAGIN (20 slides)

LECTURE 4 (KM): Inside $NP_{\mathbb{R}}$ and analogues to Ladner's Theorem, Meer-1 (149 slides)

LECTURE 5 (KM): PCP-Theorem over \mathbb{R} , Meer-2 (139 slides)

ADDITIONAL MATERIAL see next slide.

Additional material for the ESSLLI-course

LECTURE 6 (JAM): Quantifier elimination in algebraically closed fields, ACF-0 (21 slides) By JAM after Kreisel and Krivine.

LECTURE 7 (JAM): $P_G \neq NP_G$ for all abelian groups. ABELIAN (18 slides) By JAM After M. Prunescu

LECTURE 8 (JAM): $P_G \neq NP_G$ for all boolean algebras. BOOLEAN (23 slides) By I. Bentov after M. Prunescu

LECTURE 9 (JAM): $P_G \neq NP_G$ for all real matrix rings. MATRIX (70 slides) By N. Labai after A. Rybalov