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CMSOL-definable graph parameters

e I have developed with various co-authors a framework of definability of
numeric graph parameters.
B. Courcelle, B. Godlin, T. Kotek, E. Ravve

e In this talk we discuss a method of proving non-definability in Monadic
Second Order Logic with modular Counting CMSOL of numeric graph
parameters which take values in a field.

e The CMSOL-definable graph parameters behave similarily like CMSOL-
definable graph properties.

(i) On graphs of bounded width they are in FPT, where the notion of with and the
the notion of monadic quantification have to fit correspondingly.

(ii) All classical graph polynomials (Tutte polynomial, matching polynomial, chromatic
polynomial, interlace polynomial) and many more are CMSOL-definable using order
on vertices in an invariant way

(iii) On recursively defined graph sequences (like P,, C,, Ly, etc) they can be computed
via linear recurrcence relations.
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Hankel aka connection matrices
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Hankel matrices (over a field F)

Let f: F — F be a function over a field F.
A finite or infinite matrix H(f) = h;; is a Hankel matrix for f if H;; = f(i+j).

Hankel matrices have many applications in:
numeric analysis, probability theory and combinatorics.

e Padé approximations

e Orthogonal polynomials

e Probability theory (theory of moments)

e Coding theory (BCH codes, Berlekamp-Massey algorithm)

e Combinatorial enumerations
(Lattice paths, Young tableaux, matching theory)
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Hankel matrices over words

Let > be a finite alphabet and F be a field and let f : >* — F be a function
on words.

A finite or infinite matrix H(f) = hy, indexed over the words u,v € >* is a
Hankel matrix for f if h,, = f(uov). Here o denotes concatenation.

Hankel matrices over words have applications in

e Formal language theory and stochastic automata,
J. Carlyle and A. Paz 1971

e Learning theory (exact learning of queries).
A.Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, S. Varricchio 1998
J. Oncina 2008

e Definability of picture languages.
O. Matz 1998, and D. Giammarresi and A. Restivo 2008
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Hankel matrices for graphs

If we want to define Hankel matrices for (labeled) graphs,

what plays the role of concatenation?

e Disjoint union
Used by Freedman, Lovasz and Schrijver, 2007, for
characterizing multiplicative graph parameters over the real numbers

e k-unions (connections, connection matrices)
Used by Freedman, Lovasz, Schrijver and Szegedy, 2007ff, for
characterizing various forms and partition functions.

e Joins, cartesian products, generalized sum-like operations
used by Godlin, Kotek and JAM (2008) to prove non-definability.
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Overview

° and Definability of numeric graph invariants

e [Non-definability] via Complexity Theory

| Typical properties of graph parameters

e |Connection matrices| (aka Hankel matrices) and their rank, I

e |Connection matrices| (aka Hankel matrices) and their rank, II

e [ he Finite Rank [heorem FR 1]

Many Applications] of the FRT for graph properties

e [Applications| of the FRT for graph polynomials

° and Limitations of the FRT
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LLogics

In this talk a logic £ is a fragment of Second Order Logic SOL.

Let £ be a subset of SOL. £ is a fragment of SOL if the following conditions hold.

(i) For every finite relational vocabulary 7 the set of £(7) formulas contains all the atomic
T-formulas and is closed under boolean operations and renaming of relation and constant
symbols.

(ii) L is equipped with a notion of quantifier rank and we denote by £,(7) the set of formulas
of quantifier rank at most g. The quantifier rank is subadditive under substitution of
subformulas,

(iii) The set of formulas of £,(7) with a fixed set of free variables is, up to logical equivalence,
finite.

(iv) Furthermore, if ¢(x) is a formula of L,(7) with = a free variable of £, then there is a
formula v logically equivalent to Jz¢(z) in Ly(7) with ¢ > ¢+ 1.

(v) A fragment of SOL is called tame if it is closed under scalar transductions.
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Typical fragments

e First Order Logic FOL.
e Monadic Second Order Logic MSOL.

e Logics augmented by modular counting quantifiers: D, x¢(x) which says
that the numbers of elements satisfying ¢ equals : modulo m.

e CFOL,CMSOL denote the logics FOL, resp. MSOL, augmented by all
the modular counting quantifiers.

e Logics augmented by Lindstrom quantifiers.

e Logics restricted a fixed finite set of bound or free variables.
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Graph properties (boolean graph invariants)

We denote by G = (V(G), E(G)) a graph,
and by G and Ggimpie the class of finite (simple) graphs, respectively.

A graph property or boolean graph invariant is a function

f:G — 7Zo
which is invariant under graph isomorphism.

More traditionally, a graph property P = P; is a family of graphs closed under
isomorphisms given by Py = {G : f(G) = 1}.

(i) P is hereditary, if it is closed under induced subgraphs.

(ii) P is monotone, if it is closed under (not necessarily induced) subgraphs.
(iii) P is definable in some logic L if there is a formula ¢ € £ such that P = {G : G |= ¢}.
(iv) Regular graphs of fixed degree d are definable in First order Logic FOL.

(v) Connectivity and planarity are definable in Monadic Second Order Logic MSOL.

File:p-gpar 12



Prague, Doc-Course 2014

Numeric graph invariants (graph parameters)

Lecture 3

We denote by G = (V(G), E(G)) a graph,

and by G and Ggmpe the class of finite (simple) graphs, respectively.

A numeric graph invariant or graph parameter is a function

f:Gg—R
which is invariant under graph isomorphism.

(i) Cardinalities: |V(G)|, |E(G))|

(ii) Counting configurations:
k(G) the number of connected components,
my(G) the number of k-matchings
(iii) Size of configurations:
w(G) the cligue number
x(G) the chromatic number
(iv) Evaluations of graph polynomials:

x (G, \), the chromatic polynomial, at A = r for any r € R.
T(G, X,Y), the Tutte polynomial, at X =z and Y =y with (z,y) € R2.

File:p-gpar
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Definability of numeric graph parameters, I

We first give examples where we use small, i.e., polynomial sized sums and products:

(i) The cardinality of V is FOL-definable by

Zl

veV

(ii) The number of connected components of a graph G, k(G) is MSOL-definable by
>, !
CCV:component(C)

where component(C) says that C is a connected component.

(iii) The graph polynomial X*(&) is MSOL-definable by
I =
ceV first—in—comp(c)

if we have a linear order in the vertices and first — in — comp(c) says that c is a first
element in a connected component.
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Definability of numeric graph parameters, II

Lecture 3

Now we give examples with possibly large, i.e., exponential sized sums:

(iv)

(vi)

The number of cliques in a graph is MSOL-definable by

Z 1

CCV:clique(C)

where clique(C') says that C induces a complete graph.

Similarly “the number of maximal cliques” is MSOL-definable by

Z 1

CCV:maxclique(C)

where maxcliqgue(C) says that C induces a maximal complete graph.

The cligue number of G, w(G) is is SOL-definable by

Z 1

CCV:largest—clique(C)

where largest — clique(C) says that C induces a maximal complete graph of largest size.

File:p-gpar
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Definability of numeric graph parameters, III

A numeric graph parameter is L-definable if it can be defined by similar
expressions using large and small sums and only small products.

Usually, summation is allowed over second order variables, whereas products
are over first order variables.

How can we prove definability and non-definability of graph parameters in
some logic L7 In particular:

e How to prove that k(@) is not CFOL-definable?
e How to prove that w(G) is not CMSOL-definable?

e How to prove that the chromatic number x(G) or
the chromatic polynomial x(G, X) is not CMSOL-definable?

Back to outline of | ecture 3|
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Non-definability via complexity assumptions:

Harmonious colorings

A vertex coloring of a graph G with k colors is harmonious if it is proper and
each pair of colors appears at most once along an edge.

The harmonious index of a graph G is the smallest k£ such that there is a
harmonious coloring with k colors.

J.E. Hopcroft and M.S. Krishnamoorthy studied harmonious colorings in
1983.

B. Courcelle, JAM and U. Rotics havee shown that graph parameters
(polynomials) definable in CMSOL can be
computed in polynomial time for graphs of tree-width at most k.

K. Edwards and C. McDiarmid showed that computing the harmonious
index is NP-hard even on trees.

So assuming P %= NP, the harmonious index is not CMSOL-definable,
because trees have tree-width 1.
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Non-definability via complexity assumptions: Chromaticity

e B. Courcelle, J.A.M. and U. Rotics proved that
graph parameters (polynomials) definable in CMSOL in the
language of graphs can be computed in polynomial time
for graphs of cligue-width at most k.

e The Exponential Time Hypothesis (ETH) says that 3 — SAT cannot be
solved in time 2°(" It was first formulated by R. Impagliazzo, R. Paturi
and F. Zane in 2001.

e . Fomin, P. Golovach, D. Lokshtanov and S. Saurabh proved that,
assuming that ETH holds,
the chromatic number x(G) cannot be computed in polynomial time.

e T herefore, assuming ETH, the chromatic number and the chromatic
polynomial are not CMSOL-definable.
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There are many other non-definability results which can obtained like this,
for example graph paremeters derived from dominating sets or the size of a
maximal cut.

Back to outline of | ecture 3
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Our goal is to prove non-definability

without complexity theoretic assumptions.
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Additive and multiplicative graph parameters

with respect to a binary operation O

Let G10G> denote the disjoint union of two graphs.

£ is additive if f(G10G>) = f(G1) + f(G2).
f is multiplicative if f(G10G>2) = f(G1) - f(G2).

For O the disjoint union we have:
(i) |[V(G)|,|E(G)|,k(G) are not multiplicative, but additive,

(ii) k(G) and b(G) are additive.
b(G) is the number of 2-connected components of G.

(iii) x(G) and w(@) are neither additive nor multiplicative.
(iv) The number of perfect matchings pm(G) is multiplicative and so is the
generating matching polynomial Zk mi(G)XF.

Note that m;(G) is not multiplicative.

(v) The graph polynomials x(G, ) and T(G, X,Y) are multiplicative.
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Maximizing and minimizing graph parameters

with respect to O

Let G1OG> denote the disjoint union of two graphs.
f is maximizing if f(G10G2) = max{f(G1), f(G2)}.
f is minimizing if f(G10G2) = min{f(G1), f(G2)}.

Again for O the disjoint union we have

(i) The various chromatic numbers x(G), x(G), x:(G) are maximizing.

(ii) The size of the maximal clique w(G) and the maximal degree A(G) are maximizing.
(iii) The tree-width tw(G) and the cligue-width cw(G) of a graph are maximizing.

(iv) The minimum degree §(G), the girth g(G) are minimizing.

The girth is the minimum length of a cycle in G.

Back to outline of | ecture 3
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The connection matrix of a graph parameter

with respect to the disjoint union U
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Connection matrix M(f,U).

Let G; be an enumeration of all finite graphs (up to isomorphism).

The (full) connection matrix M(f,U) = m; ;(f,U) is defined by
m; ;i (f,1) = f(GiUG;)

The rank of M(f,U) is denoted by r(f,Ll).

We shall often look at various infinite submatrices of the full connection ma-
trix.

3K >k >k >k ok ok koK kKoK ok sk sk sk ok k

Examples: Check with |V(G)| and 2IV(&I,
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Lecture 3
Computing r(f, L)
Proposition:
(i) If f is multiplicative, r(f,U) = 1.
(ii) If f is additive, r(f,L) = 2.
(iii) If f is maximizing or minimizing, r(f,U) is infinite.
(iv) For the average degree d(G) of a graph, r(d,U) is infinite.
Proof: The first three statements are easy.
For f = d(G) we have
M(d, L) = ol 1l F | 2|
Vil 4 [V2]
This contains, for graphs with a fixed number e of edges, the Cauchy matrix
(iffj), hence r(d, L) is infinite. 0.
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Characterizing multiplicative graph parameters

M. Freedman, L. Lovasz and A. Schrijver, 2007

Theorem: ([FLS] Proposition 2.1.)

Assume f,g are graph parameters with values in an ordered field,
and g(G) # 0 for some graph G.

e f(QG) is additive iff g(@) = 2f(%) multiplicative.
e ¢ is multiplicative iff M(g,Ll) has rank 1 and is positive semi-definite.

Recall: A finite square matrix M over an ordered field is positive semi-definite if for all
vectors x we have zMz" > 0. An infinite matrix is positive semi-definite, if every finite
principal submatrix is positive semi-definite.

Back to outline of | ecture 3
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General Connection Matrices (aka Hankel Matrices): 1

Let C be a class possibly labeled graphs, hyper-graphs or r-structures.

Let O be a binary operation defined on C.

Let GG; be an enumeration of all (labeled) finite graphs (structures) in C.

Let f be graph parameter.

The (full) connection matrix M(f,0) is defined by
M(f,0)i; = f(G:OG))
and is called the Full Connection Matrix of f for O on C,

or just a connection matrix.

We denote by r(f,0) the rank of M(f,0O).

We shall often look at infinite submatrices of M (f,O).

File:p-cm1
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Lecture 3
Computing r(f,O)
Proposition:
(i) If f is multiplicative, r(f,0) = 1.
(ii) If f is additive, r(f,0) = 2.
(iii) If f is maximizing or minimizing, r(f,0) is infinite.
(iv) For the average degree d(G) of a graph, r(d,U) is infinite.
Proof:. The first three statements are easy.
For f = d(G) we have
E E
M(d, L) _ oAl + | B2
V| + V2
This contains, for graphs with a fixed number e of edges, the Cauchy matrix
(ﬁfj), hence r(d, L) is infinite. 0.

Back to ouline of | ecture 3
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L-smooth operations.

Let £ be a logic.

We say that two graphs G, H are (L, )g-equivalent, and write G ~} H, if G
and H satisfy the same L-sentences of quantifier rank q.

We say that O is £-smooth, if wwhenever we have
GZ' Nqﬁ H@',?: — O,].
then
GoDG1 ~} HoOH;
This definition can be adapted to k-ary operations for k£ > 1.

Proving that an operation O is £-smooth may be difficult.
For FOL this can be achieved using
Ehrenfeucht-Fraissée games also know as pebble games.

Anther way of establishing smoothness is via the Feferman-VVaught theorem.
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Examples of £L-smooth operations.

(i)
(i)
(iii)

(iv)

Quantifier-free scalar transductions are both FOL and MSOL-smooth.
Quantifier-free vectorized transductions are FOL but not MSOL-smooth.

The cartesian product is FOL-smooth but not MSOL-smooth.
This was shown by A. Mostowski in 1952.

The (rich) disjoint union is both FOL and MSOL-smooth.

The rich disjoint union has two additional unary predicates to distinguish
the universes.

For FOL this was shown by E. Beth in 1952.
For MSOL this is due to H. Lauchli, 1966, using Ehrenfeucht-Fraissé games
Adding modular counting quantifiers preserves smoothness.

For CMSOL and the disjoint union this is due to B. Courcelle, 1990.
NEW:For CFOL and the product this is due to T. Kotek and J.A.M., 2012.
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The Finite Rank Theorem

THEOREM (Godlin, Kotek, Makowsky 2008):

Let f be a numeric parameter or polynomial for r-structures definable in L
and taking values in an integral domain R.

Let O be an £-smooth operation.
Then the connection matrix M(f,0) has finite rank over R.

3K 3K 3K 3K 3Kk KKKk ok ok ok ok ok ok ok ok >k >k kK

The Proof uses a Feferman-Vaught-type theorem for graph polynomials, due
to B. Courcelle, J.A.M. and U. Rotics, 2000.

Back [N L r
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Applications of the Finite Rank Theorem, I

Disjoint unions

The following graph parameters or not CMSOL-definable

because they are maximizing (minimizing) for the disjoint union.
e w(@G), the cligue number and a(G), the independence number of G.
e The chromatic number x(G) and the chromatic index x.(G).
e The degrees §(G) (minimal), A(G) (maximal)

The same holds for the average degree d(G), but here we use the fact that
the Cauchy matrix growing rank.
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Applications of the Finite Rank Theorem, II

Direct (categorical) products combined with translation schemes

The transduction
®r ((v1,v2), (u1,u2)) = (E1(vi,u1) A B2(v2,u2)) V
((v1,v2), (u1,u2)) = ((starty, starta) , (endi, end2))

transforms the direct product of two directed paths Pf;i = (W4, E1, start;,end;) of length n;
with the two constants start; and end;, : = 1,2 into an undirected graph with atmost one
cycle.

The input graphs look like this:
e —-0—0—0—0—0—0—0—0—@

The result of the transduction is:
O\z

~
~
~
~
~
~
N \
~ \
N
N \
N \
N \
N
N ‘\
N
\
\
\
\

ny = no nl#nQ

N
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THEOREM: Graphs without cycles of odd (even) length

are not CFOL-definable even in the presence of a linear order.

Corollary: Not definable in CFOL with order are

(i) Forests, bipartite graphs, chordal graphs, perfect graphs
(ii) interval graphs (cycles are not interval graphs)

(iii) Block graphs (every biconnected component is a clique)

(iv) Parity graphs (any two induced paths joining the same pair of vertices
have the same parity)
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THEOREM: Trees or connected graphs are not CFOL-definable even in the
presence of linear order.

The transduction

&7 ((v1,v2), (u1,u2)) = (E1(v1,u1) A Ea(vz,u2)) Vv
(v1 = uy = start; A E(’UQ,UQ)) V
(vi = u1 = end1 A E(va,u2)),

combined with ®,,,, transforms the cartesian product of two directed paths into the structures
below:

niy > no ny = no ni < no
Tree: n1 = no. Connected: ni > no
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k-graphs and k-sums

A k-graph is a graph G = (V(G), E(G))
with k distinct vertices labeled with 0,1,...,k— 1.

Given two k-graphs G1,G> we define the k-sum
G1 U, G2
as the disjoint union of Gy and G> where we

identify correspondingly labeled vertices.

Theorem: The k-sum is smooth for FOL, CFOL, MSOL and CMSOL.
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THEOREM: Planar graphs are not CFOL-definable even on ordered
connected graphs

For our next connection matrix we use the 2-sum of the following two 2-graphs:

e the 2-graph (G,a,b) obtained from from Ks by choosing two vertices a and b and
removing the edge between them

e the cartesian product of the two graphs P; and P2:

ny = no ni # no

The result of this construction has a clique of size 5 as a minor iff n1 = n».

It can never have a K33 as a minor.

File:p-cm1 36
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A modification

If we modify the above construction by taking K3 instead of Ks and making
(starty, startz) and (endi,end>) adjacent, we get

Proposition: The following classes of graphs are not CFOL-definable even on
ordered connected graphs.

(i) Cactus graphs, i.e. graphs in which any two cycles have at most one
vertex in common.

(ii) Pseudo-forests, i.e. graphs in which every connected components has at
most one cycle.

File:p-cm1 37
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Non-definability in CMSOL for graphs G = (V, E)

Using the join operation

The join operation of graphs G = (V, E), where E is the edge relation, is defined by
(V1, E1) > (Vo, En) = (ViU Vo, E1 U Es U {(v1,v2) 1 v1 € Vi, 00 € V}
This is a quantifier free transduction of the disjoint union, hence smooth for CMSOL.

Consider the connection matrix where the rows and columns are labeled by the graphs on n
vertices but without edges E,.

The graph E; X E; = K;; is
e hamiltonian iff : = j,
e has a perfect matching iff : = j,
e is a cage graph (a regular graph with as few vertices as possible for its girth) iff i = j;

e is a well-covered graph (every minimal vertex cover has the same size as any other
minimal vertex cover) iff i = j.

All of these connection matrices have infinite rank.

Proposition: None of the properties above are CMSOL-definable as graphs
even in the presence of an order.
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CMSOL for hyper-graphs G = (V, E; R)

A hyper-graphs G = (V, E; R) has vertices V and edges E

and an incidence relation R between the two.

e CMSOL for hyper-graphs G = (V, E; R) allows quantification over edge
sets.

e For the language of hypergraphs the join operation is
neither MSOL- nor CMSOL-smooth,
since it increases the number of edges.

e Note also that hamiltonicity and having a perfect matching are both
definable in CMSOL in the language of hypergraphs.

In the many papers of B. Courcelle, MSOL on graphs is called MSOL;
and for hyper-graphs it is called MSOL..
File:p-cm1 39
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Non-definability in CMSOL for hyper-graphs G = (V, E; R)

Using the disjoint union

Using the connection submatrices of the disjoint union we still get:
e Regular: K; U Kj is regular iff 1 = j;

e A generalization of regular graphs are bidegree graphs, i.e., graphs where every vertex
has one of two possible degrees. K; U (K;U K1) is a bidegree graph iff i = j.

e The average degree of K; U E; is at most |V| iff ¢ = 7,

e A digraph is aperiodic if the common denominator of the lengths of all cycles in the
graph is 1. We denote by Cd the directed cycle with ¢ vertices. For prime numbers p, g
the digraphs C, U Cj is aperlod|c iff p %~ q.

e A graph is asymmetric (or rigid) if it has no non-trivial automorphisms. It was shown
by P. Erdos and A. Rényi (1963) that almost all finite graphs are asymmetric. So there
is an infinite set I C N such that for ¢ € I there is an asymmetric graph R; of cardinality
i. R; UR; is asymmetric iff ¢ # j.

Proposition: None of the properties above are CMSOL-definable as hyper-
graphs even in the presence of an order.

Bach to outline of Lecture 3
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The harmonious chromatic polynomial

Recall: A vertex coloring of a graph G with k colors is harmonious if it is
proper and each pair of colors appears at most once along an edge.

X harmonious (G k) counts the number of harmonious colorings of G with at most
k colors.

The harmonious indeX Xnarmonious(G) Of @ graph G is the smallest k£ such that
there is a harmonious coloring with k colors.

Let ¢ be the graph which consists of ¢ disjoint edges (in the language of
hyper-graphs.

Proposition:
(i) Xharmonious(1P2 U jPa, k) = 0 iff i+ j > (%).
(i) Xnharmonious(1P2 U jP2) = ming{i + j < (%).
(i) Xnarmonious (G k) is not CMSOL-definable in the language of hyper-graphs.
(iV)  Xnarmonious(G) is not CMSOL-definable in the language of hyper-graphs.
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Three graph polynomials, 1

Rainbow polynomial x,4inbew (G, k) is the number of path-rainbow connected
k-colorings, which are functions ¢ : E(G) — [k] such that between any
two vertices u,v € V(G) there exists a path where all the edges have
different colors.

MCC-polynomial For every fixed t € N, x,.t)(G, k) is the number of vertex
k-colorings f : V(G) — [k] for which every color induces a subgraph with
a connected component of maximal size t.

Convex coloring polynomial xconvez (G, k) is the number of convex colorings,
i.e., vertex k-colorings f : V(G) — [k] such that every color induces a
connected subgraph of G.

Makowsky and B. Zilber (2005) showed that X,ainbow(G, k), Xmee(r) (G, k), and xconvez (G, k) are
graph polynomials with k as the variable.

Path-rainbow connected colorings were introduced by G. Chartrand et al. in 2008.

Their complexity was studied in S. Chakraborty et. al in 2008. mcc(t)-colorings were first
studied by N. Alon et al. in 2003.

Note X;u..(1)(G, k) is the chromatic polynomial.

Convex colorings were studied by S. Moran in 2007.
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Three graph polynomials, II

Proposition: The following connection matrices have infinite rank:
(i) M (U1, Xrainbow (G, k));

(i) M (U1, Xconvea (G, ));

(iii) For every t > 0 the matrix M (<, Xmee) (G, k));

Proof:

Xrainbow (G, k): We use that the 1-sum of paths with one end labeled is again
a path with P, U1 P; = Py;_1 and that Xyuinbow(FPr, k) = 0 iff » > k + 3.

Xconvez (G, k): We use edgeless graphs and disjoint union E; U E; = E;4; and

Xmee(t) (G, k)2 We use the join and cliques, K; < K; = K;1; and that x,,...) (K-, k) =
O iff » > kt.
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Three graph polynomials, III

Corollary:

() Xrainbow (G, k) and Xconvez (G, k) are not an CMSOL-definable in the lan-
guage of graphs and hypergraphs.

(i) Xmeery (G, k) (for any fixed ¢ > 0) is not CMSOL-definable in the language
of graphs.

(iii) In particular the chromatic polynomial is not CMSOL-definable in the
language of graphs.

Note: It is however CMSOL-definable in the
language of ordered hypergraphs.

Proof:

(i) The 1-sum and the disjoint union are CMSOL-sum-like and CMSOL-
smooth for hypergraphs.

(ii) The join is only CMSOL-sum-like and CMSOL-smooth for graphs.

Back to outline of Lecture 3
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Proving non-definability with connection matrices: Merits

The advantages of the Finite Rank Theorem for tame £ in proving that a
property is not definable in £ are the following:

(i) It suffices to prove that certain binary operations on graphs (r-structures)
are L£-smooth operation.

(ii) Once the £L-smoothness of a binary operation has been established, proofs
of non-definability become surprisingly simple and transparent.

One of the most striking examples is the fact that asymmetric (rigid)
graphs are not definable in CMSOL.

(iii) Many properties can be proven to be non-definable using the same or
similar submatrices, i.e., matrices with the same row and column indices.
This was well illustrated in the shown examples.
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Proving non-definability with connection matrices:. Limitations

The classical method of proving non-definability in FOL using pebble games is complete in
the sense that a property is FOL(1),-definable iff the class of its models is closed under game
equivalence of length q.

Using pebble games one proves easily that the class of structures without any relations of
even cardinality, EVEN, is not FOL-definable.

However, one cannot prove that EVEN is not FOL-definable using infinite rank connection
matrices, in the following sense:

Proposition: Let ® a quantifierfree transduction between r-structures and let Og be the
binary operation on r-structures:

DCD(le %) — CD*(Q[ Urich %)
Then the connection matrix M (O, EVEN) satisfies:

(i) There is a finite partition {Ui,...,Ux} of the (finite) r-structures such that the subma-
trices obtained from restricting M(0O,v) to M(EVEN, O4)W:Uil have constant entries.

(ii) In particular, the infinite matrix M(EVEN, O4) has finite rank over any field F.

(iii) M(EVEN,Og) has an infinite submatrix of rank at most 1.

Note that EVEN is trivially definable in CFOL.
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Thank you for your attention

Back to outline 1 of [ ecture 3|
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Outline of the course

LECTURE 00: Second Order Logic (SOL) and its fragments (Background, not lectured)
LOGICS| (14 slides)

LECTURE 01: Friday, Oct 10, 2014, 14:00-15:40, |Prague Lecture 1,
A landscape of graph parameters and graph polynomials. Comparing graph parameters.
Towards a general theory.
(90 minutes, 90 slides with skip-options)

LECTURE 02: Thursday, Oct 16, 2014, 12:20-14:00 Prague Lecture 2,
Why is the chromatic polynomial a polynomial? Where to graph polynomial occur
naturally? Definability of graph properties and graph polynomials in fragment of Second
Order Logic.
(90 minutes, ca. 99 slides with skip options)

LECTURE 03: Thursday, Oct 16, 2014, 14:30-16:00 Prague Lecture 3|
Connection matrices for graph parameters. When do connection matrices of graph
parameters have finite rank? Connection matrices for graph parameters definable in
fragments of Second Order Logic. The finite rank theorem. Using connections matrices
to prove non-definability.
(90 minutes, ca. 55 slides with skip options)

[FEurther links to the literature.
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Further links

[arXiv | J.A. Makowsky's Graph Polynomial Go to Homepage at http://
Wwww.cS.technion.ac.il/~janos/RESEARCH/gp-homepage.html

[KMR 2013 ] J. A. Makowsky T. Kotek and E. V. Ravve, A computational
framework for the study of partition functions and graph polyno-
mials. In Proceedings of the 12th Asian Logic Conference 711, pages
2107230, 2013. download athttp://www.cs.technion.ac.il/~janos/RESEARCH/
alcpaper.pdf

[GKM 2012 | B. Godlin, E. Katz and J. A. Makowsky, Graph Polynomials:
From Recursive Definitions to Subset Expansion Formulas. J. Log.
Comput. 22(2): 237-265 (2012) download at http://www.cs.technion.
ac.il/~janos/RESEARCH/GodlinKatzMakowsky.pdf

[M 2008 ] J.A. Makowsky, From a Zoo to a Zoology: Towards a general
theory of graph polynomials, Theory of Computing Systems, 2008.
download at http://dx.doi.org/10.1007/s00224-007-9022-9

More links|
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Further links, II

[arXiv ] J.A. Makowsky's papers at http://arxiv.org/find/all/1/au:+Makowsky/
0/1/0/all/0/17per_page=100 on arXiv.

[dblp ] J.A. Makowsky's papers at http://www.informatik.uni-trier.de/~ley/
pers/hd/m/Makowsky:Johann_A=.html on DBLP.

[google ] J.A. Makowsky's papers at http://scholar.google.co.il/citations?
hl=en&user=o0oNKL6UAAAAJ&pagesize=100&view_op=list_works at scholar.google.

[Course notes | J.A. Makowsky's |[Course notes,

[PhD Theses | PhD Theses| on graph polynomials (a selection)

Back to overview, [Back to turther links
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Further links: Course notes

Slides of courses on graph polynomials and related topics:

Technion 2005/6 Lecture notes of Advanced Topics in Computer Sci-
ence (238900)

Technion 2009/10 Lecture notes of Advanced Topics in Computer Sci-
ence (236605)

Vienna 2014 Lecture notes of EMCL Lecture 2014: Graph polynomials

IBack to overview, [Back to further links|
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Further links: PhD Theses

PhD Theses on graph polynomials and related topics:

I. Averbuch PhD Thesis (Technion 2011): Completeness and Universal-
ity Properties of Graph Invariants and Graph Polynomials

T. Kotek PhD Thesis (Technion 2012): Definability of combinatorial
functions

M. Trinks PhD Thesis (TU Freiberg 2012): Graph Polynomials and T heir
Representations

Back to overview, [Back to further links|
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