1 Existential Theory of the Real Numbers

The results of the previous chapters have shown why an analysis of NPg-
complete problems is important. However, there is one major point missing
in order to justify the relevance of the completeness concept: We have to
establish that all problems in class NPp actually can be decided by a BSS
algorithm.

The definition of class Py directly implies any problem in P to be decidable.
If it would turn out that the same does not hold true for NPg, then the
meaning of Theorem Theorem ?? would be significantly reduced. In that
case we would only have established that (polynomially) decidable problems
are easier to be solved than undecidable problems - a trivial fact which would
immediately imply as well Pr # NPpg.

In the present chapter we therefore want to present an algorithm showing
that the 4-Feasibility problem, and thus any problem in class NPg, is de-
cidable. As a consequence, this result substantiates the importance of the
Pr = NPg?-question. Recall that the same result in the Turing model was
obtained in a straightforward manner. The 3-Satisfiability problem is de-
cidable in simple exponential time just by a brute search among all possible
assignments for the given formula. Since the number of assignments for a
given, fixed number of Boolean variables is finite, this algorithm will termi-
nate. In contrast, for a polynomial f € Rz] in n real variables we cannot
plug in all of the uncountable many assignments for the variables into f and
check, whether one of it evaluates to 0. The guessing space is uncountable
and an obvious algorithm for deciding the question is not at hand.

As we will see in this chapter the corresponding question has a long his-
tory tracing back to work done by Tarski in the 30s of the last century. He
was the first who gave a decision procedure (which can be formalized as a
BSS algorithm) for the so-called existential theory over the real numbers.
His famous theorem is settled in a (more general) model-theoretic frame-
work. It deals with the question whether real-closed fields allow quantifier
elimination for first-order formulas .

We want to present Tarski’s algorithm and use it to derive a decision pro-
cedure for all problems in NPpg. Unfortunately, the complexity of the algo-
rithm is tremendous; it does not imply a simple exponential time bound for
the 4-Feasibility problem in the BSS model. Much work in the recent 25
years was devoted to speed up Tarski’s procedure, see [14, 76, 28, 29, 57, 4, 3].
After a huge amount of research the currently fastest algorithms (at least
from the theoretical side) for the solution of problems in NPg provide a sim-
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ple exponential running time, thus meeting the bounds known for discrete
complexity theory and the class NP.

EVENTUELL: AT THE END OF THIS CHAPTER WE SHALL ALSO REPRESENT
ONE OF THESE FASTER ALGORITHMS GIVEN BY RENEGAR [57].

In order to give an idea of the question quantifier elimination is dealing with
let us start with an easy example.

Example 1.0.1 Consider a univariate polynomial f(z):=2?+a-2 +b of
degree two. In high school one studies the solution behavior of the equation
f(z) = 0, i.e. the pair (a,b) was given and depending on the values it is
figured out whether the equation is solvable or not.

In a more formal way the problem can be stated as follows: Given a formula

Yla,b) = 3z eRa*+a-2+b=0

with free variables a,b we want to figure out conditions on a and b under
which the formula is true. The well-known answer tells us that we should
consider another formula, namely

pla,b) = a*—4-b >0

and that p is equivalent to ¢, i.e. p(a,b) < ¥ (a,b)V a,b € R. The advantage
of considering p instead of ¢ is that no more quantifiers appear in p. Given
a pair (a,b) we just plug it into p, evaluate the left hand-side and check,
whether it is non-negative.

Note that the above situation completely changes if we require a,b and a
solution z to be rational numbers. a

The above example provides an easy one of a quantifier elimination. Given a
formula with quantifiers, we want to know whether there exists an equivalent
formula which is quantifier free. Moreover, we want to compute the former
from the letter (by a BSS algorithm). This is the general task of quantifier
elimination. Tarski’s theorem states that such an elimination is possible
(in the sense of: there exists an equivalent quantifier free formula and it
is computable) for formulas over the real numbers, which just contain the
arithmetic operations, the order, existential and universal quantifiers over
the reals and the logical connectives (i.e. formulas in first-order logic, see

below).

As references for our presentation of Tarski’s method we point the reader
to [9], [31] and the unpublished paper [50], which is based on an idea by
Mushin.
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1.1 The univariate case: Sturm’s Theorem

Because of its importance in the proof of Tarski’s theorem, and because of its
historical interest we start with a presentation of Sturm’s theorem, [64]. It
is devoted to compute the number of real zeros a univariate real polynomial
has. The first basic definition is

Definition 1.1.1 Let a := (ag,...,aqs) € R the number SC(a) of sign
changes in a is defined as

SC(a) = {(i,i4+k) | a;-aipr < 0and ajq, =0V 0 < r < k, k> 1}.

O
For example, SC(-1,0,-1,2,0,-2) = 2.

Definition 1.1.2 Let p € R[z] be a polynomial in one real variable 2 and
let @ < b€ R.A Sturm chain of pin [a, b] is a finite sequence (fo, f1,..., fs)
of univariate polynomials in R[z] such that the following conditions are
satisfied:

i) fo=p;
ii) the polynomial f; has no real roots in [a, b];
iii) for 0 <7 < s and « € [a,b] such that f;(a) =01t is
fici(@) - fig1 (o) < 0;

iv) for a € (a,b] such that fy(a) =01t is

(for fi)(a—€) <O
(for fi)(a+€) >0
for sufficiently small values of € > 0.

a

Note that condition iii) implies f; and f;41 to have no common zeros in [a, b].

The first theorem in this section states that a Sturm chain can be used
to count the number of real zeros of a univariate polynomial in an interval.
Thereafter, we will show how a Sturm chain can be obtained for an arbitrary
polynomial.
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Theorem 1.1.3 Let (fo,..., fs) be a Sturm chain for a polynomial p € R[z]
on [a,b],a < b. We denote by SC(z) the number SC(fo(z),..., fs(z)) for
z € R. Then SC(a) — SC(b) is the number of different real zeros of p in

(a,b].

Proof. The proof proceeds by bookkeeping the changes in SC'(z) when x
is moved from a to b. Consider an « € [a, b]. There are three cases:

1)

2.)

If fi(a) #0forall 0 < i< sthen SC(z) is constant in a neighborhood
of a.

If fo(o) # 0 and fi(«) = 0 for an 0 < ¢ < s, then condition iii) of the
definition of a Sturm chain implies that the signs of f;_; and of f;14
are constant in a neighborhood of a. For example, we might have a
pattern like

fz’—1(90) fz(ﬂf) fz’—|—1(96)

a—c<r<w +
T = + 0 —
a<zr<ate + -

for ¢ > 0 small. We see that the value SC(z) remains constant for
z € (v — €, a0+ €), no matter what the signs of f;(z) are for z < a or
T > a.

If fo(e) =0 for a > a then the value SC(z) is reduced by 1 if z passes
« from the left to the right. This is true because of condition iv) in
the definition of a Sturm chain.

For example, suppose

-1 a—e<r<uw
sgn(fo(ac)):{ 1 a<z<ate

This implies

1 a—e<r<uw
sgn(fl(ac)):{ 1 a<z<a+te

The other cases can be treated similarly.

Note that for @ = a the value SC(2) is locally constant in [a, a + €]. |
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Corollary 1.1.4 With the above notation the number of different real zeros
of a polynomial p € Rla]is given by SC(—o0) — SC(o0).

Proof. Since for any univariate polynomial ¢ we have | 1|im q(z) = £oo,
r|—oo

thereis an M € R such that the sign pattern of a Sturm chain for p evaluated
in @ < —M will be the same as the one for —M and the sign pattern of the
same Sturm chain evaluated for > M will be the same as for argument

M. Thus, the number we are looking for is given by SC(-M) — SC(M) by

the previous theorem. [ |

The final problem is to find a Sturm chain for a given polynomial p.

Theorem 1.1.5 Let p € R[z] be a polynomial without multiple roots in
[a,0],a < b. Put fy :=p, f1 := p and define polynomials f;,;2 < i < s via

fico=fici-9:— [,

where deg(f;) < deg(f;—1) and s is minimal such that f;(z) #0V z € [a, b].
Then (fo, ..., fs) is a Sturm chain for p. It can be computed by the Euclidean
Algorithm.

Proof. We have to check conditions i) till iv) of Definition 1.1.2. The first
two conditions are obvious from the fact that p has no multiple zeros.

Ad iii) Let f;(z) =0 for an index 0 < 7 < s and an z € [a, b].

The construction implies

fier(@) = = figa () resp. fimi(2) - fiya(2) <0

If the latter product would vanish we obtain fy(z) = fi(z) = 0 by the
formulas defining the f;’s , i.e. p would have multiple zeros.

Ad iv) Let fo(z) = 0, then z is a local minimum for fZ(z) and we can
conclude

2-fo-fi)(x—€) <O0and (2-fo- fi)(z+¢€) >0
for ¢ > 0 sufficiently small. -

It might be difficult to check whether fs(z) # 0 on [a,b]. In order to avoid
this test we can continue with Euclidean’s Algorithm until we have computed
a greatest common divisor of p and p'. It is easy to see that the potentially
longer list of polynomials again gives a Sturm chain for p. If p has multiple
zeros, one can first compute the greatest common divisor p of p and p’ and

then apply the above algorithm to %. If we want to count multiplicities as
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well, then the algorithm has also to be performed for p. Finally, note that
the Euclidean algorithm is used by taking negative rests; the reason for this
variant becomes obvious in the proof.

Example 1.1.6 Let p(z) := 2%4a-2+b =: fo(z) be an arbitrary polynomial
of degree 2. We obtain fi(z) := p/(z) =2 -2 + a as well as fo(z) = fi(a) -
(5+5) - (% —b). The latter implies f3(z) := % — b. The sign behavior for
(fo, f1, f2) is given by

z sgn(fo) sgn(fi) sgn(fo)

—00 + — sgn(a? — 4b)
o0 + + sgn(a2—4b).
which results in
SC(—00) = SC(0) =0 & a? —4-b<0
SC(—0) = SC(0)=1 & a?—4-b=0
SC(—00) = SC(0) =2 & a*—4-b>0.

1.2 Tarski’s Theorem

We are now going to generalize the ideas behind Sturm’s Theorem to the
multivariate setting and several polynomials. We shall consider a finite
family P := {py,...,ps} of polynomials depending on variables yy, ..., y,, z.
Since the proof of Tarski’s Theorem is based on a stepwise elimination of
variables, we divide the latter into the block y := (y1,...,y,) and the single
variable z. The aim is to show how questions about the sign vectors (see
definition below) of the system P can be reduced to questions about the
sign vectors of another family of polynomials, this time only depending on
variables y (thus, z is eliminated).

The proof, though not extremely difficult, is divided into several parts whose
interaction is a bit complex.

For a moment let us deal again with univariate polynomials and define a
particular table related to a system of such polynomials.

Definition 1.2.1 Let pq,...,p, denote polynomials in one variable.
a) w = (wy,...,ws) € {—1,0,1}° is a valid sign vector for the family

(p1s...,ps) iff there is a € R such that sgn p;(z) = w; V1 < i < s.
Here, we define the sign function as usual by
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1 x>0
sgn x 1= 0 z=0
-1 z <0

b) Let 21 < 22 < ... < ay be all points in R in which at least one of the
p; vanishes. Define zg := —0co , zn41 := 00 as well as [}, := (24, Tp41)

fork=0,...,N .
Then the sign table SGN(P)= SGN (p1,...,ps) of P is defined as

sgn p1(lo) sgn p1(x1) sgn p1(11)
SGN (p1,..ps) = . , , : ,

sgn ps(lo) sgn ps(z1) sgn ps(11)

sgn p1(zN) sgn p1(In)
sgn ps(zN) sgn ps(In)
a

Remark 1.2.2 a) The value sgn p;(I;) denotes sgn p;(z) for a point z €
Ij;. This notation is independent of the particular z because all p; have a
constant sign in the interval 7.

b) SGN (p1,...,ps) contains all valid sign vectors of the system P. A sign
vector can appear several times in the table: if w € {—1,0,1}*is attained in
7 and 7, then w has to be listed at least twice if the system attains another
sign vector for a point z € (¥, Z).

c) The sets Ip,{z1}, [1,{z2},..., IN,{2N}, IN41 give precise information
about the connected components of R, on which the system (p1,...,ps)
does not change its sign vector. They are called the sign consistent con-
nected components of P. a

Example 1.2.3 Consider P := {p1, p2, p3}, where p;(z) := 2° — 1, pa(a) :=

2.2+ 2, ps(x) := 1. The points 1 := —1 and 25 := 1 are the zeros of one of
the p;. We obtain a table with 3 columns and 5 rows, given as
-1 -1 -1 0 1
SGN(phP%PS) = -1 ) 0 ) 1 ’ 1 ’ 1
1 1 1 1 1
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If the p; are polynomials in several variables y, z, a similar table can easily
be defined for a fixed choice of ¢ € R” for the variables y. Write a p; as
polynomial in 2 with coefficients in R[y], i.e. as an element in Ry][z].

Definition 1.2.4 Let P be as above and let ¢ € R™ be fixed. We denote by
SGN (P, c) the sign table obtained for the univariate family of polynomials

pi(c,®), ..., ps(c, o). O

Before we continue with the description of Tarski’s algorithm let us out-
line the general ideas it is following. Suppose we want to decide whether
a multivariate polynomial family py,...,ps has a common zero (any other
requirement on the signs of the p; either in one single point or in all points
is allowed as well). Then there exists a vector (c¢,z) € R""! such that
pi(e, ) = 0V 1 < ¢ < s. Therefore, if we consider the table SGN (P, ¢) it
contains a column of zeros. And vice versa: if for a particular choice of ¢ the
table SGN (P, ¢) contains a column of zeros, then the polynomials in P have
a common zero. Hence, the question of deciding whether a family of polyno-
mials has a common zero is equivalent to the question of deciding whether
there is a choice ¢ € R” such that SGN (P, ¢) has a zero column. The main
idea of the decision procedure is the way of approaching the latter question.
In a first step, starting from P another finite family BC'(P) of polynomials
is constructed; the elements of BC'(P) are polynomials depending on y only,
i.e. BC(P) C R[y]. It then turns out (and this is the crucial fact) that for
fixed ¢ € R™ the signs of the polynomials of BC'(P) evaluated in ¢ already
determine the table SGN (P, ¢). The latter transformation moreover can be
computed by a BSS algorithm (which was, of course, not Tarski’s formula-
tion). Note that even though there are uncountably many choices for ¢, the
number of different sign patterns given by BC'(P) is finite.

We can then figure out those patterns which produce a zero column in
SGN(P,c) and continue our procedure recursively by deciding, whether
these sign patterns for the family BC'(P) can be realized. The latter question
depends only on the variables y, i.e. x has been eliminated.

We now describe the construction of the above mentioned family BC'(P). It
is defined in two steps; first, we build the closure C'(P) of the initially given
family P := {p1,...,ps} C R[y][z] under certain operations. Then, BC(P)
is obtained as the intersection of C'(P) with R[y].

The operations are very much related to the ideas behind the proof of

d :

Sturm’s theorem. Let f(z) := > a; - 2' € R[y][z] be a polynomial with
=0

a; € Rlyl,aq# 0 € R[y] and d > 1.
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We define
(1) Derivative : Fy(f) := % € Rly][z];
(2) Leading coefficient : F5(f) :=aq € R[y];

(3) Omitting leading coefficient : F3(f) = f — F3(f) - 2% € R[y][z];

d ,
The fourth operation Fjy is applied to a pair f(z) := ) a; - 2" and ¢(z) :=

=0
> by -2* of polynomials in R[y][z], where d > e > 1 and f # g. It is defined
k=0
as

(4) Modified remainder : Fy(f,g) := r € R[y][z]. Here, r is obtained by
dividing f by ¢ with rest as polynomials in z and multiplying the
resulting equation by the common denominator b3=¢+' ¢ R[y]. That
is, r is the unique polynomial in R[y][z] given by the equation

bt f(z) = g(2) - h(z) +r(2) , dega(r) < deg.(g),h € R[y][].

Remark 1.2.5 The reason for the multiplication with b2+~ in (4) is that
we want to set up an iterative algorithm later on. Therefore, after elimi-
nating @ we have to start anew, this time with a family of polynomials in y
(and not of rational functions). ]

Definition 1.2.6 Let P := {py,...,ps} be a finite family of polynomials in
R[y][z]. The closure C'(P) of P is defined to be the (finite) set of polynomials
in R[y][z] satisfying the following conditions:

i) PCC(P)

ii) ¥V p € C(P) such that deg,(p) > 1 the polynomials F;(p),1 < i <3
belong to C(P);

iii) V p,q € C(P) such that deg,(p) > deg.(q) > 1 the polynomial Fy(p, q)
belongs to C'(P).

a

Proposition 1.2.7 Let P be as above, then C'(P) is well defined, finite and
computable within a finite number of steps by a BSS machine on input P.
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Proof. Starting from P we enlarge P step by step by applying one of the
operations I, ..., Fy either to elements of P or to elements already derived
previously during this process. Note that every F; results in a polynomial in
R[y][#] which has a smaller degree with respect to z than its argument (resp.
its arguments in case of Fy). Thus, since P is finite and since all operations
can only be applied to polynomials of degree at least 1, the closure C'(P) is
constructed after a finite number of steps (all of which are clearly computable
by a BSS machine). |

The polynomials among C'(P) we are mainly interested in are those which

depend on the variables y only.

Definition 1.2.8 For P as above the base of the closure C'(P) is defined
as

BC(P) = Ry]nC(P).
a

Example 1.2.9 Let P := {p} be given by p(y,z) := 22 -y — 1 (y a single
variable). We can construct C'(P) as

nl(y,z) = Fip)=2-a-y

2(y,z) = FRp)=y

gs(y,x) = Fs(p)=p—Fp(p)-2*=-1
u(y,z) = Fip,q)=-1

ey, 2) = Filg)=2-y

g(y,z) = Io(qp)=2-y

qr(y,z) = Fs3(q) =0

Since the F; have to be applied to polynomials of degree > 1 w.r.t. z, at
this point no more polynomials can be obtained. The closure is computed.
Finally, BC(P) is given by {q2, ¢3, 94, g5, ¢s, g7 }. Even though some of the
polynomials appear twice it is important to have them all included. As we
will see later on, the point here is to know which operation has been used in
order to obtain a particular polynomial, and not whether some operations
yield the same result. The reader might get a feeling about the tremendous
complexity of computing C'(P) for more complex systems already from this
trivial example. a

Theorem 1.2.10 Let P = {py,...,ps} C R[y][z] and ¢ € R™. Then there
is a BSS algorithm which, given the signs of all polynomials ¢ € BC(P) if
evaluated in ¢, computes the table SGN (P, ¢).



1.2 Tarski’s Theorem 11

Proof. The proof is a (reverse) induction on the steps performed in order
to compute the closure C'(P) starting from P. Consider an arbitrary, finite
BSS algorithm A computing C'(P), see Proposition 1.2.7. Let BC(P) U

{fiy..., fe} and
C(P) = BC(P)U{q,...,u} -

Here, we suppose that the ¢; are given in the reverse order in which they are
produced by algorithm A; that is, ¢; is the last polynomial in C'(P)\ BC(P)
produced by A, ¢ is the second last and so on.

In particular, if we consider the polynomials Fi(g;), F2(q;) or F5(g;) for a
¢; € C(P)\ BC(P), then they can be found among BC(P)U {q1,...,q-1}
(again, the same polynomial might of course have occurred earlier, compare
the remark at the end of Example 1.2.9). Similarly, Fi(q;,¢) € BC(P)U
{q1,-..,qi—1} for ¢ € {q1,...,¢;—1} because then ¢ was produced later than
¢; and Fy(q;, q) later than both.

The proof proceeds by induction on BC(P) U {q,...,q} with respect to
increasing ¢, i.e. we show that, given the signs of BC'(P) in ¢, the table
SGN({q,...,q},c) can be computed from SGN({q1,...,q-1},¢). Since
C'(P) contains P we will finally obtain SGN (P, ¢).

The tables we construct during the algorithm are structured as follows:
the rows are named by a polynomial and the columns correspond either
to intervals in which all the listed polynomials have a constant sign or to
symbolic roots of at least one of the polynomials. Adding a new polynomial
in the induction step increases the table by one row for the new polynomial
and by as many columns as that polynomial has zeros which were not already
among the zeros of the previously listed polynomials. Whereas the ordering
of the rows is irrelevant (we add one row at the bottom) the ordering of the
columns is not. A new column has to be included into the scheme according
to the usual ordering of the real zero related to it in comparison with the
other zeros (however, we do not compute such a root, see Remark 1.2.11

below).
Our first scheme for BC(P) has ¢ rows indexed by fi,..., fr and 3 columns
for 2g := —o0, [} := (—00, 00) and z; := co. Every row has the form

sgn(f;) sgnlf;) sgn(f;)
due to the fact that for fixed ¢ all f;(c) are constant real numbers.

For ¢ = 1 the polynomial ¢ is the final one produced by algorithm A such
that deg.(q1) > 1. Therefore, deg,(q1) = 1 because if deg,(q1) > 1, then ¢
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could not be the first polynomial in the above list since the application of
Fy to ¢; would yield another polynomial in C'(P)\ BC'(P).
So we can represent ¢ as

a(y,z)=fi(y) =+ fely)

with f;, fr € BC(P). If f;(c) =0, the new row added for ¢; is just a copy
of the row indexed by fi. If sgn(f;(c)) = ¢; € {—1,1},¢; has one zero z.
Enlarge the sign table by doubling the previous mid-column for (—oo, c0)
and adding a new column for & between the two copies. The five entries for
the new bottom row indexed by ¢; are given as

- —¢ 0 ¢ ¢.

In order to perform the induction step we assume that the sign table
SGN(BC(PU{q,...,qi—1}) has already been constructed for an ¢ —1 > 1.
Let ¢; be the next polynomial added. The polynomials F3(¢;) giving the
leading coefficient of ¢; and F3(g;) extracting the rest of ¢; are listed in the
table. Thus, if F5(g¢;)(c) = 0 the column for ¢; will be the same as that for
F5(¢;) and we are done.

We therefore assume F5(¢;)(c) # 0. Denote by

T < a2 < ... <2y

all the real zeros among the polynomials in {¢,...,¢,—1} which do not
identically vanish as univariate polynomials in z if ¢ is chosen as assignment
for the variables y. We have to deal with four different cases:

i) compute the sign of ¢;(c, e) if evaluated in —oo or oo;

ii) compute the sign of ¢;(c, ®) if evaluated in one of the 2,1 < k < m;

)
iii) find (with respect to the ordering of the z) the new zeros of ¢; and
)

iv) compute the sign of ¢;(c, ®) if evaluated in the neighboring intervals of
the new zeros found in iii).

ad i) Due to Fy(g;)(c) # 0, the leading coefficient of Fj(g;), which is a
positive multiple of F(¢;)(c), is non-vanishing as well. Therefore,

sgn(qi(c, —o0)) = —sgn(F1(qi)(c))
and
sgn(qi(c, 00)) = sgn(Fi(gi)(c)).

These values are already listed in the initial table.
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ad ii)

ad iii)

iv)
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For an 25,1 < k < m, consider a polynomial ¢ among {qy,...,¢_1}
such that ¢(c, ;) = 0 and the polynomial ¢(c,z) does not identically
vanish as univariate polynomial in z. Such a ¢ exists by definition of
z and of {q1,...,¢i—1}. The polynomial Fy(g;, q) is listed in the table
we started with and satisfies the equation

Fy(q)(c)teo=ta)=deg= (¥l L ge a0y = Fy(qi, q) (e, 21) -

Here, F5(q)(c) # 0; moreover, we can determine sgn(g;(c, zy)) from
sgn(F3(q)(c) and sgn(Fi(q;, q)(c,zk)), which both are already avail-
able.

Any root z of ¢; which is not yet listed, say # € (z;,2;41) for some
Jj €10,...,m}, is a simple root of ¢;(c,e). Otherwise, z would be as
well a root of F1(q)(c) and therefore appear among 1, ..., &y,.

In the table for BC(P U {q1,...,¢}) three columns are added and
replace the one between those columns corresponding to x; and z ;4.
Simplicity of # as root for ¢;(c, ) implies

sgn(qi(c,z;)) - sgn(qi(c,x541)) = —1.

Vice versa, a new root in (2, 2;41) only appears if this product is —1.
We obtain the three new columns indexed by (z;, %), Z, and (Z,z;41).
The bottom row (corresponding to ¢;) in these columns gets the entries

sgn(gi(e,x5)) 0 sgn(qi(c,v;41))

which can be computed by step ii).

The update for the other rows indexed by fi,..., fe,¢1,...,g;—1 in the
newly added columns are obvious. They are filled either with a zero
if the entire previous row was filled with zeros, or they are filled with
the unique non-zero sign found in one (or both) of the neighboring
columns.

There are some missing entries for the bottom row in those columns
corresponding to intervals. If a missing entry appears between two
columns already filled with (1, 1), (1,0) or (0, 1), we add a 1; otherwise,
we add a —1.

The construction of SGN(BC(PU{q,...,q}) is finished. [ ]
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Remark 1.2.11 It is important to point out that the above algorithm does
not compute the zeros of any involved polynomial. The only information
used is that of the ordering of such zeros in relation to each other. The zeros
are thus only treated in a symbolic manner. a

Example 1.2.12 We continue with Example 1.2.9. The set BC'(P) was
computed as {y, —1, —1, 2y, 2y, 0}. The different sign vectors for BC'(P) are
given by three different choices for y, namely for y < 0,5 = 0 and y > 0.
The corresponding sign vectors are

-1 0 1
-1 -1 -1
-1 -1 -1
fory < 0: 1 ; fory=0: 0 ; fory>0: 1
-1 0 1
0 0 0

In the first table these columns are listed with three copies.

The polynomial p(y, 2) has a zero (only) for positive y. We want to extract
this information by using the above construction for a choice ¢ > 0 for the
variable y. The initial sign-table is

—00 (—o0,00) o0

1 1 1 ¢
—1 1 -1 g
—1 I
1 1 I
1 1 1 g
0 0 0 ¢

In the first step, we have to add a row for the polynomial ¢ (y,2) =2-y-z.
Both ¢ = F5(¢1) and g7 = F5(q1) are already listed. Since sgn(gs(c)) =1 >
0, the polynomial & — ¢1(c,z) has a zero x5 and the sign of ¢;(c,z) is —1
for z < x4 and 1 for > 5. The algorithm replaces the middle column by
three new ones; the new middle column corresponds to z5. We obtain for

SGN({q2,...,q7,q1}, ¢) the table
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—00 (—o00,x2) @2 (22,00) o0

1 1 1 1 1 ¢
—1 L L
—1 L L
1 1 1 1 I
1 1 1 1 1 g
0 0 0 0 0 ¢
1 1 0 1 T

Adding the original p to the table we first note that Fy(p)(c) = ¢2(c)
¢ > 0, i.e. p’sleading coefficient does not vanish. The value sgn(p(c, —c0
equals —sgn(Ii(p(c, —0))) = —sgn(qi(c, —o0)) = 1 and sgn(p(c,o0))
sgn(F1(p(c,20))) = sgn(qi(c,00)) = 1.

For the sign of pin (¢, 2) the algorithm requires to consider the polynomials
¢1 (as a polynomial which has x5 as its zero), Fi(p, ¢1) = —1 and F(p)(c) =
c. The modified remainder equation in x5 is

=l
=

A p(e ag) = —1

and, because of ¢* > 0, we get sgn(p(c,z2)) = —1. For the above five
columns, we have now computed three entries for p: the first and the fifth
column have entry 1 and the third has entry —1. Thus, two new simple roots
of p have to be added; a zero 7 < x5 and a zero zs > z5. The sign-table
is enlarged by replacing both the old second and the old fourth column by
three new ones.

For the first block of these new columns (i.e. for the columns 2,3 and 4
in the enlarged table) the row indexed by p gets the entries 1,0, —1. For
the second block (i.e. for the columns 6,7 and 8 ) it gets the entries -1,0,1.
Performing the trivial updates for the other polynomials we obtain the sign-
table SGN({q,...,q97,q1,p}, ¢) as:

—0 (—007901) T1 (9017902) ) (9027903) T3 (903700) o0
1

1 1 1 1 1 1 1 1 0
-1 -1 -1 -1 -1 -1 -1 =1 -1 g
-1 -1 -1 -1 -1 -1 -1 =1 -1 g
1 1 1 1 1 1 1 1 1 g
1 1 1 1 1 1 1 1 1 g
0 0 0 0 0 0 0 0 0 ¢
~1 -1 -1 -1 0 1 1 1 1 ¢
1 1 o] -1 -1 -1 [o0] 1 1 P
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The two 0 entries in the bottom row prove the existence of two different
zeros for p(y, x) for each choice y > 0. O

We shall now state some immediate consequences of the previous theorem
which provide different formulations of Tarski’s Theorem. There is a geo-
metric version in the spirit of semi-algebraic sets (cf. Definition ??) as well
as a logical version in the framework of quantifier elimination.

Theorem 1.2.13 (Tarski, geometric version, cf. [66] , [60]))
Let A C R™*! be a semi-algebraic set; then both sets

A := {y € R" | 32 € R such that (y,x) € A} “projection”

and

A:={yeR"|Vz R (y,z) € A}

are semi-algebraic as well. Given a representation of A representations of
ITA and A are computable by a BSS algorithm.

Proof. Without loss of generality let A be the finite intersection of sets of
the form

{(y,z) eR"™ | hi(y,z) >0, i=1,...,8; gj(y,z) >0, j=1,....1;
Sely,2) =0, k=1,...,u}

(the projection of the union of such sets equals the union of the projections).
Consider a polynomial family which includes precisely those polynomials
hi,g; and fi used in the description of at least one of the sets whose inter-
section constitute A. Define W to be the (finite) set of valid sign vectors
for this family if evaluated in a point belonging to A. Now given a w € W
we can apply the algorithm of Theorem 1.2.10 to figure out all those sign
patterns among BC'({h;},1 < i <s;{g;},1 <j <[;{fx},1 <k < u) which
lead to a sign table SGN({h;},1 < i <s;{g;},1 <7< L{fi}, 1 <k <)
having a column with entry w. Let us denote this set of appropriate sign
patterns by &,. Moreover, the possible choices ¢ for variables y such that
the above condition holds, build a semi-algebraic set. A description of it can
be obtained from the algorithm as well: if we denote the polynomials in the
base closure by {t1,...t.}, then we obtain a description of the set of correct
choices for ¢ as

I
{c e R" | \/ /\ sgn(ti(c)) =€} .

eely, 1=1
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Thus, the set is semi-algebraic.

A is the complement of the semi-algebraic set {y € R” | 3z (y,z) ¢ A} and
is therefore semi-algebraic as well.

Finally, both descriptions can be computed because the algorithm of Theo-
rem 1.2.10 is a BSS algorithm. |

Tarski’s theorem is much more important than it might be realized when
studying the above geometric formulation. We have already noticed that
each semi-algebraic set can be written in the form

Vo= {zeR"|y()},

where 1 (z) is a Boolean combination of expressions of the form p(z)A0, A €
{=,>,>}. If wesplit the variables into different blocks 2y, ..., 2}, 2 and then
consider a quantified first-order formula

Juy Voo .. Qrrr Y(2y, ..o 2k, 2)

(where Qr € {3,V}), then Tarski’s Theorem tells us that we can compute a
description of the semi-algebraic (!) set

{2 |32y Vg Qrzn V(21,20 2) }
Thus, the following theorem holds:

Theorem 1.2.14 (Tarski, model-theoretic version) The field of real
numbers (or any other real closed field) admits effective elimination of quan-
tifiers for its first-order logic. More precisely: given a first-order formula of
the form

p(Zlv"'7zn) = Ql a1 QQ $2Qk Tk ¢($1,...7$k72’1,...72n) 3

where Q; € {V,3}, the z; are free real variables and @ is a first-order quan-
tifier free Boolean formula with atomic predicates of the form

Pi(z1, ..oy zn, 21,y xk) A 0

with real polynomials P, A; € {=,>,>} for each (of finitely many) index
i, we can compute (by a BSS algorithm) a first-order formula ©(z) which is
quantifier free and equivalent to p, i.e.

VzeR" : p(z) & O(2).
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The way we proved Tarski’s theorem above following Muchnik’s idea in
addition gives, more or less directly, as well the similar result for algebraically

closed fields .

Theorem 1.2.15 (Quantifier elimination in C)

The field of complex numbers (or any other algebraically closed field) admits
effective elimination of quantifiers for its first-order logic. More precisely:
given a first-order formula of the form

p(Zlv"'7zn) = Ql a1 QQ $2Qk Tk ¢($1,...7$k72’1,...72n) 3

where @; € {V, 3}, the z are free (complex) variables and 1 is a first-order
quantifier free Boolean formula with atomic predicates of the form

Pi(z1, ..oy zn, 21,y xk) A 0

with complex polynomials P, A; € {=,#} for each (of finitely many) index
i, we can compute (by a complex BSS algorithm) a first-order formula ©(z)
which is quantifier free and equivalent to p, i.e.

VzeR" : p(z) & O(2).
|

Proof. The proof is almost similar to the real case. We just outline
the differences. Given a finite family P of univariate complex polynomials
Piy. .., ps we define the complex sign table C-SGN(P) by changing Def-
inition 1.2.1 as follows. If all the complex roots of the p; are zq,..., z,,
then

sgnc p1(21) sgnc p1(22) sgnc pi1(2m)
C-SGN(p1,..sps) = , Yooy ,
SGNC Ps (Zl) SGNC Ps (22) SGNC Ps (Zm)

Here, the complex sign function is defined as

sgnc(z) = {(1) z;g

In contrast to the real situation the ordering of the columns is irrelevant. We
extend Definition 1.2.4 in a straightforward manner to obtain C-SGN (P, ¢)
for families of multivariate polynomials and a ¢ € C*. The sets C'(P) and
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BC(P) are then defined as before. Our claim is that Theorem 1.2.10 holds
as well for this adapted complex setting. Clearly, this is sufficient to prove
the theorem.

In order to mimic the induction proof of Theorem 1.2.10 we have to describe
how a complex sign table for BC'(P)U{q1,...,¢—1} can be extended to one
for BC(P)U{q,...,q}. Actually, this step is easier than in the real setting.
If 21, ..., 2y denote all the zeros of the polynomials ¢q, ..., ¢;4+1, then we first
compute the multiplicities u; of z; as a zero of the new polynomial ¢;. This
can be done by inspecting the sign of Fi(g;)(z;), of F£(q;)(z;) etc. until
one of this derivatives is the first time not vanishing in z;. Note that the
polynomials Fy(q;), F2(qi), - .. are already listet among {q1,...,¢_;. Since
¢; has precisely deg(¢;) many complex roots (counted with multiplicities)
there remain

deg(qi) =Y p;
7=1

many new roots to be added. All of them have multiplicity 1 because other-

wise they would already appear among as root of Fy(¢;) among z1, ..., Zp.
m

Therefore, we can add deg(¢;) — > p; many new columns to the complex
i=1

sign table and compute the signs of ¢;,...,¢;—1 in the new zeros. [ |

Let us come back to our initial question concerning decidability of all prob-
lems in class NPg. The previous results imply:

Theorem 1.2.16 (Blum,Shub,Smale) All problems in class NPy are
decidable. The same is true for problems in NP¢ in the complex BSS
model.

Proof. Let (B, A) be a decision problem in NP and let w be an input
in B. According to Theorem ?? we can construct in polynomial time a
polynomial f(z) of degree at most four such that the initial question for w
is equivalent to the problem whether the first-order formula

Jz e R” f(z) =0

is true. The latter can be decided by Tarski’s algorithm.
For the BSS model over C, the problem of deciding the truth of a first-order
formula

d2e€C fi(z)=0, ..., fo(x)=0
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for degree two polynomials f; € Clz],1 < ¢ < s is NPc-complete according
to Remark ??. This problem is decidable by a complex BSS machine by
Theorem 1.2.15. [ |

Tarski’s theorem or, more general, questions about quantifier elimination
are extremely important with respect to many questions concerning a com-
plexity theory in general structures. We shall see a few more applications
later on in this book.

One such application answers an earlier question concerning the relation
between output sets and halting sets of BSS machines, see Definition ?7?.
The next result appeared in [8].

Proposition 1.2.17 The set of halting sets and the set of output sets of
BSS machines over R* are identical.

Proof. It is not hard to see that every halting set of a BSS machine M
as well is an output set. Just build another machine M which stores its
input z in some predetermined registers during all its computation. The
computation itself simulates the one of M on input z. If the latter stops,
then M writes the previously stored input z into its output registers and
computes z as the result.

The reverse direction, however, is more difficult and can be done by applying
Tarski’s Theorem. Let M be a BSS machine with output set O := ¢pr(R*).
We have to build a machine M which on input ¢ € R decides whether
x € O. If this is the case machine M will halt its computation. Otherwise,
it will continue forever in an endless loop. The problem we are faced to is
that we do not know for which input y (or several inputs) machine M outputs
x, or, more precisely, whether there is such an input at all. However, this
can be decided using quantifier elimination.

Fix a natural number 7. We first want to decide whether there is a compu-
tation of M outputting z and halting after at most T" many steps. There is
an effectively computable number D(T") € N which denotes an upper bound
on the dimension of those inputs for which M halts and outputs a result
after at most M many steps. Therefore, z is the output of a computation
of M in at most 7' many steps is and only if there exists an input y € RP()
such that ¢as(y) = @. Next, we consider a path v which is a halting path
after T' many steps (this property is also decidable by a BSS program, given
a description of the machine M). Using the path decomposition theorem
we know that V, is semi-algebraic and that the function ¢ns|v, computed
by M along ~ is rational for every component of the result. If the latter
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fv,i

Iryi’

rational function for output component ¢,1 < ¢ < D(T') is denoted by
then there exists an input y € V, such that ¢p(y) = « if and only if

dyeV, A f1:y)=0yiy) -z, V1<i<size(a) .

Since V,, is semi-algebraic and all f,; and g, ; are polynomails, this question
can be decided using Tarski’s quantifier elimination procedure.

We can do the same for all halting path in T steps in order to decide whether
x is outputted by a computation using 7" many steps. The question whether
2 is in O then can be decided by performing the above algorithm for T' =
1,T=2,.... If ¢ O the algorithm will run forever, otherwise it will find
a suitable value of T. [

Some further results concerning the relation between halting and output sets
over arbitrary structures are given in [48].

1.3 A simply exponential decision algorithm for problems in
NPy

Tarski’s quantifier elimination procedure gives extremely bad complexity
bounds; it’s mainly of theoretical use. It is a stepwise elimination procedure
in the sense that the variables are eliminated one after the other.
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