
Technion, Spring semester 2015 236714

Topics in Automated Theorem Proving

Course (236714, Spring 2015)

Johann A. Makowsky∗

∗ Faculty of Computer Science,
Technion - Israel Institute of Technology,

Haifa, Israel
janos@cs.technion.ac.il

Course homepage
http://www.cs.technion.ac.il/∼janos/COURSES/THPR-2015

File:title-15 1

Technion, Spring semester 2015 236714

Lecture 2 (March 25, 2015)

File:resolution 2

Technion, Spring semester 2015 236714

The consequence relation of

First Order Logic

is semi-computable (1929), but not computable (1931, 1936)

Kurt Gödel, 1906-1978 Alonzo Church, 1903-1995 Alain Turing, 1912-1954

•

File:resolution 3

Technion, Spring semester 2015 236714

The basis of Automated Theorem Proving (ATP)

Thoralf Skolem, 1887-1963 Jacques Herbrand, 1908-1931

• Skolem, Thoralf (1920), Logisch-kombinatorische Untersuchungen ber die Erfllbarkeit
oder Beweisbarkeit mathematischer Stze nebst einem Theoreme ber dichte Mengen,
Videnskapsselskapet Skrifter, I. Matematisk-naturvidenskabelig Klasse 6: 136

• J. Herbrand: Recherches sur la theorie de la demonstration.
Travaux de la Societe des Sciences et des Lettres de Varsovie, Class III, Sciences
Mathematiques et Physiques, 33, 1930.

File:resolution 4

Technion, Spring semester 2015 236714

Skolem’s and Herbrand’s Theorem

• Skolem 1920: Every countable set of sentences which has a model has a
countable or finite model. In fact, if the set is in Skolem Normal Form,
it has a term model.

• Herbrand 1930: Used Skolem’s theorem to reduce First Order Logic to
propositional Logic.

• Herbrand’s Theorem was syntactical and can be viewed as a completeness
theorem for cut elimination.

• One can give a purely model theoretic proof of this.

File:resolution 5

Technion, Spring semester 2015 236714

Early Automated Theorem Proving

Wang, Hao (January 1960).
Toward Mechanical Mathematics.
IBM Journal of Research and Development,
4:1 (January 1960), 2-22

Hao Wang, 1921-1995

File:resolution 6

Technion, Spring semester 2015 236714

Resolution and the Davis-Putnam Procedure

Martin Davis, * 1928 Hilary Putnam, * 1926

• Davis, Martin; Putnam, Hillary (1960).
A Computing Procedure for Quantification Theory.
Journal of the ACM 7 (3): 201-215

• Davis, Martin; Logemann, George, and Loveland, Donald (1962).
A Machine Program for Theorem Proving
Communications of the ACM 5 (7)

File:resolution 7

Technion, Spring semester 2015 236714

Resolution, the propositional case, I

In this lecture we introduce a syntactic method of checking whether a set of
formulas Σ is satisfiable called resolution.

Resolution is a machine friendly method which involves some preprocessing

transforming the set Σ ⊆WFF into a set clause(Σ) of clauses.

File:resolution 8

Technion, Spring semester 2015 236714

Clauses, I

• A literal is either a propositional variable, pi,
or the negation of a proopositional variable, ¬pi.
The constant F is also a literal. We denote literals by lj.

• A clause is a finite set of literals {l1, l2, ..., lk}.
We denote clauses by Cj.
We denote the empty clause (the empty set of literals) by 2.

• Let z be a propositional assignment.
The meaning function Mclause for clauses is defined inductively as follows:

Basis: Mclause({lj}, z) = MPL(lj, z). Mclause(2, z) = 0.

Closure: Mclause({l1, l2, ..., lk}, z) = max{Mclause({lj}, z) : j ≤ k}.
If S is a set of clauses Mclause(S, z) = min{Mclause(C, z) : C ∈ S}.

File:resolution 9

Technion, Spring semester 2015 236714

Clauses, II

• Let φ ∈ CNF be formula in conjunctive normal form.

We define a set clause(φ) of clauses inductively as follows:

Basis:
clause(pi) = {pi}.
clause(¬pi) = {¬pi}.
clause(F) = {2}.
Closure:
(1) If clause(φ1) = {C1} and clause(φ2) = {C2} then
clause(φ1 ∨ φ2) = {C1 ∪ C2}.
(2) clause(φ1 ∧ φ2) = clause(φ1) ∪ clause(φ2).
(3) If Σ ⊆ CNF is a set of formulas in conjunctive normal form then
clause(Σ) =

⋃
{clause(φ) : φ ∈ Σ}.

• If Σ ⊆WFF is a set of well formed formulas (not necessarily in conjunctive
normal form) then
clause(Σ) =

⋃
{clause(cnf(φ)) : φ ∈ Σ}.

Here cnf(φ) denotes a formula in CNF logically equivalent to φ.

File:resolution 10

Technion, Spring semester 2015 236714

Some easy facts

(i) Let Σ ∈WFF be a set of well formed formulas and z be a propositional
assignment. Then

MPL(Σ, z) = Mclause(clause(Σ), z).

(ii) In particular Σ is satisfiable if and only if
there is a propositional assignment z such that Mclause(clause(Σ), z) = 1.

File:resolution 11

Technion, Spring semester 2015 236714

Resolution trees

(i) Let C1∪{pj}, C2∪{¬pj} be two clauses. We say that the clause C1∪C2 is
obtained from C1 ∪ {pj}, C2 ∪ {¬pj} by one resolution step, and we write

C1 ∪ {pj}, C2 ∪ {¬pj}
C1 ∪ C2

(ii) A resolution tree T is a binary (directed) labeled tree T = 〈V,E〉
such that the labels of V are clauses.
Furthermore, if C1, C2 are labels of the two sons of a vertex labeld with
C then C1 = D1 ∪ {pj}, C2 = D2 ∪ {¬pj} and C = D1 ∪D2.
In other words, the label of the father is the result of performing a
resolution step on the labels of its two sons. Note that several vertices
may carry the same label.

(iii) Let S be a set of clauses and C be a clause.
We say that S proves C by resolution, if there is a resolution tree with
the root labeled C and all the leaves labeled with clauses from S. We
write S `res C for S proves C by resolution.

File:resolution 12

Technion, Spring semester 2015 236714

Examples

(i) Draw a resolution tree for S `res 2 for

S = {{p1}, {p2}, {¬p1,¬p2}}.

(ii) Draw a resolution tree for S `res 2 for

S = {{p1, p2, p3}, {¬p1, p2}, {¬p3, p2}, {¬p2}}.

(iii) Invent your own example and draw the tree!

File:resolution 13

Technion, Spring semester 2015 236714

Soundness of resolution

The next proposition establishes that resolution steps preserve the meaning of
the clauses on which they are based. We call this the soundness of resolution
steps. More precisely:

(i) Let S be a set of clauses and C1 ∪ {pj}, C2 ∪ {¬pj} ∈ S.

Let z be a propositional assignment such that Mclause(S, z) = 1.

Then Mclause(S ∪ {C1 ∪ C2}, z) = 1.

(ii) Let T be a resolution tree and S0 be the set of clauses which are the
labels of its leaves and S the set of all its labels.

Let z be a propositional assignment such that Mclause(S0, z) = 1.

Then Mclause(S, z) = 1.

(iii) If S is a set of clauses such that S `res 2 then S is not satisfiable.

File:resolution 14

Technion, Spring semester 2015 236714

Proof of soundness, I

We prove only (i).

To prove (ii), we can proceed by induction on the depth of the tree applying (i) as the

induction step.

(iii) is a direct consequence of (i).

• So let C1 ∪ {pj}, C2 ∪ {¬pj} ∈ S be two clauses and z be a propositional
assignment such that

Mclause(S ∪ {C1 ∪ {pj}, C2 ∪ {¬pj}}, z) = 1.

• We have to show that

Mclause(S ∪ {C1 ∪ C2}, z) = 1.

• It suffices to prove the case where z(pj) = 1,
as the case z(pj) = 0 is similar.

File:resolution 15

Technion, Spring semester 2015 236714

Proof of soundness, II

• z(pj) = 1 implies that Mclause(C2, z) = 1 and therefore
Mclause(C1 ∪ C2, z) = 1.

• As Mclause(S, z) = 1 we also have Mclause(S ∪ {C1 ∪ C2}, z) = 1.

• this completes the proof of (i).

Q.E.D.

File:resolution 16

Technion, Spring semester 2015 236714

Completeness of resolution, I

We would like to state a completeness theorem for resolution.

The obvious formulation would be:

(*) Let S be a set of clauses , and C be a clause.

Then S `res C iff C is a logical consequence of S.

The following example shows that this is not true:

Counterexample: for (*)

Let S be {{p0}} and C be {p0, p1}.

Clearly C is a logical consequence of S.

However, there is no resolution step applicable given S only.

File:resolution 17

Technion, Spring semester 2015 236714

Completeness of resolution, II

The best we can hope for is the following:

Theorem: Completeness of Resolution for Satisfiability

(**) Let S be a set of clauses.

S is not satisfiable iff S `res 2.

This will follow from the Compactness Theorem

and the completeness of the Davis–Putnam Procedure.

File:resolution 18

Technion, Spring semester 2015 236714

The Davis–Putnam Procedure

Let S be a finite set of clauses.
Without loss of generality let p0, . . . , pn be all the variables occuring in S.

We define inductively sets of clauses

Sj, Sj(pos), Sj(neg), Sj(−)

for j = 0, . . . , n as follows:

• S0 = S,

• Sj(pos) = {C ∈ Sj : pj ∈ C},

• Sj(neg) = {C ∈ Sj : ¬pj ∈ C},

• Sj(−) = {C ∈ Sj : pj 6∈ C and ¬pj 6∈ C},

• Sj+1 = Sj(−) ∪ {C ∪D : C ∪ {pj} ∈ Sj(pos), D ∪ {¬pj} ∈ Sj(neg)}.

File:resolution 19

Technion, Spring semester 2015 236714

Preserving satisfiability

For every j = 0, . . . , n Sj is satisfiable iff Sj+1 is satisfiable.

Proof:

• If Sj is satisfiable then Sj+1 is satisfiable,
by the soundness of resolution.

• So let us assume that Sj+1 is satisfiable by a truth assignment z0.

• Let z1 be the truth assignment obtained from z0 by putting z1(pj) =
1− z0(pj).

• If neither z0 nor z1 satisfy Sj
then there are clauses C,D with

C ∪D ∈ {C ∪D : C ∪ {pj} ∈ Sj(pos)
D ∪ {¬pj} ∈ Sj(neg)}

and Mclause(C ∪D, z) = 0.

• Which is a contradiction.

File:resolution 20

Technion, Spring semester 2015 236714

Termination

Sn+1 is either empty or contains only the empty clause. Furthermore, Sn+1 is
empty iff S is satisfiable.

Proof: Exercise

File:resolution 21

Technion, Spring semester 2015 236714

Completeness of the Davis–Putnam Procedure

A finite set of clauses S is satisfiable iff the Davis–Putnam Procedure returns
the empty set (not the empty clause).

Proof: Use the lemmas.

File:resolution 22

Technion, Spring semester 2015 236714

Complexity of Resolution

• The Davis–Putnam Procedure seems rather crude and may need an ex-
ponential number of resolution steps. Its performance is also sensitive to
the numbering of the variables.

• It was shown in a sequence of papers (Tseitin, Galil, Haken, Urquhart,
Szemeredi) that there are many sets of n clauses S which are unsatisfiable
and which need an exponential number of resolution steps to discover
the unsatisfiability.

• In the case of average complexity the situation is more complex as it
depends on the input distribution for clauses. There are quite natural
distributions for which resolution is polynomial on the average, and oth-
ers, equally natural, for which resolution is exponential on the average.

File:resolution 23

Technion, Spring semester 2015 236714

Tutorial 2 (October 31, 2013)

Variations on resolution

• The weakening rule: Let C,D be clauses with C ⊆ D.

C

D

Theorem: Let S be a set of clauses, and C be a clause. Then C can be
derived from S with resolution and weakening iff S |= C.

• Horn clauses: Clauses with at most one non-negated literal.

• Unit resolution: Let C be a clause and ` be a literal.

C ∪ {`}, C2 ∪ {¬`}
C

• Theorem: Let H be a set of Horn clauses. Then H is satisfiable iff 2

cannot be derived from S using unit resolution.

File:resolution 24

Technion, Spring semester 2015 236714

Homework 1 (compulsory, unless marked with *)

H 1.1 A Horn clause with exactly one positive (negative) literal is called a
positive (negative) fact.

Show; A set of Horn cluaes with no positive facts is always satisfiable.

H 1.2 Prove Theorem A from the tutorial.

H 1.3 Prove Theorem B from the tutorial.

H 1.4 HornSAT is the problem of deciding whether a finite set of Horn
clauses is satisfiable.

Show: HornSAT can be solved in quadratic time.

H 1.5* Show: HornSAT can be solved in linear time.
W. Dowling, and J. Gallier, Linear-time algorithms for testing the satisfiability of propo-
sitional Horn formulae. Journal of Logic Programming, 3 (1984) 267–284

A. Itai, J. A. Makowsky, Unification as a complexity measure for logic programming.
The Journal of Logic Programming, 4.2, (1987) 105–117
(Technion Technical Report 1982)

File:resolution 25

Technion, Spring semester 2015 236714

Homework 1 (continued)

H 1.6 A set of clauses S is renamable Horn if there is a set of propositional
variables V0 such that replacing each occurence of pi ∈ V0 in S by ¬pi
transform S into a set of Horn formulas. Show: Checking whether S is
renamable Horn an be done in polynomial time.

H 1.7* Show: Checking whether S is renamable Horn an be done in linear
time.

V. Chandru, C.R. Coullard, P.L. Hammer, M. Montaez, and X. Sun, On renamable

Horn and generalized Horn functions. Annals of Mathematics and Artificial Intelligence

1:14 (2005) 33-47.

File:resolution 26

