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Lecture 4 (November 7, 2013)

Ground clauses

e A ground literal is an atomic or negated atomic formula with constant
terms and no free variables.

e A ground clause is a clause consisting of ground literals. and no free
variables.

We have reduced satisfiability of first order logic

to satisfiability of propositional logic.
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Monadic First Order Logic

Let us look at the case of first order logic with the following restrictions:
e We have only unary relation symbols.
e \We have no equality.
e \We do allow equality.

We discuss Skolem normal form.

Homework: Show that in this case satisfiability is decidable.

Theorem: If we have only one binary relation symbol and equality, satisfia-
bility is not decidable.

E. Borger and E. Gradel and Y. Gurevich,
The Classical Decision Problem, Springer-Verlag, 1997
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Avoiding too many terms, I

Now look at a formula

P = VzIy [¢p(Z) A P(Y)]
where ¢, are quantifierfree.

This is equivalent to
W =Vz [¢p(T) A Ty (y)]

e Skolemizing & produces several functions, hence infinitely many terms.

e Skolemizing W produces only constant symbols, hence finitely many
terms.

Conclusion: Putting first into prenex normal form and then introducing
Skolem functions is not always preferable. Homework: Discuss
strategies to safe terms when Skolemizing.
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Avoiding too many terms, II

236714

We do not want to instantiate all clauses with all the termsl!

e Assume we have
S1(y) vV R(z) and Sz(z) vV ~R(y?)

e Substituting for y the term w2 and for x the term u* we get
S1(uw?) VvV R(u*) and Sa(u?) v —R(u*)

e Resolution gives
S1(u?) v Sa(u?)

e Similarly
S1(y) V R(z) V R(y?)
gives
S1(u?) vV R(u®) v R(u®)
and therefore
S1 (u2) V R(u4)
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Handling substitutions

There is theory behind this!
Unification theory

John Alan Robinson, 1928 *

John Alan Robinson,

A Machine-Oriented Logic Based on the Resolution Principle,
Journal of the ACM, vol 12, 2341, 1965.

See Lecture 4
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Unification (according to Wikipedia)

e [(link to wikipedia)

e (relative)
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The deduction rules

Let Term(7) be the set of terms over the vocabulary 7. Let o be a substitu-
tion, a function from the variables Var — Term(7).

Let C(x1,...,2n), D(x1,...,z,) be clauses with free variable x and L(z1,...,z,)
be a literal.

We have two deduction rules:

Factoring
C(x1,...,7n)
Clo(xz1),...,0(xn))

Resolution
C(x1,...,zn) V L(x1,...,20), D(x1,...,20) V - L(x1,...,25)
Clo(xz1),...,0(xn) VD(o(x1),...,0(xn))
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Soundness

e Factorization is a special case of the rule
V()
¢(1)
where t is a sequence of terms.
In human language: If all x are Human, so Socrates is a Human.

e Resolution combines the above with propositional resolution.
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Completeness
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We use Herbrand’s Theorem.

Let > be a set of FOL(7) and X, its Skolem Normal Form.

e Applying Factoring we can generate all ground clauses.

e Applying resolution we can check satsifiability.

Problem: How to choose the right substitutions efficiently?
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The unification problem.

The problem we are facing now:

Given two sequences terms

t1(Z), ..., ta(Z) and ui(Z), ..., un(F)

e does there exist a substitution o such that for all 1 < n

ti(c(Z)) = ui(o(T))

as terms.

e If yes, how can we find it, of no, how can we be sure?

A substitution o with the above properties is called a
unifier for t1(z),...,t,(Z) and ui(x),...,u,(T).

Note: It is enough to solve the unification for pairs of terms t¢(z) and u(x).
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Comparing unifiers

Let 01,00 be two unifiers for ¢t and w.

e 01 IS more general than oo if the is a substitution p such that

poo] = 02

e 01 IS a most general unifier, of for every other unifier oo there exists a
substitution p such that

pOO1l =02

Proposition: If o is a most general unifier for t and u,

then it is unique up to renaming variables.
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Lecture 5, November 14, 2013

e [0 be written
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Tirgul 5, November 21, 2013

e \We complete the QE for equality only.

e T he following formulas are logically equivalent:

Jz(¢(z) Az =y) and ¢(z) [,
where ¢(z) |} is the result of substituting y for z in ¢.

Proof:
Use the definition of the meaning function for 4 and the definition of substi-
tution. Q.E.D.
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LLecture 6, November 21, 2013

Fourier-Dines-Motzkin Procedure

Fourier 1826, Dines 1918, Motzkin 1936
e The structure: Ry = (R,+,<,0,1)
e The Theorem: R4 allows QE.

e Some history
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Jean Baptiste Joseph Fourier Lloyd L. Dines Theodore Samuel Motzkin
(1768 — 1830) (1885 — 1964) (1908 — 1970)

e Wikipedia on Jean Baptiste Joseph Fourier, (web), (relative),

O R RO O

ON LINEAR
INEQUALITIES

L.L. Dines and N.H. McCoy, On Linear Inequalities, Trans Royal Soc Canada (1933)

e Obituary of Theodore Motzkin, (web), (relative),
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Terms and atomic formulas for 72_|_.

Atomic Terms: Variables z;, constants 0,1,

Constant Terms: Using commutativity, associativity and (x 4+ 0) = 2, we can reduce every
constant term to

(M=1+1+...+1

n

We write n-t for (1 +t+ ... +1).

n

Terms: If s,s;,t,t; (i € N)are terms, so are
k
(s=1), Y . _,niti

Atomic Formulas: t; =~ to, t1 < tp, nt; ~ mty
k ¢
Z n;t; ~ Z m;s;
i=0 j=0
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Normal form for quantifier-free formulas

TO

Every term t(x1,...,x,) Can be writen as

n
t=mn; -1 +m;+ E m; - x; =11 -z1 + s(z2,...,2n)
=2
where x1 does not occur in s.

We introduce a new function symbol minus(t) = —t with the rules
—t+t=1t4+(-t) =0, —(—t) =t and —(s+¢t) = (—s) + (—1).
and binary relation symbols {<,=,>,>} with the obvious interpretations.

Using minus(t) = —t we now can show that every atomic formula is equivalent to a
formula of the form

xAt(y) or s(y)Ax
where A € {<, <, =,>>}.

Conversely, every atomic formula A(z1,...,z,) in which minus is used is equivalent to
an atomic formula B(z1,...,z,) in which minus is not used.

Similarily, the symbols {<,=,>>} can be eliminated from quantifier-free formulas with-
out introducing quantifiers.

be done by induction!
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The theory Th(9i4) admits effective QE and hence is complete.

Fourier 1826, Dines 1918, Motzkin 1936

It is enough to prove it for formulas of the form

Az ( /\ t:(9) Dz A /\mjt;.(g) A /\sk(gj)AkO>
i j k

Where A;, A € {<, <},

This is equivalent to

Jx (/\ ti(y)Aia:/\/\xAjt;(g)> A (/\ sj(g)Ajo>

J
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Proof continued
But
B | \t@awa )\ 2ot @
( J
iS equivalent to
N t@Aat@
i,J
where
- < if both AiZA]’ =<
Ml iIf A=< or A =<
Q.E.D.
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The structure 2, = (Z,+,<,0,1), Presburger Arithmetic.

e Can we have QE also in this case?

e We can add unary relation symbols D,,(x) with the interpretation x is
divisible by m.

e Theorem:(M. Presburger) 2, = /Z,+, <, D, (x),0,1) for m € N has QE,

Mojzesz Presburger (19041943) (web), (relative),
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Zy = (Z,+,<,0,1) has no QE

e Let ACZ. Ais aray, if Ais finite or there is a € Z with A = A4 (a) =
{beZ:b>ayor A=A_(a)={beZ:b<a}.

e Every quantifier-free definable set over Z4 is a ray.
Use induction!

e Jz(xz + x = y) defines a set which is not a ray.
It defines the even numbers.
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The real numbers

R ield = (R, +, x,0,1) and R,pieiq = (R, 4+, %, <0, 1)

Theorem:(A. Tarski)
o Roriela Nas EQ.

o Ryielqg does not have EQ. We showed this already.

Alfred Tarski-Teitelbaum (1901 — 1983) (web), (relative),
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Examples for QE over the reals

e Solvability of polynomial equations: 3z > a;z; = 0.
k odd and a; #* 0 this is always true.
k even and a; # 0 this may be difficult......

e More sophistigated examples may be found in:
ID. | azard
Quantifier elimination: Optimal solutions for two classical examples,
Journal of Symbolic Computation, vol. 5 (1988) pp. 261-266.
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