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Prerequisites

We assume our students are familiar with basic logic and computability as
tought in our courses Logic for CS 1 (234292) or Logic and Sets for CS (234293)
and Theory of Computation (236343).

We shall also quote results from Logic 2 (236304) but the course is not a
prerequisite. We also assume that the students remember some basic algebra
(Algebra A and possibly Algebra B) but we shall state explicitly what is needed.
There is some (little) overlap with the course Computability and Definability
(236331).

Course assignments

Students have to do homework as assigned during the lectures. Furthermore,
they have to work out ONE session in the style of the following notes. Finally,
they have to do a final project, which consists of preparing the results of research
papers into teachable form (slides or text).



1 Overview on Theorem Proving

Lecture 1, March 10, 2003, 3 hours
Notes by J. Makowsky

Automated Theorem Proving comprises two very different topics.

e General Theorem Proving: The Theorem Prover (program) receives two
inputs:

(i) A theory T in some formalism, say Propositional Calculus (PC),
First Order Logic (FOL), Temporal Logic, Modal Logic, Second Or-
der Logic

(i1) A formula (sentence) ¢ in the formalism.
The program then should decide whether ¢ follows logically from T

e Special Theorem Proving: The Theorem Prover is specially tuned to a
specific theory 7', say Elementary Geometry, Group Theory, or any math-
ematical theory axiomatizable in First Order or Second Order Logic.

The program then receives as input a sentence (candidate theorem) ¢ and
is supposed to check whether ¢ is a theorem of the theory T'.

The goal of the course is to study both cases to some extent. In this lecture
we give a survey of these aspects. We leave it to the audience, at the end of this
lecture, to decide on which aspect to put the emphasis.

1.1 Propositional Logic

Theorem proving in PC' is usually reduced to SAT, satisfiability checking. For a
set T of PC-formulas and ¢ a PC-formula instead of T' = ¢ one checks whether
T U {¢} is satisfiable. The general problem is known to be NP-complete.

A very popular method to solve SAT is the RESOLUTION method. It is
known to have exponential time worst case complexity. But it performs well in
many practical problems.

This can be explained theoretically, as its average time complexity is poly-
nomial for many probability distributions which seem to model real situations.
However, the average case complexity of RESOLUTION is exponential for some
(equally realistic) probability distributions.

RESOLUTION works fast for special classes of formulas, the HO RN -formulas.
Horn formulas are formulas in CNF (Conjunctive normal form) where each dis-
junct has at most one non-negated variable. Other easy classes of formulas (for
SAT) are formulas of bounded tree width or bounded clique width. There is a
vast literature on various heuristics for special formulas. An excellent survey 1s

e Dingzhu Du, Jun Gu and Panos M. Pardalos (eds), Satisfiability Problem:
Theory and Applications, DIMACS Series, vol. 35, American mathemat-
ical Society, 1997



Thesis Topic 1 Classify these heuristics.

1.2 First Order Logic

The general Theorem Proving Problem (historically called the Decision Prob-
lem) is undecidable. In modern language this reads (as tought in the course
Logic 2):

Theorem 1 (Gdédel 1929, Church, Turing 1936) For a relational vocabu-
lary T which contains at least one binary relation symbol, the set of valid (prov-
able) FOL(r)-sentences is semi-computable but not computable.

The theorem depends on the choice of a vocabulary. There is no underlying
theory T, only the logical axioms are assumed.

In the early literature, 1920ff, people tried to prove computability for special
classes of formulas, hoping that finally an induction proof would emerge. A
common classification of F'O L-sentences is by their quantifier prefix. Here we
use that every sentence is equivalent to a sentence in prenex normal form, i.e.
a sentence of the form

lel; QQIQ, .. lemB(Xl, .. .,I‘m)

where @; € {V,3} and B is a quantifier free formula, or equivalently, a boolean
combination of atomic formulas. A formula (sentence) is universal (existential
if all the quantifiers @); above are V (3).

For example we have

Theorem 2 (Bernays and Schonfinkel 1928, Ramsey 1931) For every re-
lational vocabulary T with equality, the set of valid (provable) universal (exis-
tential) FOL(T)-sentences is computable.

Theorem 3 (Lewis 1978) For every relational vocabulary T with equality, The
set of satisfiable universal FOL(T)-sentences recognizable in non-deterministic
exponential time. For large enough vocabularies, the problem is complete for
non-deterministic exponential time.

A survey of everything one knows for decidable cases of the Decision Problem
may be found in

e E.Borger and E. Gradel and Y. Gurevich, The Classical Decision Problem,
Springer-Verlag, 1997.

Many General Theorem Provers have been designed. They all produce cor-
rect results, but do not necessarly terminate. They work in practical situations
of knowledge processing, where there are large amounts of data, but little Theo-
rem Proving is required. The most popular method is based on a combination of
RESOLUTION methods and UNIFICATION, due to M. Davis and H. Putnam
(1960), and popularized by J.A. Robinson! in 1965.

IThere are four Robinsons who are of importance for this course: Julia Robinson, Raphael

Robinson, Abraham Robinson and John Alan Robinson.



A good survey is

e Dov M. Gabbay, C.J. Hogger and J.A. Robinson, Handbook of Logic in
Artificial Intelligence and Logic Programming I: Logical Foundations, Ox-
ford Science Publications, Oxford University Press, 1993.

The programming language PROLOG 1is based in General Theorem Provers of
this type.

In attempts to identify computable cases, one looks at special mathematical
theories, like various theories of arithmetic and geometry, or theories related to
these, such as group theory, the theory of order.

1.3 Theories of a fixed structure

Let 2 be a r-structure. FOLY(7) is the set of sentences of FOL)(r), i.e. the
formulas without free variables.

We denote by
ThI %" (A) = Th(2) = {¢ € FOL'(r) : A = ¢}
the complete theory of .
Definition 4 A set T C FOL®(7) is complete, if T is satisfiable, and for every
¢ € FOL®(7) either T = ¢ or T |= —¢.

Clearly, Th(2l) is complete, even in the stronger sense that ¢ € T or ~¢ € T'.
Let

N =(N,+n, xn,<n,0n, In)

3=(N,42,%x2,<z,02,1z)

Q=(Q +¢, %@, <q,0q, 1¢)

R = (R, +r, Xr, <r,0r, Ir)
C={(C+¢c,xc,00,1¢)
3+ = (N, +2,<7,07,12)
Ry = (R, +r, <r,0r, Ir)
Radd = (R, +r,0r, 1R)

Re = (R, <p)

be the F'OL-theories of the natural numbers, integers, rational, reals and com-
plex numbers with the indicated aritmetic operations and (except for the com-
plex numbers) the order relation.

Theorem 5 (Goedel 1931, Julia Robinson 1949)
The theories Th(N), Th(3) and Th(Q) are not even semi-computable.



For the quantifier free sentences of these theories we have algorithms (which
we learn in primary school).

Homework 1 Prove this.

For the existential theory Thx(91) and Thy(3) we have

Theorem 6 (Davis, Putnam, J. Robinson and Matijasevi¢ 1949-1970)
The ezistential theories Ths (M) and Thx(3) are not even semi-computable.

In contrast to this we have

Theorem 7 (Presburger 1929, Cooper 1972)
The theory Th(34) is computable in deterministic doubly exponential time.

Theorem 8 (Langford 1926, Tarski 1931, 1948)
The theories Th(R<), Th(Reda), Th(R+), Th(R) and Th(C) are computable.

Theorem 9 (Ferrante, Rackoff 1974, Collins 1975)
The theories Th(R<), Th(Redd), Th(Ry), Th(R) and Th(C) are computable

in determanistic doubly exponential time.

The theory of the reals with its arithmetic is important because it repre-
sents the algebraization of GEOMETRY. The Tarski-Collins algorithm gives a
THEOREM PROVER for EUCLIDEAN GEOMETRY.

1.4 Adding functions to the reals

It is natural to ask what happens if we add a function symbol to the vocabulary
and fix its interpretation.

We denote by
Rsin = (R, +r, XRr, sin(—)r, <r,Or, 1r)

Rerp = (R, +r, Xr, exp(—)r, <r,0r, LR)

the structure of the reals with the sinus function and the exponential function
respectively.
Tt is easy to show, by reduction to Th(91), that

Proposition 10 Th(R;;,) is not even semi-computable.

The following is one of the great open problems:

Problem 11 (Tarski) Is Th(R.ep) computable?

Very recently a partial answer was given by Maclntyre and Wilkey. It
says that under deep number theoretic conjecture (Shnirelman’s conjecture),
Th(Rezp) is computable.



1.5 Axiomatic theories

Sometimes we are not only interested in theories of specific structures, but in
theories Th(K) of classes of r-structures K which are axiomatized (defined) by
finite or computable sets of sentences (axioms) ¥ C FOL(r). We denote by

Th(Z)={¢ € FOL’(r) : S [ ¢}.
Examples are
(1) Infinite sets (with equality only)
(i1) Linear orders
(iii) Abelian groups
(iv) Groups
(v) First Order Peano arithmetic.

Homework 2 Write down the axioms of these theories.

In this list we have

Theorem 12 (i) The theories of infinite sets, linear orders (Lduchli and
Leonhard, 1966) ), Abelian groups (Szmielev 1955) are computable.

(ii) The theory of groups (Mal’cev 1961) and of Peano arithmetic (Godel 1931,
Turing 1936) are not computable.

Excellent surveys can be found in
e J. D. Monk, Mathematical Logic, (Part IIT), Springer 1976
e Y. Ershov, I. Lavrov, A. Taimanov and M. Taitslin, Elementary theories,

Russian Mathematical Surveys, 20 (1965) 35-105.

1.6 Goal of the course

The following options were voted:

e Study SAT and General Theorem Provers for half of the course, and then
Geometrical Theorem Provers.

e Concentrate on Geometry only.

The second option was chosen unanimously.



1.7 Outline of the course

In the next lecture we show

Theorem 13 (Langford 1926) The theory Th(R<) is computable.

There will be two proofs. The first 1s a pure existence proof. We show that
Th(R<) = Th(DLOpoextr, where DLOpeqtr consists of the axioms which say

(1) The relation <g is a linear order.

(i1) The relation <p is dense order, i.e. between any two elements there is a

third.
(iii) There are no first nor last elements.

In other words, DLOyseztr 1s complete. Then we use Godel’s Completeness
Theorem, which says that the consequence relation is semi-computable. The al-
gorithm now consists in using two Turing machines, one for DLOy, eztr = ¢ and
one for DLOpoextr = —¢. As DLOpoestr is complete, this always terminates.

The second proof constructs an algorithm which uses ELIMINATION of
QUANTIFIERS.

Our next goal is to show:

Theorem 14 (Fourier 1826, Dines 1918, Motzkin 1936, Ferrante, Rackoff 1974)
The theory Th(R;) is computable in doubly exponential time.

We shall see three proofs, an existence proof for the algorithm and two
specially taylored algorithms.

Then we shall have an interlude about real closed fields. Good references
are:

e Serge Lang, Algebra (Chapters 11-12), Addison-Wesley 1965 (many edi-
tions)

e Nathan Jacobson, Lectures in Abstract Algebra, Volume III: Theory of
fields and Galois theory (Chapter VI), Van Nostrand 1964.

Next we shall have an interlude on geometry. Our reference is
e Shang-Ching Chou, Mechanical Geometry Theorem Proving, Reidel, 1988

For the proof of Theorem 8 we shall provide explicit notes

e J.A. Makowsky and K. Meer, Real Number Complexity Theory (Chapter
3), Draft of a book available at

wWwW.cs.technion.ac.il/~janos/COURSES/THPR/tarskiproof .ps



2 Decidable Theories I: Vaught’s Test

Lecture 2, March 17, 2003, 1 hour
Notes by J. Makowsky and N.N.

We want to use the following:

Homework 3 Let 2 and B two isomorphic t-structures. Then Th(?) =
Th(B)

Theorem 15 (Cantor, ca. 1870) Let A and B be two countable dense linear
orderings such that they have corresponding first and last elements. Then A ~

B.

The proof will be given in Lecture 3.

Theorem 16 (Léwenheim, Skolem, Tarski, ca. 1930) Let T be a count-
able satisfiable set of sentences of FOL’(t). If T has an infinite model then
there are models of T of every infinite cardinality.

This is proved in the Course Logic 2.
We use these two Theorems to show

Theorem 17 The theory DLOpoertr € FOL°(R<) is complete.

Proof:
Assume not. Then there is ¢ € FOL°(R.) with neither DO Ly ,ertr = ¢ nor
DOLyoertr IZ _'¢~

Hence both DOL,, pextr U{¢} and DO Ly, pextr U{—¢} are satisfiable, and have
only infinite models which satisfy DOL,, peqtr-

Using Theorem 16 they have both countable models 20 | DO L, pextr U {}
and B = DO Ly, oertr U {—¢}.

By Theorem 15, they are isomorphic. By Homework 3 Th(A) = Th(B).
But ¢ € Th(2) and —¢ € Th(B). So both ¢, ¢ € Th(2l). But this contradicts
the satisfiability of Th(2). O

Homework 4 Write down the sentences for the theories DLO+ firstandlastelements,
DLO + firstbutnolastelement, DLO + nofirstbutlastelement and show that
they are also complete.

An almost identical proof like the one of Theorem 17 gives

Theorem 18 (Vaught 1954) Let T C FOL®(r) be a countable satsifiable the-
ory such that for some cardinality k, all models of T' of cardinality k are iso-
morphic. Then T 1is complete.

Homework 5 Prove Theorem 18.



Proposition 19 Let T C FOL®(t) be a computable theory (i.e., T is a com-
putable set). If T is complete then Th(T) is also computable.

Homework 6 Prove Proposition 19

Putting all this together we get:
Theorem 20 Th(DLO) is computable (but not complete).
Homework 7 Prove Theorem 20 in detail.

Homework 8 Let INF be the set of formulas with equality only which contains
all the formulas

dz3zs ... Tz /\ L R X
i,j<k,i#j
(i) Show that INF is complete and Th(INF') is computable.

(i) Show that for ¢ € FOL®(B) we have DLO |= ¢ iff INF k ¢.



3 Langford’s Theorem

Lecture 3, March 24, 2003, 3 hours
Notes by J. Makowsky and N.N.

Project 1 Edit and complete the notes of this lecture.

3.1 Proof of Cantor’s Theorem

Proof:

[Proof of Theorem 15] The proof used the back and forth construction of the
isomorphism. It uses the countability of the structures to make sure every ele-
ment is both in the domain and range of the isomorphism. It uses the properties
of the dense ordering with prescribed extremal elements to ensure that the con-
struction can be continued after finitely many steps. O

Homework 9 Complete the details of the proof.

3.2 Elimination of Quantifiers

Definition 21 Let T C FOL(r) be a theory and A C FOL(T) a set of formulas
closed under boolean combinations and which contains True and False.

(i) T admits A-Elimination if for every formula ¢(z) € FOL(r) with free
variable = (z1,...,2m), there is a formula (z) € A with the same free
variables, such that

T = Vz(o(z) & ¢(2))

(ii) T admits QE (Quantifier Elimination) if A consists of all quantifier free
formulas of FOL(1) U {True, False} and T' admits A-elimination.

(iii) T admits effective QE, if the quantifier free formula ¢ is computable from
@.

(iv) T admits fast QE, if the quantifier free formula ¢ is computable from ¢
in polynomial time (in some reasonable model of computation).

(v) A formula ¢ is simple if ¢ is of the form
Jx B(z,y)

where B is quantifier free. and of the form N\ A; and each A; is either
an atomic formula or the negation of an atomic formula.

Proposition 22 Let T C FOL(t) be a theory which admits effective QF. As-
sume further that the set of variable free sentences which are consequences of T
is computable. Then Th(T) is computable.

10



O

Lemma 23 Let T'C FOL(T) be a theory. Assume that for every simple for-
mula 3z B(z,y) there is a quantifier free formula B'(y) such that

T = Vy(3zB(z,y) + B'(z)).
Then T admits QF.

Proof:
Use the following normal forms from the Course Logic 1; Conjunctive Nor-
mal Form (CNF), Disjunctive Normal Form (DNF), Negational Normal Form
(NNF), Prenex Normal Form (PNF) and the rules of manipulation of quanti-
fiers. O

Lemma 24 The following formulas are logically equivalent:

Jz(o(z) Nz =y) and ¢(z) |y
where ¢(x) | is the result of substituting y for x in ¢.

Proof:
Use the definition of the meaning function for 3 and the definition of substitu-
tion. O

Homework 10 Fill in the details in the proof of Lemmas 23 and 24.

Theorem 25 The theory INF admaits effective QF.

Proof:

By Lemma 23 we it suffices to prove it for simple formulas. For this we use
Lemma 24. The proof we sketched in the lecture eliminated one variable at the
time, and in each step performed a transformation into DNF. This resulted in
an algorithm which used iterated exponential time. O

Homework 11 Design an algorithm for QFE for INF and estimate its running
time. Can you find an algorithm which runs in doubly exponential time? in
exponential time?

Theorem 26 (Langford 1926) The theory DLO, pextr admits effective QE.

Proof:

Similar to the proof of Theorem 25. But here we have to look at all the order
configurations of the free variables. Again our proof sketch eliminated one vari-
able at the time and used iterated exponential time. O

11



Homework 12 Design an algorithm for QE for DLOyseztr and estimate its
running time. Can you find an algorithm which runs in doubly exponential
time? in exponential time?

Next we stated Tarski’s Theorem.
The theory of real closed fields, RC'F, consists of the following axioms (which
are all true in fR).

(i) The field axioms.
(i1) The axioms of linear order.

(iii) The compatibility of the order with addition and multiplication: 0 < 1
and The product and sum of positive elements are postive.

(iv) Every positive element has a square root.

(v) Every univariate polynomial of odd degree has a zero.
Homework 13 Write down these axioms in FOL.

Theorem 27 (Tarski 1931, 1948, A. Robinson 1955) RCF is complete
and admits effective QF. Hence Th(RCF) = Th(R) and Th(RCF) and is com-
putable.

The proof will be given later. To get a feeling for the strength of this theorem
we compute some examples.

Homework 14 Find a quantifier free formula for the following formulas
Az(arz + ag & 0)

3x(a2m2 + a1z +ag & 0)
Jz(y22” + 1z + yo = 0)
Ela:(agm?’ +asr’+ a1z +ag & 0)
Jz(asz® + azz® 4+ asx? + arx + ag = 0)
where x and y; are free variables.

In the next lecture we look at A, .

12



4 The reals as ordered Abelian group, I

Lecture 4, March 31, 2003, 3 hours
Notes by J. Makowsky and E. Talmor

Frege has formally defined quantifiers in 1870. Before that, quantifiers were
used inexplicitly. For example, the following problem was considered, where a
solution is to be found for a simultaneous system of polynomial equations:

Y40 (i‘) =0
€ R[Z] (i.e. the ring of polynomials over R)
pn(2) =0

with coefficients in Q or in Z. Asking ”is there a solution?” in FOL is simply
a matter of satisfying the following existential formula:

EL/L‘(Z\pi(:E) 0)

If the polynomials are linear equations it is the case of linear programming.
Generally, it is the classical problem of existential / optimal formulas. At the
end of this lecture we shall learn significance of this rather natural problem.

12

We now look at PR,qq and Ry.
The following properties hold for $Ry44.

(i) The group is non-trivial, i.e., there is some a such that ¢ # 0. In FOL:
Ja(a # 0)
(i1) Addition makes it into an Abelian (commutative) group:

Va,b (
Ya,b,c (a+(b+c):(a+b)+c)
Va (0+a=a+0=0)

Va, bz (a+z=10)
Va (a+(—a)=0)

(iii) The group is torsion free, i.e., for all a # 0 and for all n € N

a+a+...+a#0
N——_———

In FOL, this gives us a formula for each n € N :
Va(a+a+...+a#0)
N— ————

n

13



(iv) The group is divisible, i.e., for every a, and every n € N there is some b
such that
b+b+...+b=a
—_———

n

In FOL, this gives us a formula for each n € N :

Vadb(b+b+ ...+ b=a)
" —_— ——

n

(v) For Py, additionally, it is an ordered Abelian group, i.e. for every three
elements a,b,¢c,if a < b thena+c<b+c. In FOL:

VaVbVe(a <b=a+c<b+e¢)

We say that R,qq is a divisible torsion free Abelian group (DTF AG) and that
MRy is an ordered divisible torsion free Abelian group (ODTF AG).

There are many structures which satisfy DT F AG: The additive structure of
@, of R and of C. Also the additive structure of the complex rationals CQ), i.e.
complex numbers with rational real and complex part, satisfy DT F AG. Both
@ and CQ are countable, but they are not isomorphic as abelian groups. In @,
take any a # 0,b # 0, at least one of the formulas

(e+a+...+a+b+b+...+4b=0)V

(a—I—a—I—...—}-a:-(—b)—|—(—b)+7.J..—|—(—b):0)

must be satisfied, for some u,v € N. This 1s true because of the linear depen-
dency of a and b, and the fact that the formula q1a + 26 = 0, where ¢1,¢92 € Q
can be transformed to either ua + vb = 0 or ua — vb = 0. On the other hand,
take 1,7 € CQ. There is no function f and no u,v € N such that

(FO+f+...+fO+fEH+fEO+...+fE=0)V

O+ + .+ )+ (=fE) + (=F() +... 4+ (=f(7) =0)

u v

is satisfied. A good book on the subject is ”Infinite Abelian Groups” by Ka-
plansky.
The structure of Q is minimal in some manner, by the following

Theorem 28 If a structure G satisfies DT F AG, then G has a subgroup G' € G
such that G' = Q.

Moreover, it follows from Linear Algebra, that every DT F AG can be viewed
as a vector space over £, and therefore we have

14



Theorem 29 [f a structure G satisfies DT F AG, then there is a set I such that
G=@;; Q.

and also

Theorem 30 Let A and B be two models of DT FAG which are of the some
uncountable cardinality k. Then 2 and B are isomorphic as Abelian groups.

We first show:

Theorem 31 (Tarski 1931, 1948, Robinson 1954)
Th(Radd) = Th(DTFAG).
In particular, the theory DT F AG 1s complete and computable.

Proof:
We apply Vaught’s test:
Given dictionary FOL(7) and T' € FOL(r) such that

(i) T has models (i.e., T is satisfiable).
(i1) T has no finite models.
(iii) there is k € Card such that all models of size k are isomorphic.

then T is complete.

And indeed DT FAG is FOL, and
(i) R is a model of DTF AG.

(i1) DTF AG has no finite models. Otherwise for some finite model, some a #
0, and some n,m € N, n # m, the following must hold: a +a+ ...+ a =
N—_— ———

n
a+a+...+a. Without loss of generality n < m. Therefore we must
—_——

m
have a+a+ ...+ a = 0, in contradiction to the torsion free property.
—_——

(iii) Follows from theorem 30.

Thus DTFAG is complete. Since Th(Reaqa) = Th(DTF AG), it follows that
Th(Raad) = Th(DTFAG) O

Corollary 32 There s no theorem in abelian groups that distinguishes Q from

R.

Next we have
Theorem 33 (Tarski 1931, 1948, Robinson 1954)

Th(R;) = Th(ODTF AG).
In particular, the theory ODTFAG is complete and computable.

15



However, here an abstract proof needs some more model theoretic work. You
can find such a proof in the original work by A. Robinson:

e A. Robinson, Complete Theories, Studies in Logic, North Holland, 1956

We shall give a proof of using effective quantifier elimination. In 1826,
Fourier solved the problem of the existence of a solution for a simultaneous
system of linear equations. By that he has proven QF. However, that work
had never been published, but was followed by separate works by Dines and
Motzkin, who had actually proved the same, giving us the following theorem.

Theorem 34 (Fourier 1826, Dines 1918, Motzkin 1936) The theory Th(Ry)
admits effective QF and hence 1s complete.

Proof:

Given a formula f(y), we first bring it to prenex normal form, and then the QF
is applied to the biggest sub formula of f having only one quantifier: Jzg(z, y)
(without loss of generality). Moreover we can bring g to DNF. The following
QFE will be applied to a formula g having a single clause. However, it is easily
seen that the QF is local, and can be applied to DN F' as well. For readability,
we use the single clause form. Another issue to point out, i1s that the atomic
sub-formulas within g take the form of (uzAg'(y)), where ¢'(y) doesn’t contain
z, u € N, and Delta € {<,<,=,>,>}. This is true since the only operator is
+. Thus, g(7) takes the form:

3o | N\ ti@)Aiwiz A N\ ujzAits(5) A\ se (@) Ax0 (1)
i j k
Where A;, A; € {<, <}, and u;, u; € N. But this is equivalent to

dx /\tz(Q)AZUZCL‘/\/\UﬁﬂAJt;(g) A /\SJ(Q)AJO
7 J J

3z | A\ ti@) Az A N\ wjzAt(y)
i J

is equivalent to
I\ witi (9) A juit} (9)
iJ

where

ij =

< ifboth A; = A =<
< A=< orAj =<

16



Here we eliminated one quantifier (3z), and can return to the form in (1).
Thus we apply this elimination inductively, until all quantifiers are eliminated.
At that point, only comparisons between rational numbers are left - these com-
parisons are obviously computable O

The last equivalence in the proof is Fourier’s. As seen before, iterations of

quantifier eliminations cause an exponential blow-up. However, the existence of
the algorithm proves completeness of Th(%Ry).

17



5 The reals as an ordered Abelian group, II

Lecture 5, April 7, 2003, 3 hours
Notes by J. Makowsky and A. Magid and Y. Magid

In the last lecture we proved

Theorem 35 The theory Th(Ry)

(i) has QF

(ii) is aziomatized ( = Ded(ODTF AG) )

(itt) Th(ODTF AG) is complete and decidable

() Th(Ry) = Th(Qy)

In this lecture we shall look at:
Zy={Z,+,—,<,0)

Theorem 36 (Presburger 1926) Th(3.) is decidable

Theorem 37 (Skolem) The same (different proof)

Note: In this case there is no QE. Another example is that Th((R,+,—, -, <
,0,1)) has QE, but without the < there is no QE.
z >0 iff Jy(y? ~ )
However, we can observe that every formula has an equivalent formula which 1s
a boolean combination of atomic formulas or formulas of the form Jy(y* ~ t).
In order to prove lack of QE we use the following lemma:

Lemma 38 Diagram Lemma: (A. Robinson): If Th() has QF then
Th(2) U D(A) is complete, where

D) = {B(a) : A |= B(a)}

and B(a) is a basic atomic or negated atomic formula and each a; is a constant
symbol with interpretation 1.

Proof:

Assume for contradiction that 7' = Th(2) U D(2) is not complete.

Take ¢(a@) (@ constants of diagram) and assume for contradiction that both
TU{p(@)} and TU {—p(a)} are satisfiable.

Without loss of generality we can assume that ¢ is quantifier free (since Th(2l)

has QE), and of the form:
AV Bi(@)
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But for every B;(a) we can derive from D(21) whether it is true or false in con-
tradiction. O

We shall use the above lemma to show that Th({R,+, —, -, 0, 1)) doesn’t have
QE. Define
T= Th(<Ra +7 5 07 1>) U D(GR: +a 5 Oa 1>)

Take /2 for example. Over the language of fileds, there exists an automor-
phism which swaps between /2 and —/2. Therefore T cannot be complete (for
example a formula such as

\/§>0:E|y(y2z\/§)

cannot be derived from T since otherwise, for the automorphism it would have
to hold for —/2.

Back to Presburger’s theorem. We shall find an axiomatization for Z
(a) Abelian group
(b) Ordered group
VeVy((z > 0Ay>0) = z+y>0)
Ve=((z > 0) A (—z > 0))
Ve((z>0)V(z=0)V (—z>0))
(c) The order is discrete

Ve((z>0) e (z=1V(z—1>0)))

The above axiomatization will be referred to as Discrete Ordered Abelian Group

(or Disc. OAG).
Theorem 39 Disc.OAG (over the language of 7.1 ) is complete but has no QF.
Homework 15 Define

G=(ZDdZ,+,—,0,<g)

where (a,b) >¢ (0,0) iff a >0V (a=0ADb>0)
Show that G satisfies Disc. OAG

Add D, (z) ”n divides z”

(dn)
Ve(Dy(z) & ylz=y+...+y))

19



(en)
Ve(Dp(z)V Dp(z4+ 1) V... VDp(z+14...4+1))

n—1
Theorem 40 (a) - (e, ) has QF.
Theorem 41 (Skolem’s Theorem) Th(3,<,+,0,1,¢-e,[e]) has QF.
Theorem 42 (Presburger’s Theorem) Th(3,<,+,0,1,e=, o) has QF.
Project Proposals

e Presburger + Skolem comparison

e Cooper’s algorithm for Presburger

Lower bounds (Fisher Rabin)
e Ferrante - Rackoff algorithm for Presburger

Lower bounds Fisher - Rabin

e Wu’s Geometry

e Simple exponential QE for 3zB(z) over R

Improvement for QE Complexity

In the simple method for QE, before each elimination step we have to bring the
formula to DNF (since the simple method handles Jz(B(z) where B(z) is in
DNF so that the existential quantifier can be ”pushed” inward), which causes
an exponential explosion in the formula’s size.

New approach: Manipulate only atomic formulas while preserving the for-
mula’s boolean structure (up to a small boolean "noise” at the innermost level
of the formula), so no repetetive DNF rearrangement is necessary.

For handling 3z(D(z,y): Atomic formulas of D are of the following form:

> fuArAc{<,= >}

For the 3 types of atomic formulas, we calculate D_., and Dy, in the following
way:

e z < t replace by true for D_, and by false for Dy
e t < z replace by false for D_,, and by true for Dy,

e t = x replace by false for both D_., and D,
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Now the formula 3z(D(z,y) will be replaced by:

t+v _
D ooV Do \/ D(——.79)

tvel

which is equivalent (if D is satisfiable then it is satisfiable by either a large
enough value of z (c0) or a small enough value of z (—o0), or by a value which
is between 2 relevant terms).

The new formula’s size:

|D—ool, | Deo| = O(| D)

1V D )=o)
tvelU

Therefore the growth in each step is polynomial. For handling universal quan-
tifiers, Ve is replaced by —Jz—.
Complexity:
th = (tho1)? = (n)zn — double exponential time.
Homework Solution

e G is an abelian group - immediate

e G is an ordered group:

((z1,22) >¢ OA (11,92) >¢ 0) =
(21 >0V (1 =0A22>0)A(xh >0V (11 =0Ay2 >0))
@1+ >0)V(zi+yr =0Az2+y2>0) =
(z1+y1, 22+ y2) >¢ 0=
V(@, 22)V(y1, y2) (21, 22) >a 0A (31, 92) >c 0)
= (z1,22) + (y1,92) > 0)

((z1,22) >¢ 0N (=21, —22) >¢ 0) =
(:L‘l >0\/(€L‘1 =0Axy >0))/\(—(L‘1 >0V(—£L‘1 =0A—x9 >0))
= false = Y-((z1,22) > 0A (=21, —23) >¢ 0)

V(z1, z2) (21, 22) >¢ 0V (21,22) = 0V (—21, —23) >¢ 0) - immediate
e < 1s a discrete order:
V(rl,mg)((aﬁl,:m) >a 0« ((L‘l >0V ((L‘l =0Azy > 0))

~ ((;‘El,Ig) = (1,0) V (;‘El,;‘Eg) — (1,0) >a 0))
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6 R? and Euclidean Geometry

Lecture 6, April 28, 2003, 2 hours
Notes by J. Makowsky and A. Magid and Y. Magid

How can we justify the connection between R? and Euclidean Geometry?
In Geometry the basic objects are:
points A,B,C,. ..
lines e f,g h,. ..
In R? these objects can be interpreted as:
points {(z, y)}
lines {(z,y) : ax + b =y}
In Geometry:
A €1l (A is incident to 1)
The distance between A and B “dist(A,B) is a number”
We would like to take the model of Euclidean Geometry and find (interpret)
it in fields.
Dist in R%

dist((21,1), (x2,92)) = V(21 — 22)2 + (1 — 12)?

We would like to show that every axiom in Euclidean Geometry , when inter-
preted into R?, will be provable in R?i.e -

Theorem 43 FEvery translation of a FEuclidean Geometry azriom is provable

from RCF.

Note: i is not a part of the language but it can be eliminated by using the
square function (writing formulas concerning dist? instead of dist). Also , it is
definable by a quantified formula for which the quantifier can be eliminated by
using QE (since RCF has QE).

FEzample 1:

Let g , g’ be lines and O , E ; A | B be points such that O € g , E € g,
A€g, B &g asdrawn in figure 1. We would like to find the point A+ B using
a Geometrical method:

Choose E’ on ¢'.

Draw h such that h is a line and E’ € h and h is parallel to g.
Draw the line F'A

Draw the line AC such that ¢ € h and AC is parallel to ¢'.
Draw the line CR such that R € g and CR is parallel to E’A.
The point R is the required point which its distance is A + B.

Note: The location of the point R should not depend on the choice of E’.

Ezxample 2:

This time we would like to use a Geometrical method in order to calculate
the point A - B:

Draw the line EE’ such that E' € ¢'.
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Draw the line E'A.

Draw the line BC such that C' € ¢’ and BC is parallel to EE".
Draw the line CR such that R € g and CR is parallel to E’A.
The point R is the required point which its distance is A - B.

Geometrical Axioms:

L1 A#B—)HTG(AECL/\BE(I)
There exists only one line between two different points (and the other way
around).

Is YVa3AIB(A# BAAEaABE A)
AJATFBIC—-Fa(A €aABEanC € A)
For each line there exists at least 2 points which are on it, and there exist
3 points which are not on any common line.

The definition of al|b:
JA(A€anNA€b) s5a=b

Iy VaVA(=(A € a) = 3b(A € b A allb))
For each line and a point which is not on 1it, there exists exactly one line
parallel to the first which goes through the point.

Let’s define a relation: ABC := “B lies between A and C”, B# A, B #C.

Now we will define another group of axioms:
II{ ABC - CBAANTa(A€aNBeanNCina)NA#BAB#CANA#£C
II, A+ B — 3C(ABC)
1l ABC - -ACBA—-BAC
I1, (Pasch)

[Fz(A€xABezANCex)AN-(A€a)A-(BE€a)A~(CE€a)AD € ahADB]
—3E(F €a NAEC)VIF(F € a ABFC)
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7 Geometry and Algebra, 11

Lecture 7, May 5, 2003, 3 hours
Notes by J. Makowsky and D. Zeitlin.

In this lecture we follow
Hart Robin Hartshorne, Geometry: Euclid and Beyond, Springer, 2000

Chou Shang-Ching Chou, Mechanical Geometry Theorem Proving, Reidel,
1988

Wu Wen-tsin Wu, Mechanical Theorem Proving in Geometries, Springer 1994

We continue the discussion on how Geometry is related to Algebra.

7.1 Atomic relations
Unary predicates Lines L, and points P.
Incidence A €[ stands for “the point A is on the line [”, for [ € L and A € P.

Betweenness B(A, B, C) stands for “A, B, C are on the same line and B lies
between A and C”.

Equidistance F;(A, B, C, D) stand for “the distance between A and B equals
the distance between C' and D”.

Equiangularity F,(A, B,C, D, E, F) stand for “the angle between A, B,C
and D, FE, Foare the same”.

Orthogonality F3(l1,[l5) stands for “ the lines {; and I3 are orthogonal”.

In Hilbert’s Geometry we have besides incidence € the relations betweenness
B, and E; and E5. This vocabulary is denoted by 7Tripert -

In Wu’s Geometry we have besides incidence € the relations £; and Ej.
This vocabulary is denoted by 7yy,,.

The vocabulary consisting of incidence and F; alone i1s denoted by 7g.

7.2 List of Axioms

Incidence Axioms

(1)
(12)
(13)

Parallel Axiom

(P)
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Betweenness Axioms

(B1)
(B2)
(B3)
(B4)

Congruence Axioms, segments
(c1)

(C2)

(C3)

(Desargues)

(Pappus)

Congruence Axioms, angles
(C4)
(C5)
(C6)
Circle Intersection Axiom Stated in [Hart], page 108.
(E) Given two circles A and T such that A has both points inside T' and
outside ', then ANT # 0.

Orthogonality Axioms These are stated in [Wu], pages 71-72.
(01)

Midpoint Axioms These are stated in [Wu], pages 91-95. Axiom (T) is called
there (8').
(S): Axiom of symmetric axis.
(T): Axiom of transposition.

Infinity
(Inf) Axiom of infinity
(D) Dedekind’s Axiom:
Yoy (e € XAy €Y = B(z,z,y)) 2> AeVey (e € X Ay €Y — Bz, z,y))

(FOL-D) Dedekind’s Axiom for FOL-definable sets:
For every Tripers-formulas ¢, ¢

2Vay (6(z) AY(y) = Blz,z,y)) — FeVey (é(z) AY(y) — Blz, 2,y))

(A) Archimedian Axiom
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Definition 44
(i) A Hilbert plane is Trjpert-structure which satisfies (I1-13), (B1-B4) and
(C1-C6).

(ii)) A Euclidean plane is Hilbert plane which satisfies additionally (P) and
(E).

(iii) A Pappus plane is rg-structure which satisfies (11-13), (P), (Pappus), (Inf).
This is also called a model of affine geometry.

(iv) A orthogonal Wu plane is 7y, -structure which satisfies (11-13), (P), (De-
sargues), (0O1-05), (Inf).

(v) A metric Wu plane is Ty -structure which satisfies (I1-13), (P), (Desar-
gues), (O1-05), (Inf), (S) and (T).

7.3 Geometry and fields

Given a field F' we define the standard geometry over F, or the Cartesian
Plane IIp, where points are in F? and lines are defined by linear equations
ar+ by +c=0.

Proposition 45
If F is any field, then Ty satisfies (I1-13) and (P).

Given a model of geometry, we choose a points O and 1, we can define
addition and multiplcation using segment arithmetic, which gives us a standard
number system.

In [Hart] propositions 15.4, 19.2 and 19.3 we have

Theorem 46
(i) In any Hilbert plane with (P) the standard number system is a field of
characteristic 0 which can be unquely ordered such that it is an ordered

field.

(ii) The ordered field is archimedian iff the geometry satisfies additionally the
Archimedian axiom.

(iii) The ordered field is Dedekind complete iff the geometry satisfies addition-
ally Dedekind’s axiom (D).

Theorem 47 (Tarski)
In any Hilbert plane with (P) the standard number system is a real closed
(ordered) field iff the geometry satisfies (FOL-D).

Theorem 48 (Schur 1903)

In an orthogonal Wu plane the standard number system is a (commutative)

field.
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Theorem 49

In a Pappus plane the standard number system is a a commutative field of
characteristic 0. Conversely, in every commutative field of characteristic 0 the
standard geometry is a Pappus plane.

In [Chou], page 39, we have:

Theorem 50 (Wu, Chou)
In a metric Wu plane the standard number system is a pythagorean® field | i.e.
a fileds which satisfies the Pythagorean axiom

Ve, yJz(za + y+ 2 = z2).

Conversely, in every pythagorean field the standard geometry is a metric Wu
plane.

2In [Wu] and [Chou] this is called a Hilbert field.
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8 Decidability of Geometry, I

Lecture 8, May 12, 2003, 3 hours
Notes by J. Makowsky and A. Magid and Y. Magid

In this lecture we follow

e M. Ziegler, Einige unentscheidbare Korpertheorien, in Logic and Algorith-
mic, An international Symposium held in honour of E. Specker, E. En-
geler, H. Lauchli; V. Strassen, eds. I’enseignement mathématique, 1982,
pp. 381-392

e [Wu], [Chou], [Hart]

e Bhubaneswar Mishra, Algorithmic Algebra, Springer 1993

8.1 Reduction

From the previous lectures we can now get the following translations.
Given a FOL(mwy)-formula ¢ we can define inductively a FOL(Tfie1q)-
formula tr1(¢).

(i) Equality between points P = (p1,pa), @ = (q1, ¢2):
PL=q1Ap2=q2
(i1) Equality between lines 1 = (a1, b1,¢1),l2 = (a2, ba, ca):
3d(da; = as Adby = ba Adey = ¢2)
(iii) Incidence P € :
aipr +bipa+c1 =0
(iv) Equidistance AB = C'D:

(a1 —b1)” + (a3 — b3)* = (c1 — d1)” + (c2 — d2)”

(v) Orthoganility {; L l5:
a1as + b1b2 = 0

(vi) Boolean operations and quantifiers:

tri((¢1 A ¢2)) = (tri(en,
tri((o1 V ¢2)) = (tri(o
trl(—!qﬁl) = —ir (]51)
tri(3zeq)
try(VYzo,)
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Conversely, Given a FOL(Ttie1q)-formula ¢ we can define inductively a
FOL(rwy U{0,1})-formula tre(¢). The elements of the field are equivalence
classes of line segments of equal length.

(i) Equality:
Eq (Aa B, CJ D)

(i1) Addition: Use the construction discussed in the previous lectures in order
to construct a line segment of length x+y.

(iii) Multiplication: Use the construction discussed in the previous lectures in
order to construct a line segment of length xy.

(iv) Boolean operations as for ¢ry.

Exercise 51
Formulate the corresponding translation between formulas for a Hilbert plane
and formulas of ordered fields, triT trl

Theorem 52

Let ¢ be a FOL(Ttie1d)-formula and let o be a FOL(rwy)-formula. Denote
by Fpy:n the axioms of pythagorean fields of characteristic 0 and by Gw, the
axioms of the metric Wu plane.

(i) Foyen b ¢ iff Gy F tr1(9).
(i) Gywu b iff Fpyen b tra(1)).

Proof:
O

Theorem 53

Let ¢ be a FOL(Totic1a)-formula and let 1 be a FOL(TH;pert)-formula. Denote
by RCF the axioms of real closed fields, and by GEgyci;q the axioms of the
FEuclidean plane.

(i) RCF F ¢ iff Gpuaia + (FOL — D)+ tri(4).

Proof:
O
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8.2 Decidability of the theory of fields

How can we now mechanize Geometry? By mechanizing the Algebra of various
Fields. Is this possible? Not always.
Let X be a set of FOL(r)-sentences. We denote by

Ded(X) ={¢ € FOL(r) : X I ¢}

and

Conseq(X) = {¢ € FOL(7) : ¥ | ¢}
Ded(X) = Conseq(X) by the Completeness Theorem of First Order Logic. The
Completeness Theorem also gives: If ¥ 1s semi-computable or computable then

Ded(X) = Conseq(X) is semi-computable. But in general Ded(X) need not be
computable.

Definition 54
¥ is decidable if Ded(X) is computable. Otherwise, X is called undecidable.

Theorem 55 (Julia Robinson, 1949)
The following are undecidable.

(i) The theory of fields.
(ii) The theory of fields of characteristic 0.
(iii) The theory of ordered fields.

Theorem 56 (Tarski, 1931, 1948)
The following are decidable.

(i) The theory of algebraic closed fields of characteristic 0.
(ii) For every prime p, the theory of algebraic closed fields of characteristic p.
(iii) The theory of real closed fields.

Theorem 57 (Ziegler, 1982)
(i) Let T' be a finite set of Ttic1q-sentences which has an algebraic closed field
as model. Then T is undecidable.

(ii) Let T' be a finite set of T,¢;e14-sentences which has a real closed field as
model. Then T is undecidable.

Corollary 58
The following theories are undecidable;

(i) The theory of orthogonal Wu planes.
(ii) The theory of metric Wu planes.
(iii) The theory of Hilbert planes.

(iv) The theory of Euclidean planes.

30



8.3 The form of geometric theorems

However, geometric theorems have a rather simple structure.

We are given a construction of points Py, Py, ..., P, and lines ly,ls,... I
using ruler and compass. The theorem then asserts that a subset of points
either meet, are colinear or cocircular, a subset of lines either meet, are parallel
or perpendicular, or a subset of pairs of points are pairwise equidistant.

Translating this into the language of (ordered) fields we get a formula of the

form
vz \ fi(@) = 0A /\ hj(2) #0 = g(&) =0
iel jed
Here the f;, h;, g are polynomials of degree 2. In particular, the statement is of
the form Vz®(z), with ® quantifier free.

Problem 59
What happens when we allow marked ruler in the construction?

We denote by VFOL(7) the set of universal FOL(r)-sentences, i.e., the set
of formulas of the form YZ®(z), with ® quantifier free. We denote by

VDed(X) = {¢ e VFOL(r) : T+ ¢}.

Denote by ACF, (ACF,) the theory of algebaric closed fields of character-
sitic 0 (p).

Theorem 60 (JAM)
Let T' be a set of T¢ie1q4-sentences (T,pie14-sentences) and let ¢ be a universal
Trield-sentence (Topie1d-sentence).

(i) If T has an algebraic closed field as model, then
TkF ¢ iff ACFy & ¢.

(ii)) If T' has a real closed field as model, then
Tk ¢ iff RCFF ¢.

In particlar, in both cases YDed(T) is decidable.

Proof:
We first prove (i).

Let T+ ¢. As ACFy is complete, and there is a model 2l |= T such that also
A = ACF,, we have that ACFy +T. So ACFy | ¢.

Conversely, assume T't/ ¢. Then there is a model 2 |= T such that 2 = —¢.
Let 2 be the algebraic closure of 2. This exists by the classic result of Steinitz.
A = ACFy, and hence 2 |= T by the hypothesis.

Now we use that ¢ is universal, and hence —¢ is existential. As 2 | -,
and 2 C A we have also 2 |= ~¢. By the completeness of ACF, we get So
ACFy F —¢.
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The proof of (ii) is similar. We just need that RC'F is complete, and that
every ordered field has a real closure. O

8.4 Complexity

Here we suppose that the reader is familiar with the course Computability over
the Reals.

The Turing Model - A binary world. Too low level.
We would like to define what i1s an Algorithm over R, C. There are several
variations. One of the problems is whether or not we can use equality between
reals as a subroutine.

For defining an algorithm we use the BSS Model. There are two representa-
tions for a BSS Machine:

e A Flow Chart

o A sequence of Register Machine Instructions (with oo registers, each hold-
ing a real number, no indirect addressing).

Accordingly, Pgr, N Pg, Pc, N Pr were defined and the following problems dis-
cussed:

L4 PTuring = PZ2

L4 NPTuring = NPZg C EXPTTuring
e NPy C EXPTx

e NPr C COM Py

The last two problems turned out to be significant problems.
Theorem 61 (Tarski) QF over R = NPg C COM Py

Theorem 62 (Gregoriev - Heintz - Ronegar) QF overR = NPr C EXPTg

Uriel G. Rothblum and B. Curtis Faves:
Linear Algorithm ¢ Linear Problem

In a similar way we can try to define an Elementary Geometrical Algorithm
(Ruler + Compass Alg.) and an FElementary Geometrical Problem and try to
find an equivalence between them.
Instead of the Reals we would start with Euclidean Geometry.
For tests we will use the relations which were defined in the previous lectures.
Instructions would be line intersections, drawing of a circle, .... Instead of
variables we have Points.

An algorithm can be represented as a flow chart, and we can inductively
classify the formulas which can be derived from such programs.
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We can also discuss complexity:
NP in Geometry: Assuming a set of Points, guess another set of points, such
that a construction is formed. In some cases the resulting constructions will be
invariant to the guesses.

Are there NP Complete problems? The assumption is that there are.
8.5 Homework Solution

Given a FOL(THipert)-formula ¢ we can define inductively a FOL(Tfie1q)-
formula trff(¢).

(1) Equality between points P = (p1,pa), @ = (q1, ¢2):
PL=q1Ap2=q2
(i1) Equality between lines 1 = (a1, b1,¢1),l2 = (a2, ba, ca):
3d(da; = as Adby = ba Adey = ¢2)
(iii) Incidence P € Iy:
aipr +bipa +c1 =0

(iv) Equidistance AB = C'D:

(a1 — 51)2 + (a2 — 52)2 =(e1 — d1)2 + (c2 — d2)2
(v) Equiangular ABC' = DEF"

sin(ABC) =sin(DEF) A cos(ABC) = cos(DEF)

where the sin(ABC') and cos(ABC) will be calculated by finding the line
l = (z,y,2) such that A € l and { L BC (defined as for the translation
from FOL(mw,)-formulas), finding the intersection point between [ and
BC, Oy and then:

sin(ABC) def IZOBI

cos(ABC) def iOBl

(vi) Betweeness B(A, C, D):
FAelNCelADEel) A(ar <e1)A(er <di))

where P €[ is translated as shown above.
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(vii) Boolean operations and quantifiers:

tri (61 A ¢2)) = (tri! (61) Atri (62))
tri’ ((61V ¢2)) = (tri! (61) Vtr{ (¢2))
tri (=¢1) = —tri (é1)
trif (3zd,) = Jxtrl (41)
tril (Yed,) = Vatr (61)

Conversely, Given a FOL(Tfic1q)-formula ¢ we can define inductively a
FOL(tHimert U {0, 1})-formula trf(qﬁ) The elements of the field are equiva-
lence classes of line segments of equal length.

(i) Equality:
E1(A, B,C, D)

(ii) Addition: Use the construction discussed in the previous lectures in order
to construct a line segment of length x+y.

(iii) Multiplication: Use the construction discussed in the previous lectures in
order to construct a line segment of length xy.

(iv) Boolean operations as for ¢ri!.
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9 Proving Geometric Theorems

Lecture 9, April 19, 2003, 3 hours
Notes by J. Makowsky and E. Talmor.

9.1 Introduction

This lecture will deal with some notion of ”common” geometry, i.e. proving
geometric theorems having a very limited use of quantifiers. Such a theorem
consists of:

(i) An independent set of points and lines. For example, an independent set
of three points A, B, and C, (also known as a set in general position)
admits that the points are not co-linear, and that there is no right angle
formed between them. If we now add a line, it cannot be independent of
the choice of A, B, and C, because it may or may not separate the points
between the two half planes it forms.

(i1) All points where circles and lines intersect with other objects.

(iii) Objective: Prove that if for a configuration some equations hold, then
some more equations hold.

For example:

B] B2

C] C2

Choose an independent point A as a circle center. Now By, Bs, Cy, C5, are
not independent. Prove that if B; By = C1C5, then B1C| = ByCy
Another example, 1s the "marked ruler”:
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o
Given O, [, h, d find A, B such that A€ h, B€l, AB=d, Ac OB.
Generally, these problems translated to coordinates have the following struc-
ture:

Vm(/\(fi(l‘) =0)A N (si(z) #0) = (/\(yj(f) = 0) = h(F) = 0))

iel lel jed

configuration

where f;, si, y;, h are all quadratic polynomials. Consider the following logical
equalities:

A= (B=C)=-AvV(B=>(C)=
AV (-BVC)=(mAV-B)VC =
~(AANB)VC=(AAB)=C

Then we can rewrite the problem structure as

Yz <quadratic equalities and inequalities = quadratic equality)

9.2 Restricted Decidability

In the previous lecture we have seen that 7'H (Euclidean Field) is undecidable.
However, we have the following

Theorem 63 Dedy(Fuclidean Field) is decidable.

Where Dedy(Euclidean Field) is the collection of all formulas of the form

vz <polynomial equalities and inequalities = polynomial equality / inequality)

but we shall prove the following stronger theorem.

Theorem 64 For all formulas ¢ of the form described in theorem 63
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(i) ACFy =Vzo(z) off
(ii) Pythagorean Field = VT (z) iff

(iii) T = Vzp(z), where T U AFCy is satisfiable, and every model 2 of T' has
an extension B, A C B = ACF,.

We have shown previously, using Vaught’s Test, and a theorem by Stienitz
that AC'Fy is complete, and hence decidable. Therefore, given theorem 64, the
automated theorem proving algorithm for AC'Fjy can be used to prove (or dis-
prove) anything in T

Let us recall that in a pythagorean field, Vey3z(2? + y* = 2?).

Observation 65 ACF, = Pythagorean Field.

Proof: Tt is obvious that F' |= field. So we have to show that ACF; |
Vaeydz(z?+y?— 2% = 0). Take any specific z,y and expand the dictionary T with
a new constant ¢, where ¢ = x24+y%. Let 7/ be this expanded dictionary. So with
7', ACFy |= 3z(c — 2% = 0), because the field is algebraically closed. Therefore,
with 7, ACFy = Jz(z? +y?— 2% = 0), and thus ACFy = VeyIz(z? +y*—2? = 0)
O

This gives us (i)=(ii) for theorem 64.

Observation 66 T |=VYZp(z) = AFCy |E YZe(Z).

Proof: We know that AC'Fj is decidable, and that T'U AC Fj is satisfiable.
Therefore, ACFy |=T. Therefore T |=VZp(z) = AFCy EVZp(z) O

This gives us (iii)=(i).
Now, for (i)=(iii), we assume that in ACFy, VZ¢(Z) holds. We want to
show that it holds in T as well. The following observation will aid us:

Observation 67 (Tarski) Let A C B, be T structures, i.e. A is a substructure
of B (with the same relations, and function closure). Then

B = Vip(z) = AR Vee(z)
and
A= Jzy(z) = B | Iz (z)
where @, 1 are quantifier free, and FOL.

Proof: This is simply because if there is an z in 2 that satisfies ¢, then z
is in B as well. If all members in ‘B satisfy ¢, then all members of U satisfy ¢
as well, since they are included O
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Lemma 68 ACF, EVZp(z) = T | Vzp(z)

Proof: Now assume for contradiction that (i) (iii). So we want to show:
if TU (32—¢(7)) is satisfiable, then AC'Fy U (3z—¢(Z)) is satisfiable. This will
contradict the assumption of (i) : ACFy | VEp(z). T U (3z-pz) is satisfi-
able. Therefore, there is a model 2 | T'U (32-¢(#)). by assumption (iii) of
theorem 64 there is an extension B, 2l C B | ACF;. From observation 65,
A = Jz-p(z) = B |E ACFy U (3z-¢(Z)). Therefore, ACFy U (Iz—¢Z) is sat-
isfiable. O

It is left to show that (ii)=(i), i.e. that every pythagorean field has an
extension B = ACFy. This follows from a more general theorem which we will
not prove here:

Theorem 69 Fuvery field 2 of characteristic 0, has an extension B | ACFy.

This completes the proof of Theorem 64.
Next, we can prove a similar theorem to theorem 64

Theorem 70 For all formulas ¢ of the form described in theorem 63
(i) RCFy =Vzp(z) iff
(ii) Fuclidean Field |=Vzo(z) iff

(iit) T = VZp(Z), where T U RFCYy is satisfiable, and every model A of T' has
an extension B, A C B = RCFy.

Similar to Observation 65, we first prove the RC'F |= Euclidean Field. The
proof goes along the same lines: F' = Field trivially. Then we show that RC'F |=
Vz > 03y(z = y?), by the same technique of adding a constant ¢ = z to the
dictionary 7 and then showing that Jy(c — y*> = 0) due to the RCF etc...
We would also use a similar theorem to theorem 69: every ordered field has
an extension B | RCF. We use Wu field to prove the ACFy version of the
theorem, and Hilbert for the RC'F' version.

It would have been more straight forward to work on the real field, instead
of RC'F, and indeed Hilbert tried to define the axioms for a field being exactly
R. However, Tarski has shown that it was impossible in FOL, and therefore
settled with the definition of RCF, using Dedekind’s Axiom (field version given
here):

VXY ((VzeXVyeY(z<y)A(Vze X' € X(z <)) A
(Vy e Y3y eY(y <))
= z(Vz e X(z<2)AVy €Y (2 <y)))
This definition is clearly second order logic. The FOL alternative, is to define
a (infinite) set of axioms, for any two sets X Y, with functions ¢(z), and ¥(y)

replacing z € X, and y € Y respectively. Using such a definition, we have
Ded, y in FOL.
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9.3 Quadratic is Good Enough

Now we shall justify the restriction of our geometric problems to quatratic poly-
nomials. Again, the general form is:

V2 ( A(((E) = 0) A (9(5) #0) = h(®))

i3

Now, take for example the polynomial equality z2f(z) = 0. By adding
quantified variables, we can reduce the degree of z:

P f(2)=0 < Fu(z?=uAuzf(z)=0)
& Juu'(z=uAu =ux Auf(z) =0)

For an inequation g(z) # 0, we replace it with Ju’(g(z)u” = 1). Thus, if
there is a good algorithm for quadratic polynomials, there is a good algorithm
for higher degree polynomials as well.

For Wu geometry

-Vz(A fi(z) = 0= h(z) =0)

& Jz- (= A fi(z) =0V h(z) =0)

& Jz (-~ A fi(2) = 0Ah(z) #£0)

= El:b,u(/\fi(i) =0Auh(z)—1= 0)

9.4 Evaluating the Quadratic Equations

Finally we want to know how to actually determine whether a solution to a
set of quadratic equations exists. For instance, we would like to know whether
Jry(z? + 2y +y = 0A 222 4+ 3y? = 0). If y is constant, we have a quadratic
equation in one variable (z), thus we can solve it. If we have a linear set of
equations, i.e. /\jeJZi a;;x; = bj, we can rewrite it as AZ = b where A is an
n x n matrix, without loss of generality. A set of equations is solvable if the
resolvent suffices certain conditions. The resolvent of a set of linear equations
relates to the determinant. Thus a non constructive method for determining
solvability is defined by 3zAz = b iff det(A) # 0. Gauss gave a constructive
method in the 19th century - Gauss Elimination - by triangulating the matrix
A.

For non linear equations, Hilbert’s Nullstellensatz provides a non construc-
tive method. Later on, G. Hermans offered a constructive method (based on
works of Nothe and Hilbert as well). Solutions for AC' Fy: Grother Basis (1970),
Wu-Riff method. RC'F poses a harder problem, and two important works should
be mentioned here: Collins - Cylindric Algebraic Decomposition, and Strum -

Sequences (1860).
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