
1 Existential Theory of the Real NumbersThe results of the previous chapters have shown why an analysis of NPR-complete problems is important. However, there is one major point missingin order to justify the relevance of the completeness concept: We have toestablish that all problems in class NPR actually can be decided by a BSSalgorithm.The de�nition of class PRdirectly implies any problem in PRto be decidable.If it would turn out that the same does not hold true for NPR, then themeaning of Theorem Theorem ?? would be signi�cantly reduced. In thatcase we would only have established that (polynomially) decidable problemsare easier to be solved than undecidable problems - a trivial fact which wouldimmediately imply as well PR 6= NPR:In the present chapter we therefore want to present an algorithm showingthat the 4-Feasibility problem, and thus any problem in class NPR, is de-cidable. As a consequence, this result substantiates the importance of thePR= NPR?-question. Recall that the same result in the Turing model wasobtained in a straightforward manner. The 3-Satis�ability problem is de-cidable in simple exponential time just by a brute search among all possibleassignments for the given formula. Since the number of assignments for agiven, �xed number of Boolean variables is �nite, this algorithm will termi-nate. In contrast, for a polynomial f 2 R[x] in n real variables we cannotplug in all of the uncountable many assignments for the variables into f andcheck, whether one of it evaluates to 0: The guessing space is uncountableand an obvious algorithm for deciding the question is not at hand.As we will see in this chapter the corresponding question has a long his-tory tracing back to work done by Tarski in the 30s of the last century. Hewas the �rst who gave a decision procedure (which can be formalized as aBSS algorithm) for the so-called existential theory over the real numbers.His famous theorem is settled in a (more general) model-theoretic frame-work. It deals with the question whether real-closed �elds allow quanti�erelimination for �rst-order formulas .We want to present Tarski's algorithm and use it to derive a decision pro-cedure for all problems in NPR: Unfortunately, the complexity of the algo-rithm is tremendous; it does not imply a simple exponential time bound forthe 4-Feasibility problem in the BSS model. Much work in the recent 25years was devoted to speed up Tarski's procedure, see [14, 76, 28, 29, 57, 4, 3].After a huge amount of research the currently fastest algorithms (at leastfrom the theoretical side) for the solution of problems in NPRprovide a sim-



2 1 EXISTENTIAL THEORY OF THE REAL NUMBERSple exponential running time, thus meeting the bounds known for discretecomplexity theory and the class NP:Eventuell: At the end of this chapter we shall also representone of these faster algorithms given by Renegar [57].In order to give an idea of the question quanti�er elimination is dealing withlet us start with an easy example.Example 1.0.1 Consider a univariate polynomial f(x) := x2 + a � x+ b ofdegree two. In high school one studies the solution behavior of the equationf(x) = 0; i.e. the pair (a; b) was given and depending on the values it is�gured out whether the equation is solvable or not.In a more formal way the problem can be stated as follows: Given a formula (a; b) � 9 x 2 R x2 + a � x+ b = 0with free variables a; b we want to �gure out conditions on a and b underwhich the formula is true. The well-known answer tells us that we shouldconsider another formula, namely�(a; b) � a2 � 4 � b � 0and that � is equivalent to  ; i.e. �(a; b),  (a; b) 8 a; b 2 R:The advantageof considering � instead of � is that no more quanti�ers appear in �: Givena pair (a; b) we just plug it into �, evaluate the left hand-side and check,whether it is non-negative.Note that the above situation completely changes if we require a; b and asolution x to be rational numbers. 2The above example provides an easy one of a quanti�er elimination. Given aformula with quanti�ers, we want to know whether there exists an equivalentformula which is quanti�er free. Moreover, we want to compute the formerfrom the letter (by a BSS algorithm). This is the general task of quanti�erelimination. Tarski's theorem states that such an elimination is possible(in the sense of: there exists an equivalent quanti�er free formula and itis computable) for formulas over the real numbers, which just contain thearithmetic operations, the order, existential and universal quanti�ers overthe reals and the logical connectives (i.e. formulas in �rst-order logic, seebelow).As references for our presentation of Tarski's method we point the readerto [9], [31] and the unpublished paper [50], which is based on an idea byMushin.



1.1 The univariate case: Sturm's Theorem 31.1 The univariate case: Sturm's TheoremBecause of its importance in the proof of Tarski's theorem, and because of itshistorical interest we start with a presentation of Sturm's theorem, [64]. Itis devoted to compute the number of real zeros a univariate real polynomialhas. The �rst basic de�nition isDe�nition 1.1.1 Let a := (a0; : : : ; ad) 2 Rd+1; the number SC(a) of signchanges in a is de�ned asSC(a) := jf(i; i+ k) j ai � ai+k < 0 and ai+r = 0 8 0 < r < k; k � 1g :2For example, SC(�1; 0;�1; 2; 0;�2) = 2:De�nition 1.1.2 Let p 2 R[x] be a polynomial in one real variable x andlet a < b 2 R:A Sturm chain of p in [a; b] is a �nite sequence (f0; f1; : : : ; fs)of univariate polynomials in R[x] such that the following conditions aresatis�ed:i) f0 = p;ii) the polynomial fs has no real roots in [a; b];iii) for 0 < i < s and � 2 [a; b] such that fi(�) = 0 it isfi�1(�) � fi+1(�) < 0;iv) for � 2 (a; b] such that f0(�) = 0 it is(f0 � f1)(�� �) < 0(f0 � f1)(�+ �) > 0for su�ciently small values of � > 0: 2Note that condition iii) implies fi and fi+1 to have no common zeros in [a; b]:The �rst theorem in this section states that a Sturm chain can be usedto count the number of real zeros of a univariate polynomial in an interval.Thereafter, we will show how a Sturm chain can be obtained for an arbitrarypolynomial.



4 1 EXISTENTIAL THEORY OF THE REAL NUMBERSTheorem 1.1.3 Let (f0; : : : ; fs) be a Sturm chain for a polynomial p 2 R[x]on [a; b]; a < b: We denote by SC(x) the number SC(f0(x); : : : ; fs(x)) forx 2 R: Then SC(a) � SC(b) is the number of di�erent real zeros of p in(a; b]:Proof. The proof proceeds by bookkeeping the changes in SC(x) when xis moved from a to b: Consider an � 2 [a; b]: There are three cases:1.) If fi(�) 6= 0 for all 0 � i � s then SC(x) is constant in a neighborhoodof �:2.) If f0(�) 6= 0 and fi(�) = 0 for an 0 < i < s; then condition iii) of thede�nition of a Sturm chain implies that the signs of fi�1 and of fi+1are constant in a neighborhood of �: For example, we might have apattern like fi�1(x) fi(x) fi+1(x)� � � < x < � + �x = � + 0 �� < x < �+ � + �for � > 0 small. We see that the value SC(x) remains constant forx 2 (� � �; �+ �); no matter what the signs of fi(x) are for x < � orx > �:3.) If f0(�) = 0 for � > a then the value SC(x) is reduced by 1 if x passes� from the left to the right. This is true because of condition iv) inthe de�nition of a Sturm chain.For example, supposesgn(f0(x)) = � �1 �� � < x < �1 � < x < �+ � :This implies sgn(f1(x)) = � 1 �� � < x < �1 � < x < � + � :The other cases can be treated similarly.Note that for � = a the value SC(x) is locally constant in [a; a+ �]:



1.1 The univariate case: Sturm's Theorem 5Corollary 1.1.4 With the above notation the number of di�erent real zerosof a polynomial p 2 R[a] is given by SC(�1)� SC(1):Proof. Since for any univariate polynomial q we have limjxj!1 q(x) = �1;there is an M 2 R such that the sign pattern of a Sturm chain for p evaluatedin x < �M will be the same as the one for �M and the sign pattern of thesame Sturm chain evaluated for x > M will be the same as for argumentM: Thus, the number we are looking for is given by SC(�M)� SC(M) bythe previous theorem.The �nal problem is to �nd a Sturm chain for a given polynomial p:Theorem 1.1.5 Let p 2 R[x] be a polynomial without multiple roots in[a; b]; a < b: Put f0 := p; f1 := p0 and de�ne polynomials fi; 2 � i � s viafi�2 = fi�1 � gi � fi ;where deg(fi) < deg(fi�1) and s is minimal such that fs(x) 6= 0 8 x 2 [a; b]:Then (f0; : : : ; fs) is a Sturm chain for p: It can be computed by the EuclideanAlgorithm.Proof. We have to check conditions i) till iv) of De�nition 1.1.2. The �rsttwo conditions are obvious from the fact that p has no multiple zeros.Ad iii) Let fi(x) = 0 for an index 0 < i < s and an x 2 [a; b]:The construction impliesfi�1(x) = �fi+1(x) resp. fi�1(x) � fi+1(x) � 0 :If the latter product would vanish we obtain f0(x) = f1(x) = 0 by theformulas de�ning the fi's , i.e. p would have multiple zeros.Ad iv) Let f0(x) = 0; then x is a local minimum for f20 (x) and we canconclude (2 � f0 � f1)(x� �) < 0 and (2 � f0 � f1)(x+ �) > 0for � > 0 su�ciently small.It might be di�cult to check whether fs(x) 6= 0 on [a; b]: In order to avoidthis test we can continue with Euclidean's Algorithm until we have computeda greatest common divisor of p and p0. It is easy to see that the potentiallylonger list of polynomials again gives a Sturm chain for p. If p has multiplezeros, one can �rst compute the greatest common divisor ~p of p and p0 andthen apply the above algorithm to p~p : If we want to count multiplicities as



6 1 EXISTENTIAL THEORY OF THE REAL NUMBERSwell, then the algorithm has also to be performed for ~p: Finally, note thatthe Euclidean algorithm is used by taking negative rests; the reason for thisvariant becomes obvious in the proof.Example 1.1.6 Let p(x) := x2+a�x+b =: f0(x) be an arbitrary polynomialof degree 2: We obtain f1(x) := p0(x) = 2 � x + a as well as f0(x) = f1(x) �(x2 + a4)� (a24 � b): The latter implies f2(x) := a24 � b: The sign behavior for(f0; f1; f2) is given byx sgn(f0) sgn(f1) sgn(f2)�1 + � sgn(a2 � 4b)1 + + sgn(a2 � 4b) :which results inSC(�1)� SC(1) = 0 , a2 � 4 � b < 0SC(�1)� SC(1) = 1 , a2 � 4 � b = 0SC(�1)� SC(1) = 2 , a2 � 4 � b > 0 : 21.2 Tarski's TheoremWe are now going to generalize the ideas behind Sturm's Theorem to themultivariate setting and several polynomials. We shall consider a �nitefamily P := fp1; : : : ; psg of polynomials depending on variables y1; : : : ; yn; x:Since the proof of Tarski's Theorem is based on a stepwise elimination ofvariables, we divide the latter into the block y := (y1; : : : ; yn) and the singlevariable x: The aim is to show how questions about the sign vectors (seede�nition below) of the system P can be reduced to questions about thesign vectors of another family of polynomials, this time only depending onvariables y (thus, x is eliminated).The proof, though not extremely di�cult, is divided into several parts whoseinteraction is a bit complex.For a moment let us deal again with univariate polynomials and de�ne aparticular table related to a system of such polynomials.De�nition 1.2.1 Let p1; : : : ; ps denote polynomials in one variable.a) w := (w1; : : : ; ws) 2 f�1; 0; 1gs is a valid sign vector for the family(p1; : : : ; ps) i� there is a x 2 R such that sgn pi(x) = wi 81 � i � s:Here, we de�ne the sign function as usual by



1.2 Tarski's Theorem 7sgn x :=8<: 1 x > 00 x = 0�1 x < 0 :b) Let x1 < x2 < : : : < xN be all points in R in which at least one of thepi vanishes. De�ne x0 := �1 ; xN+1 := 1 as well as Ik := (xk; xk+1)for k = 0; : : : ; N .Then the sign table SGN(P) = SGN(p1; : : : ; ps) of P is de�ned asSGN(p1;:::;ps) := 0BBB@0BBB@ sgn p1(I0)...sgn ps(I0) 1CCCA;0BBB@ sgn p1(x1)...sgn ps(x1) 1CCCA;0BBB@ sgn p1(I1)...sgn ps(I1) 1CCCA;: : : ; 0B@ sgn p1(xN)...sgn ps(xN) 1CA ;0B@ sgn p1(IN )...sgn ps(IN) 1CA1CA : 2Remark 1.2.2 a) The value sgn pj(Ik) denotes sgn pj(x) for a point x 2Ik. This notation is independent of the particular x because all pj have aconstant sign in the interval Ik.b) SGN(p1; : : : ; ps) contains all valid sign vectors of the system P : A signvector can appear several times in the table: if w 2 f�1; 0; 1gs is attained inbx and ~x, then w has to be listed at least twice if the system attains anothersign vector for a point x 2 (bx; ~x):c) The sets I0; fx1g; I1; fx2g; : : : ; IN ; fxNg; IN+1 give precise informationabout the connected components of R, on which the system (p1; : : : ; ps)does not change its sign vector. They are called the sign consistent con-nected components of P : 2Example 1.2.3 Consider P := fp1; p2; p3g; where p1(x) := x3� 1; p2(x) :=2 �x+ 2; p3(x) := 1: The points x1 := �1 and x2 := 1 are the zeros of one ofthe pi: We obtain a table with 3 columns and 5 rows, given asSGN(p1; p2; p3) := 0@0@ �1�11 1A ;0@ �101 1A ;0@ �111 1A ;0@ 011 1A ;0@ 111 1A 1A :2



8 1 EXISTENTIAL THEORY OF THE REAL NUMBERSIf the pi are polynomials in several variables y; x; a similar table can easilybe de�ned for a �xed choice of c 2 Rn for the variables y: Write a pi aspolynomial in x with coe�cients in R[y]; i.e. as an element in R[y][x]:De�nition 1.2.4 Let P be as above and let c 2 Rn be �xed. We denote bySGN(P ; c) the sign table obtained for the univariate family of polynomialsp1(c; �); : : : ; ps(c; �): 2Before we continue with the description of Tarski's algorithm let us out-line the general ideas it is following. Suppose we want to decide whethera multivariate polynomial family p1; : : : ; ps has a common zero (any otherrequirement on the signs of the pi either in one single point or in all pointsis allowed as well). Then there exists a vector (c; �x) 2 Rn+1 such thatpi(c; �x) = 0 8 1 � i � s: Therefore, if we consider the table SGN(P ; c) itcontains a column of zeros. And vice versa: if for a particular choice of c thetable SGN(P ; c) contains a column of zeros, then the polynomials in P havea common zero. Hence, the question of deciding whether a family of polyno-mials has a common zero is equivalent to the question of deciding whetherthere is a choice c 2 Rn such that SGN(P ; c) has a zero column. The mainidea of the decision procedure is the way of approaching the latter question.In a �rst step, starting from P another �nite family BC(P) of polynomialsis constructed; the elements of BC(P) are polynomials depending on y only,i.e. BC(P) � R[y]: It then turns out (and this is the crucial fact) that for�xed c 2 Rn the signs of the polynomials of BC(P) evaluated in c alreadydetermine the table SGN(P ; c): The latter transformation moreover can becomputed by a BSS algorithm (which was, of course, not Tarski's formula-tion). Note that even though there are uncountably many choices for c, thenumber of di�erent sign patterns given by BC(P) is �nite.We can then �gure out those patterns which produce a zero column inSGN(P ; c) and continue our procedure recursively by deciding, whetherthese sign patterns for the family BC(P) can be realized. The latter questiondepends only on the variables y; i.e. x has been eliminated.We now describe the construction of the above mentioned family BC(P): Itis de�ned in two steps; �rst, we build the closure C(P) of the initially givenfamily P := fp1; : : : ; psg � R[y][x] under certain operations. Then, BC(P)is obtained as the intersection of C(P) with R[y]:The operations are very much related to the ideas behind the proof ofSturm's theorem. Let f(x) := dPi=0 ai � xi 2 R[y][x] be a polynomial withai 2 R[y]; ad 6= 0 2 R[y] and d � 1:



1.2 Tarski's Theorem 9We de�ne(1) Derivative : F1(f) := @f@x 2 R[y][x];(2) Leading coe�cient : F2(f) := ad 2 R[y];(3) Omitting leading coe�cient : F3(f) := f � F2(f) � xd 2 R[y][x];The fourth operation F4 is applied to a pair f(x) := dPi=0 ai � xi and g(x) :=ePk=0 bk �xk of polynomials in R[y][x]; where d � e � 1 and f 6= g: It is de�nedas(4) Modi�ed remainder : F4(f; g) := r 2 R[y][x]: Here, r is obtained bydividing f by g with rest as polynomials in x and multiplying theresulting equation by the common denominator bd�e+1e 2 R[y]: Thatis, r is the unique polynomial in R[y][x] given by the equationbd+e�1e � f(x) = g(x) � h(x) + r(x) ; degx(r) < degx(g); h 2 R[y][x]:Remark 1.2.5 The reason for the multiplication with bd+e�1e in (4) is thatwe want to set up an iterative algorithm later on. Therefore, after elimi-nating x we have to start anew, this time with a family of polynomials in y(and not of rational functions). 2De�nition 1.2.6 Let P := fp1; : : : ; psg be a �nite family of polynomials inR[y][x]:The closure C(P) of P is de�ned to be the (�nite) set of polynomialsin R[y][x] satisfying the following conditions:i) P � C(P);ii) 8 p 2 C(P) such that degx(p) � 1 the polynomials Fi(p); 1 � i � 3belong to C(P);iii) 8 p; q 2 C(P) such that degx(p) � degx(q) � 1 the polynomial F4(p; q)belongs to C(P): 2Proposition 1.2.7 Let P be as above, then C(P) is well de�ned, �nite andcomputable within a �nite number of steps by a BSS machine on input P :



10 1 EXISTENTIAL THEORY OF THE REAL NUMBERSProof. Starting from P we enlarge P step by step by applying one of theoperations F1; : : : ; F4 either to elements of P or to elements already derivedpreviously during this process. Note that every Fi results in a polynomial inR[y][x] which has a smaller degree with respect to x than its argument (resp.its arguments in case of F4): Thus, since P is �nite and since all operationscan only be applied to polynomials of degree at least 1; the closure C(P) isconstructed after a �nite number of steps (all of which are clearly computableby a BSS machine).The polynomials among C(P) we are mainly interested in are those whichdepend on the variables y only.De�nition 1.2.8 For P as above the base of the closure C(P) is de�nedas BC(P) := R[y]\ C(P): 2Example 1.2.9 Let P := fpg be given by p(y; x) := x2 � y � 1 (y a singlevariable). We can construct C(P) asq1(y; x) = F1(p) = 2 � x � yq2(y; x) = F2(p) = yq3(y; x) = F3(p) = p� F2(p) � x2 = �1q4(y; x) = F4(p; q1) = �1q5(y; x) = F1(q1) = 2 � yq6(y; x) = F2(q1) = 2 � yq7(y; x) = F3(q1) = 0Since the Fi have to be applied to polynomials of degree � 1 w.r.t. x; atthis point no more polynomials can be obtained. The closure is computed.Finally, BC(P) is given by fq2; q3; q4; q5; q6; q7g: Even though some of thepolynomials appear twice it is important to have them all included. As wewill see later on, the point here is to know which operation has been used inorder to obtain a particular polynomial, and not whether some operationsyield the same result. The reader might get a feeling about the tremendouscomplexity of computing C(P) for more complex systems already from thistrivial example. 2Theorem 1.2.10 Let P = fp1; : : : ; psg � R[y][x] and c 2 Rn: Then thereis a BSS algorithm which, given the signs of all polynomials q 2 BC(P) ifevaluated in c; computes the table SGN(P ; c):



1.2 Tarski's Theorem 11Proof. The proof is a (reverse) induction on the steps performed in orderto compute the closure C(P) starting from P : Consider an arbitrary, �niteBSS algorithm A computing C(P), see Proposition 1.2.7. Let BC(P) [ff1; : : : ; f`g and C(P) = BC(P) [ fq1; : : : ; qtg :Here, we suppose that the qi are given in the reverse order in which they areproduced by algorithm A; that is, q1 is the last polynomial in C(P)nBC(P)produced by A; q2 is the second last and so on.In particular, if we consider the polynomials F1(qi); F2(qi) or F3(qi) for aqi 2 C(P) nBC(P); then they can be found among BC(P) [ fq1; : : : ; qi�1g(again, the same polynomial might of course have occurred earlier, comparethe remark at the end of Example 1.2.9). Similarly, F4(qi; q) 2 BC(P) [fq1; : : : ; qi�1g for q 2 fq1; : : : ; qi�1g because then q was produced later thanqi and F4(qi; q) later than both.The proof proceeds by induction on BC(P) [ fq1; : : : ; qig with respect toincreasing i, i.e. we show that, given the signs of BC(P) in c; the tableSGN(fq1; : : : ; qig; c) can be computed from SGN(fq1; : : : ; qi�1g; c): SinceC(P) contains P we will �nally obtain SGN(P ; c):The tables we construct during the algorithm are structured as follows:the rows are named by a polynomial and the columns correspond eitherto intervals in which all the listed polynomials have a constant sign or tosymbolic roots of at least one of the polynomials. Adding a new polynomialin the induction step increases the table by one row for the new polynomialand by as many columns as that polynomial has zeros which were not alreadyamong the zeros of the previously listed polynomials. Whereas the orderingof the rows is irrelevant (we add one row at the bottom) the ordering of thecolumns is not. A new column has to be included into the scheme accordingto the usual ordering of the real zero related to it in comparison with theother zeros (however, we do not compute such a root, see Remark 1.2.11below).Our �rst scheme for BC(P) has ` rows indexed by f1; : : : ; f` and 3 columnsfor x0 := �1; I1 := (�1;1) and x1 := 1: Every row has the formsgn(fj) sgn(fj) sgn(fj)due to the fact that for �xed c all fj(c) are constant real numbers.For i = 1 the polynomial q1 is the �nal one produced by algorithm A suchthat degx(q1) � 1: Therefore, degx(q1) = 1 because if degx(q1) > 1; then q1



12 1 EXISTENTIAL THEORY OF THE REAL NUMBERScould not be the �rst polynomial in the above list since the application ofF1 to q1 would yield another polynomial in C(P) nBC(P):So we can represent q1 asq1(y; x) = fj(y) � x+ fk(y)with fj ; fk 2 BC(P): If fj(c) = 0; the new row added for q1 is just a copyof the row indexed by fk : If sgn(fj(c)) = �j 2 f�1; 1g; q1 has one zero �x:Enlarge the sign table by doubling the previous mid-column for (�1;1)and adding a new column for �x between the two copies. The �ve entries forthe new bottom row indexed by q1 are given as��j � �j 0 �j �j :In order to perform the induction step we assume that the sign tableSGN(BC(P[fq1; : : : ; qi�1g) has already been constructed for an i� 1 � 1:Let qi be the next polynomial added. The polynomials F2(qi) giving theleading coe�cient of qi and F3(qi) extracting the rest of qi are listed in thetable. Thus, if F2(qi)(c) = 0 the column for qi will be the same as that forF3(qi) and we are done.We therefore assume F2(qi)(c) 6= 0: Denote byx1 < x2 < : : : < xmall the real zeros among the polynomials in fq1; : : : ; qi�1g which do notidentically vanish as univariate polynomials in x if c is chosen as assignmentfor the variables y: We have to deal with four di�erent cases:i) compute the sign of qi(c; �) if evaluated in �1 or 1;ii) compute the sign of qi(c; �) if evaluated in one of the xk; 1 � k � m;iii) �nd (with respect to the ordering of the xk) the new zeros of qi andiv) compute the sign of qi(c; �) if evaluated in the neighboring intervals ofthe new zeros found in iii).ad i) Due to F2(qi)(c) 6= 0; the leading coe�cient of F1(qi), which is apositive multiple of F2(qi)(c); is non-vanishing as well. Therefore,sgn(qi(c;�1)) = �sgn(F1(qi)(c))and sgn(qi(c;1)) = sgn(F1(qi)(c)):These values are already listed in the initial table.



1.2 Tarski's Theorem 13ad ii) For an xk; 1 � k � m; consider a polynomial q among fq1; : : : ; qi�1gsuch that q(c; xk) = 0 and the polynomial q(c; x) does not identicallyvanish as univariate polynomial in x: Such a q exists by de�nition ofxk and of fq1; : : : ; qi�1g: The polynomial F4(qi; q) is listed in the tablewe started with and satis�es the equationF2(q)(c)degx(qi)�degx(q)+1 � qi(c; xk) = F4(qi; q)(c; xk) :Here, F2(q)(c) 6= 0; moreover, we can determine sgn(qi(c; xk)) fromsgn(F2(q)(c) and sgn(F4(qi; q)(c; xk)); which both are already avail-able.ad iii) Any root �x of qi which is not yet listed, say �x 2 (xj ; xj+1) for somej 2 f0; : : : ; mg; is a simple root of qi(c; �): Otherwise, �x would be aswell a root of F1(q)(c) and therefore appear among x1; : : : ; xm:In the table for BC(P [ fq1; : : : ; qig) three columns are added andreplace the one between those columns corresponding to xj and xj+1:Simplicity of �x as root for qi(c; �) impliessgn(qi(c; xj)) � sgn(qi(c; xj+1)) = �1 :Vice versa, a new root in (xj ; xj+1) only appears if this product is �1:We obtain the three new columns indexed by (xj ; �x); �x; and (�x; xj+1):The bottom row (corresponding to qi) in these columns gets the entriessgn(qi(c; xj)) 0 sgn(qi(c; xj+1))which can be computed by step ii).The update for the other rows indexed by f1; : : : ; f`; q1; : : : ; qi�1 in thenewly added columns are obvious. They are �lled either with a zeroif the entire previous row was �lled with zeros, or they are �lled withthe unique non-zero sign found in one (or both) of the neighboringcolumns.iv) There are some missing entries for the bottom row in those columnscorresponding to intervals. If a missing entry appears between twocolumns already �lled with (1; 1); (1; 0) or (0; 1);we add a 1; otherwise,we add a �1:The construction of SGN(BC(P [ fq1; : : : ; qig) is �nished.



14 1 EXISTENTIAL THEORY OF THE REAL NUMBERSRemark 1.2.11 It is important to point out that the above algorithm doesnot compute the zeros of any involved polynomial. The only informationused is that of the ordering of such zeros in relation to each other. The zerosare thus only treated in a symbolic manner. 2Example 1.2.12 We continue with Example 1.2.9. The set BC(P) wascomputed as fy;�1;�1; 2y; 2y; 0g: The di�erent sign vectors for BC(P) aregiven by three di�erent choices for y, namely for y < 0; y = 0 and y > 0:The corresponding sign vectors arefor y < 0 :0BBBBBB@ �1�1�1�1�10 1CCCCCCA ; for y = 0 : 0BBBBBB@ 0�1�1000 1CCCCCCA ; for y > 0 : 0BBBBBB@ 1�1�1110 1CCCCCCA :In the �rst table these columns are listed with three copies.The polynomial p(y; x) has a zero (only) for positive y: We want to extractthis information by using the above construction for a choice c > 0 for thevariable y: The initial sign-table is�1 (�1;1) 11 1 1 q2�1 �1 �1 q3�1 �1 �1 q41 1 1 q51 1 1 q60 0 0 q7In the �rst step, we have to add a row for the polynomial q1(y; x) = 2 � y �x:Both q6 = F2(q1) and q7 = F3(q1) are already listed. Since sgn(q6(c)) = 1 >0; the polynomial x ! q1(c; x) has a zero x2 and the sign of q1(c; x) is �1for x < x2 and 1 for x > x2: The algorithm replaces the middle column bythree new ones; the new middle column corresponds to x2: We obtain forSGN(fq2; : : : ; q7; q1g; c) the table



1.2 Tarski's Theorem 15�1 (�1; x2) x2 (x2;1) 11 1 1 1 1 q2�1 �1 �1 �1 �1 q3�1 �1 �1 �1 �1 q41 1 1 1 1 q51 1 1 1 1 q60 0 0 0 0 q7�1 �1 0 1 1 q1Adding the original p to the table we �rst note that F2(p)(c) = q2(c) =c > 0; i.e. p's leading coe�cient does not vanish. The value sgn(p(c;�1))equals �sgn(F1(p(c;�1))) = �sgn(q1(c;�1)) = 1 and sgn(p(c;1)) =sgn(F1(p(c;1))) = sgn(q1(c;1)) = 1:For the sign of p in (c; x2) the algorithm requires to consider the polynomialsq1 (as a polynomial which has x2 as its zero), F4(p; q1) = �1 and F2(p)(c) =c: The modi�ed remainder equation in x2 isc2�1+1 � p(c; x2) = �1and, because of c2 > 0; we get sgn(p(c; x2)) = �1: For the above �vecolumns, we have now computed three entries for p: the �rst and the �fthcolumn have entry 1 and the third has entry �1. Thus, two new simple rootsof p have to be added; a zero x1 < x2 and a zero x3 > x2: The sign-tableis enlarged by replacing both the old second and the old fourth column bythree new ones.For the �rst block of these new columns (i.e. for the columns 2; 3 and 4in the enlarged table) the row indexed by p gets the entries 1; 0;�1: Forthe second block (i.e. for the columns 6; 7 and 8 ) it gets the entries -1,0,1.Performing the trivial updates for the other polynomials we obtain the sign-table SGN(fq1; : : : ; q7; q1; pg; c) as:�1 (�1; x1) x1 (x1; x2) x2 (x2; x3) x3 (x3;1) 11 1 1 1 1 1 1 1 1 q2�1 �1 �1 �1 �1 �1 �1 �1 �1 q3�1 �1 �1 �1 �1 �1 �1 �1 �1 q41 1 1 1 1 1 1 1 1 q51 1 1 1 1 1 1 1 1 q60 0 0 0 0 0 0 0 0 q7�1 �1 �1 �1 0 1 1 1 1 q11 1 0 �1 �1 �1 0 1 1 p



16 1 EXISTENTIAL THEORY OF THE REAL NUMBERSThe two 0 entries in the bottom row prove the existence of two di�erentzeros for p(y; x) for each choice y > 0: 2We shall now state some immediate consequences of the previous theoremwhich provide di�erent formulations of Tarski's Theorem. There is a geo-metric version in the spirit of semi-algebraic sets (cf. De�nition ??) as wellas a logical version in the framework of quanti�er elimination.Theorem 1.2.13 (Tarski, geometric version, cf. [66] , [60]))Let A � Rn+1 be a semi-algebraic set; then both sets�A := fy 2 Rn j 9x 2 R such that (y; x) 2 Ag \projection 00and ~A := fy 2 Rn j 8x 2 R (y; x) 2 Agare semi-algebraic as well. Given a representation of A representations of�A and ~A are computable by a BSS algorithm.Proof. Without loss of generality let A be the �nite intersection of sets ofthe formf(y; x) 2 Rn+1 j hi(y; x) > 0 ; i = 1; : : : ; s ; gj(y; x) � 0 ; j = 1; : : : ; l ;fk(y; x) = 0 ; k = 1; : : : ; ug(the projection of the union of such sets equals the union of the projections).Consider a polynomial family which includes precisely those polynomialshi; gj and fk used in the description of at least one of the sets whose inter-section constitute A: De�ne W to be the (�nite) set of valid sign vectorsfor this family if evaluated in a point belonging to A: Now given a w 2 Wwe can apply the algorithm of Theorem 1.2.10 to �gure out all those signpatterns among BC(fhig; 1 � i � s; fgjg; 1 � j � l; ffkg; 1 � k � u) whichlead to a sign table SGN(fhig; 1 � i � s; fgjg; 1 � j � l; ffkg; 1 � k � u)having a column with entry w: Let us denote this set of appropriate signpatterns by Ew : Moreover, the possible choices c for variables y such thatthe above condition holds, build a semi-algebraic set. A description of it canbe obtained from the algorithm as well: if we denote the polynomials in thebase closure by ft1; : : : trg, then we obtain a description of the set of correctchoices for c as fc 2 Rn j _�2Ew l̂i=1 sgn(ti(c)) = �ig :



1.2 Tarski's Theorem 17Thus, the set is semi-algebraic.~A is the complement of the semi-algebraic set fy 2 Rn j 9x (y; x) 62 Ag andis therefore semi-algebraic as well.Finally, both descriptions can be computed because the algorithm of Theo-rem 1.2.10 is a BSS algorithm.Tarski's theorem is much more important than it might be realized whenstudying the above geometric formulation. We have already noticed thateach semi-algebraic set can be written in the formV = fx 2 Rn j  (x)g ;where  (x) is a Boolean combination of expressions of the form p(x)�0 ; � 2f=;�; >g: If we split the variables into di�erent blocks x1; : : : ; xk; z and thenconsider a quanti�ed �rst-order formula9x1 8x2 : : :Qkxk  (x1; : : : ; xk; z) ;(where Qk 2 f9; 8g), then Tarski's Theorem tells us that we can compute adescription of the semi-algebraic (!) setfz j 9x1 8x2 : : :Qkxk  (x1; : : : ; xk; z) g :Thus, the following theorem holds:Theorem 1.2.14 (Tarski, model-theoretic version) The �eld of realnumbers (or any other real closed �eld) admits e�ective elimination of quan-ti�ers for its �rst-order logic. More precisely: given a �rst-order formula ofthe form�(z1; : : : ; zn) � Q1 x1 Q2 x2 : : :Qk xk  (x1; : : : ; xk; z1; : : : ; zn) ;where Qi 2 f8; 9g; the zi are free real variables and  is a �rst-order quan-ti�er free Boolean formula with atomic predicates of the formPi(z1; : : : ; zn; x1; : : : ; xk) �i 0with real polynomials Pi;�i 2 f=;�; >g for each (of �nitely many) indexi; we can compute (by a BSS algorithm) a �rst-order formula �(z) which isquanti�er free and equivalent to �; i.e.8 z 2 Rn : �(z) , �(z) :



18 1 EXISTENTIAL THEORY OF THE REAL NUMBERSThe way we proved Tarski's theorem above following Muchnik's idea inaddition gives, more or less directly, as well the similar result for algebraicallyclosed �elds .Theorem 1.2.15 (Quanti�er elimination in C )The �eld of complex numbers (or any other algebraically closed �eld) admitse�ective elimination of quanti�ers for its �rst-order logic. More precisely:given a �rst-order formula of the form�(z1; : : : ; zn) � Q1 x1 Q2 x2 : : :Qk xk  (x1; : : : ; xk; z1; : : : ; zn) ;where Qi 2 f8; 9g; the zi are free (complex) variables and  is a �rst-orderquanti�er free Boolean formula with atomic predicates of the formPi(z1; : : : ; zn; x1; : : : ; xk) �i 0with complex polynomials Pi;�i 2 f=; 6=g for each (of �nitely many) indexi; we can compute (by a complex BSS algorithm) a �rst-order formula �(z)which is quanti�er free and equivalent to �; i.e.8 z 2 Rn : �(z) , �(z) :Proof. The proof is almost similar to the real case. We just outlinethe di�erences. Given a �nite family P of univariate complex polynomialsp1; : : : ; ps we de�ne the complex sign table C -SGN(P) by changing Def-inition 1.2.1 as follows. If all the complex roots of the pi are z1; : : : ; zm;thenC-SGN(p1;:::;ps) := 0BBB@0BBB@ sgnC p1(z1)...sgnC ps(z1) 1CCCA;0BBB@ sgnC p1(z2)...sgnC ps(z2) 1CCCA;:::;0BBB@ sgnC p1(zm)...sgnC ps(zm) 1CCCA;Here, the complex sign function is de�ned assgnC (z) := � 0 z = 01 z 6= 0In contrast to the real situation the ordering of the columns is irrelevant. Weextend De�nition 1.2.4 in a straightforward manner to obtain C -SGN(P ; c)for families of multivariate polynomials and a c 2 C n : The sets C(P) and



1.2 Tarski's Theorem 19BC(P) are then de�ned as before. Our claim is that Theorem 1.2.10 holdsas well for this adapted complex setting. Clearly, this is su�cient to provethe theorem.In order to mimic the induction proof of Theorem 1.2.10 we have to describehow a complex sign table for BC(P)[fq1; : : : ; qi�1g can be extended to onefor BC(P)[fq1; : : : ; qig: Actually, this step is easier than in the real setting.If z1; : : : ; zm denote all the zeros of the polynomials q1; : : : ; qi+1; then we �rstcompute the multiplicities �j of zj as a zero of the new polynomial qi: Thiscan be done by inspecting the sign of F1(qi)(zj); of F 21 (qi)(zj) etc. untilone of this derivatives is the �rst time not vanishing in zj : Note that thepolynomials F1(qi); F 21 (qi); : : : are already listet among fq1; : : : ; qi�1: Sinceqi has precisely deg(qi) many complex roots (counted with multiplicities)there remain deg(qi)� mXj=1 �jmany new roots to be added. All of them have multiplicity 1 because other-wise they would already appear among as root of F1(qi) among z1; : : : ; zm:Therefore, we can add deg(qi) � mPj=1�j many new columns to the complexsign table and compute the signs of q1; : : : ; qi�1 in the new zeros.Let us come back to our initial question concerning decidability of all prob-lems in class NPR: The previous results imply:Theorem 1.2.16 (Blum,Shub,Smale) All problems in class NPR aredecidable. The same is true for problems in NPC in the complex BSSmodel.Proof. Let (B;A) be a decision problem in NPR and let w be an inputin B: According to Theorem ?? we can construct in polynomial time apolynomial f(x) of degree at most four such that the initial question for wis equivalent to the problem whether the �rst-order formula9x 2 Rn f(x) = 0is true. The latter can be decided by Tarski's algorithm.For the BSS model over C ; the problem of deciding the truth of a �rst-orderformula 9 x 2 C n f1(x) = 0 ; : : : ; fs(x) = 0



20 1 EXISTENTIAL THEORY OF THE REAL NUMBERSfor degree two polynomials fi 2 C [x]; 1 � i � s is NPC -complete accordingto Remark ??. This problem is decidable by a complex BSS machine byTheorem 1.2.15.Tarski's theorem or, more general, questions about quanti�er eliminationare extremely important with respect to many questions concerning a com-plexity theory in general structures. We shall see a few more applicationslater on in this book.One such application answers an earlier question concerning the relationbetween output sets and halting sets of BSS machines, see De�nition ??.The next result appeared in [8].Proposition 1.2.17 The set of halting sets and the set of output sets ofBSS machines over R1 are identical.Proof. It is not hard to see that every halting set of a BSS machine Mas well is an output set. Just build another machine ~M which stores itsinput x in some predetermined registers during all its computation. Thecomputation itself simulates the one of M on input x: If the latter stops,then ~M writes the previously stored input x into its output registers andcomputes x as the result.The reverse direction, however, is more di�cult and can be done by applyingTarski's Theorem. Let M be a BSS machine with output set O := �M(R1):We have to build a machine ~M which on input x 2 R1 decides whetherx 2 O: If this is the case machine ~M will halt its computation. Otherwise,it will continue forever in an endless loop. The problem we are faced to isthat we do not know for which input y (or several inputs) machine M outputsx; or, more precisely, whether there is such an input at all. However, thiscan be decided using quanti�er elimination.Fix a natural number T: We �rst want to decide whether there is a compu-tation of M outputting x and halting after at most T many steps. There isan e�ectively computable number D(T ) 2 N which denotes an upper boundon the dimension of those inputs for which M halts and outputs a resultafter at most M many steps. Therefore, x is the output of a computationof M in at most T many steps is and only if there exists an input y 2 RD(T )such that �M (y) = x: Next, we consider a path 
 which is a halting pathafter T many steps (this property is also decidable by a BSS program, givena description of the machine M): Using the path decomposition theoremwe know that V
 is semi-algebraic and that the function �M jV
 computedby M along 
 is rational for every component of the result. If the latter



1.3 A simply exponential decision algorithm for problems in NPR 21rational function for output component i; 1 � i � D(T ) is denoted by f
;ig
;i ,then there exists an input y 2 V
 such that �M (y) = x if and only if9 y 2 V
 ^ f
;i(y) = g
;i(y) � xi 8 1 � i � size(x) :Since V
 is semi-algebraic and all f
;i and g
;i are polynomails, this questioncan be decided using Tarski's quanti�er elimination procedure.We can do the same for all halting path in T steps in order to decide whetherx is outputted by a computation using T many steps. The question whetherx is in O then can be decided by performing the above algorithm for T =1; T = 2; : : : : If x =2 O the algorithm will run forever, otherwise it will �nda suitable value of T:Some further results concerning the relation between halting and output setsover arbitrary structures are given in [48].1.3 A simply exponential decision algorithm for problems inNPRTarski's quanti�er elimination procedure gives extremely bad complexitybounds; it's mainly of theoretical use. It is a stepwise elimination procedurein the sense that the variables are eliminated one after the other.
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