On line papers

  1. K. Meer, Query languages for semi-algebraic databases based on descriptive complexity over R ps-file
  2. K. Meer, Counting problems over the reals, To appear in TCS. ps-file
  3. K. Meer and C. Michaux, A survey on Real Structural Complexity Theory, Bulletin of th Belgian Mathematical Society Simon Stevin, vol. 4, no. 1 (1997) pp. 113-148 ps-file
  4. C. Michaux and C. Troestler, Isomorphism Theorem for BSS Recursively Enumerable Sets over Real Closed Fields, ps-file
  5. S. Ben-David, K. Meer and C. Michaux, A Note on Non-complete Problems in NP_R, ps-file
  6. E. Graedel and Y. Gurevich, Metafinite Model Theory, Information and Computation, vol. 140 (1998), pp. 26-81 ps-file
  7. E. Graedel and K. Meer, Descriptive Complexity over the Real Numbers, In: J. Renegar, M. Shub, S. Smale (Eds.), Mathematics of Numerical Analysis: Real Number Algorithms, AMS Lectures in Applied Mathematics, volume 32 (1996), 381-403. ps-file

Journal papers and books

  1. Kenneth Falconer, Fractal geometry: Mathematical Foundations and Applications, John Wiley & Sons, 1990, ISBN 0 471 92287 0
    For more on Julia and Mandelbroit sets
  2. Alan F. Beardon, Iteration of Rational Functions, Graduate Texts in mathematics, Springer 1991, ISBN 0 387 97589-6
    For more on Julia and Mandelbroit sets
  3. Ning Zhong, Recursively enumerable subsets of R^q in two computing models: Blum-Shub-Smale machine and Turing machine, TCS, vol. 197 (1998), pp. 79-94.
    For more on Julia and Mandelbroit sets
  4. M. Shishikura, The boundary of the Mandelbrot set has Hausdorff dimension two, Asterisque vol. 222 (1994), pp. 389-405.
    For more on Julia and Mandelbrot sets
  5. G. Kreisel and J.L. Krivine,
    On the Tarski-Seidenberg Theorem
  6. S. Basu, R. Pollak and M.-F. Roy, On the combinatorial and algebraic complexity of quantifier elimination, Journal of ACM, vol. 43.6, (1996), pp. 1002-1045.
    On the Tarski-Seidenberg Theorem

  7. On the Tarski-Seidenberg Theorem

  8. On the Tarski-Seidenberg Theorem

  9. On the Tarski-Seidenberg Theorem

  10. On the Tarski-Seidenberg Theorem