Roots of graph polynomials

Semantic vs Syntactic Properties of Graph Polynomials, I:

On the Location of Roots of Graph Polynomials

Johann A. Makowsky*

* Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel janos@cs.technion.ac.il

Partially joint work with E.V. Ravve and N.K. Blanchard

Graph polynomial project: http://www.cs.technion.ac.il/~janos/RESEARCH/gp-homepage.html

File:b-title

Reference

- Johann A. Makowsky, Elena V. Ravve
 On the Location of Roots of Graph Polynomials
 Special issue of the Erdős Centennial Electronic Notes in Discrete Mathematics, Volume 43 (2013), Pages 201-206
- Johann A. Makowsky, Elena V. Ravve, Nicolas K. Blanchard On the location of roots of graph polynomials European Journal of Combinatorics, Volume 41 (2014), Pages 1-19

Roots of graph polynomials

Overview

- Semantic properties of graph polynomials
- Definability of graph polynomials in Second Order Logic SOL
- Many examples
- Roots of graph polynomials
- What do we learn?

Roots of graph polynomials

Semantic Properties of Graph Polynomials

Roots of graph polynomials

Graph polynomials

Let \mathcal{R} be a (polynomial) ring.

A function $P: \mathcal{G} \to \mathcal{R}$ is a

graph parameter

if for any two isomorphic graphs $G_1, G_2 \in \mathcal{G}$ we have $P(G_1) = P(G_2)$.

It is a

graph polynomial

if for each $G \in \mathcal{G}$ it is a polynomial.

In this lecture we study univariate graph polynomials P with $\mathcal{R} = \mathbb{Z}[X]$ or $\mathbb{C}[X]$.

A complex number $z \in \mathbb{C}$ is a *P*-root if there is a graph $G \in \mathcal{G}$ such that P(G, z) = 0.

Roots of graph polynomials

Similar graphs and similarity functions

Two graphs G_1, G_2 are similar if they have the same number of vertices, edges and connected components, i.e.,

- $|V(G_1)| = n(G_1) = n(G_2) = |V(G_2)|,$
- $|E(G_1)| = m(G_1) = m(G_2) = |E(G_2)|$, and
- $k(G_1) = k(G_2)$.

A graph parameter or graph polynomial is a similarity function if it is invariant and similarity.

- (i) The nullity $\nu(G) = m(G) n(G) + k(G)$ and the rank $\rho(G) = n(G) k(G)$ of a graph G are similarity polynomials with integer coefficients.
- (ii) Similarity polynomials can be formed inductively starting with similarity functions f(G) not involving indeterminates, and monomials of the form $X^{g(G)}$ where X is an indeterminate and g(G) is a similarity function not involving indeterminates. One then closes under pointwise addition, subtraction, multiplication and substitution of indeterminates X by similarity polynomials.

Roots of graph polynomials

Distinctive power of graph polynomials, I

Two graph polynomials are usually compared via their distinctive power.

A graph polynomial Q(G, X) is less distinctive than P(G, Y), $Q \leq P$, if for every two similar graphs G_1 and G_2

 $P(G_1, X) = P(G_2, X)$ implies $Q(G_1, Y) = Q(G_2, Y)$.

We also say the P(G; X) determines Q(G; X) if $Q \leq P$.

Two graph polynomials P(G, X) and Q(G, Y) are equivalent in distinctive power (d.p-equivalent) if for every two similar graphs G_1 and G_2

$$P(G_1, X) = P(G_2, X)$$
 iff $Q(G_1, Y) = Q(G_2, Y)$.

The same definition also works for graph parameters and multivariate graph polynomials.

Distinctive power of graph polynomials, II

 \mathbb{C}^{∞} denotes the set of finite sequences of complex numbers. We denote by $cP(G) \in \mathbb{C}^{\infty}$ the sequence of coefficients of P(G, X).

Proposition 1

Two graph polynomials $P(G, X_1, \ldots, X_r)$ and $Q(G, Y_1, \ldots, Y_s)$ are equivalent in distinctive power (d.p-equivalent) $(P \sim_{d.p.} Q)$ iff there are two functions $F_1, F_2 : \mathbb{C}^{\infty} \to \mathbb{C}^{\infty}$ such that for every graph G

> $F_1(n(G), m(G), k(G), cP(G)) = cQ(G)$ and $F_2(n(G), m(G), k(G), cQ(G)) = cP(G)$

Proposition 1 shows that our definition of equivalence of graph polynomials is mathematically equivalent to the definition proposed by C. Merino and S. Noble in 2009.

Roots of graph polynomials

Computability

The functions F_1, F_2 in Proposition 1 need not be computable in any sense, even if the coefficients of P(G) and Q(G) are integers.

A graph polynomial P(G; X) with coefficients in a ring \mathcal{R} is computable (in a suitable model of computation for \mathcal{R}) if

- (i) the function $cP : \mathcal{G} \to \bigcup_n \mathcal{R}^n$ computing the coefficients of P(G; X) is computable, and
- (ii) the decision problem, given $s \in \bigcup_n \mathcal{R}^n$ is there a graph with cP(G) = s is decidable.

Theorem 2

Let P(G; X) and Q(G; X) be two computable graph polynomials which are d.p.-equivalent. Then there are F_1, F_2 as in Proposition 1 which are computable.

In this case we say that P(G; X) and Q(G; X) are computably d.p.-equivalent.

Roots of graph polynomials

Prefactor and subtsitution equivalence, I

• We say that $P(G; \overline{X})$ is prefactor reducible to $Q(G; \overline{X})$ and we write

$$P(G; \overline{Y}) \preceq_{prefactor} Q(G; \overline{X})$$

if there are similarity functions

$$f(G; \overline{X}), g_1(G; \overline{X}), \dots, g_r(G; \overline{X})$$

such that

$$P(G; \overline{Y}) = f(G; \overline{X}) \cdot Q(G; g_1(G; \overline{Y}), \dots, g(G; \overline{Y})).$$

• We say that $P(G; \overline{X})$ is substitutions reducible to $Q(G; \overline{X})$, and we write

$$P(G; \overline{Y}) \preceq_{subst} Q(G; \overline{X})$$

if $f(G; \overline{X}) = 1$ for all values of \overline{X} .

• $P(G; \overline{X})$ and $Q(G; \overline{X})$ are prefactor (substitution) equivalent if the relationship holds in both directions.

It follows that if $P(G; \overline{X})$ and $Q(G; \overline{X})$ are prefactor (substitution) equivalent then they are computably d.p.-equivalent.

File:b-equivalence

Semantic properties of graph parameters

A semantic property is a class of graph parameters (polynomials) closed under d.p.-equivalence.

Let p(G) be a graph parameter with values in \mathbb{N} , and P(G; X) be a graph polynomial.

• The degree of P(G; X) equals p(G) is not a semantic property of P(G; X).

Using Proposition 1 we see that P(G; X) and $P(G; X^2)$ are d.p.-equivalent, but they have different degrees.

• P(G; X) determines p(G) is a semantic property of P(G; X).

Semantic vs syntactic properties of graph polynomials, I

Semantically meaningless properties:

- (i) P(G, X) is monic for each graph G, i.e., the leading coefficient of P(G; X) equals 1.
 Multiplying each coefficient by a fixed polynomial gives an equivalent graph polynomial.
- (ii) The leading coefficient of P(G, X) equals the number of vertices of G. However, proving that two graphs G_1, G_2 with $P(G_1, X) = P(G_2, X)$ have the same number of vertices is semantically meaningful.
- (iii) The graph polynomials P(G; X) and Q(G; X) coincide on a class C of graphs, i.e. for all $G \in C$ we have P(G; X) = Q(G; X).

The semantic content of this situation says that if we restrict our graphs to C, then P(G; X) and Q(G; X) have the same distinguishing power.

The equality of P(G; X) and Q(G; a)X is a syntactic conincidence or reflects a clever choice in the definitions P(G; X) and Q(G; X).

Semantic vs syntactic properties of graph polynomials, II

Clever choices of can be often achieved.

Let \mathcal{C} be class of finite graphs closed under graph isomorphisms.

Proposition 3

Assume that P(G; X) and Q(G; X) have the same distinguishing power on a class of graphs C. Then there is $P' \sim_{d.p.} P$ such that the graph polynomials P'(G; X) and Q(G; X) coincide on a class C of graphs.

If, additionally, C, P(G; X) and Q(G; X) are computable, then P'(G; X) can be made computable, too.

Proposition 3 also holds when we replace computable by definable in SOL, as we shall see later.

Roots of graph polynomials

Prominent graph polynomials

Spectral graph theory, I

Let G = (V(G), E(G)) be a loopless graph without multiple edges.

- A_G is the adjacency matrix of a graph G.
- D_G is the diagonal matrix with $(D_G)_{i,i} = d(i)$, the degree of the vertex *i*.
- $L_G = D_G A_G$ is the Laplacian of G.

In spectral graph theory two computable graph polynomials are considered:

• The characteristic polynomial $P_A(G; X)$ of G defined as

 $P_A(G;X) = \det(X \cdot \mathbb{I} - A_G)$

• and the Laplacian polynomial $P_L(G; X)$ of G defined as

$$P_L(G; X) = \det(X \cdot \mathbb{I} - L_G)$$

Here I denotes the unit element in the corresponding matrix ring. File:b-matching

Roots of graph polynomials

Spectral graph theory, II

G and H below are similar.

We have

$$P_A(G; X) = P_A(H; X) = (X - 1)(X + 1)^2(X^3 - X^2 - 5X + 1),$$

but G has eight spanning trees, and H has six.

Therefore, $P_L(G; X) \neq P_L(H; X)$, as one can compute the number of spanning trees from $P_L(G; X)$.

Roots of graph polynomials

Spectral graph theory, III

On the other hand, the graphs below G' and H' are similar, but G' is not bipartite, whereas, H' is.

As P_A determines bipartiteness, we have $P_A(H'; X) \neq P_A(G', X)$, but one can easily check that $P_L(H'; X) = P_L(G'; X)$.

Conclusion:

The characteristic polynomial and the Laplacian polynomial are d.p.-incomparable. However, if restricted to k-regular graphs, they are d.p.-eqivalent.

Roots of graph polynomials

Matching polynomials, I

There are two versions of the univariate matching polynomial: The matching defect polynomial (or acyclic polynomial)

$$dm(G;X) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k m_k(G) X^{n-2k},$$

and the matching generating polynomial

$$gm(G;X) = \sum_{k=0}^{n} m_k(G)X^k$$

The relationship between the two is given by

$$dm(G;X) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k m_k(G) X^{n-2k} = X^n \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k m_k(G) X^{-2k} =$$

and

$$= X^{n} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} m_{k}(G)((-1) \cdot X^{-2})^{k} = X^{n} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} m_{k}(G)(-X^{-2})^{k} = X^{n} gm(G; (-X^{-2}))$$

Roots of graph polynomials

The matching polynomials, II

It follows that

- Both matching polynomials are computable.
- gm and dm are d.p.-equivalent.
- However, gm(G; X) is invariant under addition or removal of isolated vertices, whereas dm(G; X) counts them.

Furthermore we have

Theorem 4 (Godsil and Gutmann) A graph G is a forest iff $dm(G, X) = P_A(G; X)$.

This is a syntactic theorem. One cannot replace dm(G; X) by gm(G; X).

It holds for $P_L(G; X)$ only if one restricts it to k-regular forests.

Roots of graph polynomials

Definability of Graph Polynomials in Second Order Logic SOL

File:b-sol

Graph polynomials definable in Second Order Logic SOL, I

There are **too many** d.p.-equivalent graph polynomials.

For example, let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ be two injective functions and

let $P(G, X) = \sum_{i} a_i(G) X^i$ a graph polynomial.

Then $Q(G, X) = \sum_{i} a_{f(i)(G)} X^{g(i)}$ is equivalent to P(G, X).

SOL-definable generating functions:

Let $\phi(U)$ be an SOL-formula in the language of graphs with a free relation variable U. Let

 $a_i(G) = |\{U \subseteq V : (G, U) \models \phi(U) \text{ and } |U| = i\}|$

be uniformly defined numeric graph parameters.

Then

$$\sum_{i} a_i(G) X^i = \sum_{U:\phi(u)} X^{|U|}$$

is a the simplest form of an SOL-definable graph polynomial.

File:b-sol

Graph polynomials definable in Second Order Logic SOL, II

We can form many d.p.-equivalent graph polynomials such as

$$\sum_{i} a_i(G) X^i = \sum_{U:\phi(u)} X^{|U|} \tag{1}$$

$$\sum_{i} a_{i}(G)(-1)^{i} X^{i} = \sum_{U:\phi(u)} (-1)^{|U|} X^{|U|}$$
(2)

$$\sum_{i} a_{i}(G) X^{|V(G)|-i} = \sum_{U:\phi(u)} X^{|V(G)-U|}$$
(3)

$$\sum_{i} a_{i}(G) {X \choose i} = \sum_{U:\phi(u)} {X \choose |U|}$$
(4)

$$\sum_{i} a_i(G) X^{\underline{i}} = \sum_{U:\phi(u)} X^{\underline{|U|}}$$
(5)

Roots of graph polynomials

Simple SOL-definable graph polynomials

The graph polynomial $dm(G; X) = \sum_i m_i(G) \cdot X^i$, can be written also as

$$dm(G; X) = \sum_{M \subseteq E(G)} \prod_{e \in E} X$$

where M ranges over all matchings of G.

To be a matching is definable by a formula $\phi(I)$ of Second Order Logic SOL

A simple SOL-definable graph polynomial P(G, X) is a polynomial of the form

$$P(G,X) = \sum_{A \subseteq V(G)^r: \phi(A)} \prod_{v \in A} X$$

where A ranges over all subsets of $V(G)^r$ satisfying $\phi(A)$ and $\phi(A)$ is a SOL-formula.

File:b-sol

Roots of graph polynomials

General SOL-definable graph polynomials

For the general case

- One allows several indeterminates X_1, \ldots, X_t .
- One gives an inductive definition.
- One allows an ordering of the vertices.
- One requires the definition to be **invariant under the ordering**, i.e., different orderings still give the same polynomial.
- This also allows to define the modular counting quantifiers $C_{m,q}$ "there are, modulo q exactly m elements..."

The general case includes the Tutte polynomial, the cover polynomial, and virtually all graph polynomials from the literature. File:b-sol

Graph polynomials definable in Second Order Logic SOL, III

Let P(G, X) be a SOL-definable graph polynomial and

let S(G, X) be and SOL-definable similarity function.

Then the following polynomials are SOL-definable and d.p.-equivalent:

- S(G,X) + P(G,X)
- $S(G,X) \cdot P(G,X)$

In the second case S(G; X) is called in the literature a prefactor.

The two matching polynomials are related to each other by a substitution and by a prefactor.

 $dm(G; X) = X^n \cdot gm(G; (-X^{-2}))$

Roots of graph polynomials

(Almost) all graph polynomials

from the literature

are SOL-definable!

File:b-sol

Computability of SOL-definable graph polynomials

Proposition 5 Every SOL-definable graph polynomial P(G; X)with coefficients in a ring \mathcal{R} is computable in a model of computation suitable for \mathcal{R} .

For a detailed discussion of the model of computation, cf.

T. Kotek, J.A. Makowsky and E.V. Ravve,
A Computational Framework for the Study of Partition Functions and Graph Polynomials Proceedings of the 12th Asian Logic Conference,
Wellington, New Zealand, 15 - 20 December 2011
Edited by: Rod Downey, Jörg Brendle, Robert Goldblatt and Byunghan Kim.
DOI: 10.1142/9789814449274_0012

Roots of graph polynomials

Roots of Graph Polynomials

Roots of graph polynomials

P-roots

It is an established topic to study the locations of the roots of graph polynomials.

For a fixed graph polynomial P(G, X) typical statements about roots are:

- (i) For every G the roots of P(G, X) are real.
- (ii) For every G all real roots of P(G, X) are positive (negative) or the only real root is 0.
- (iii) For every G the roots of P(G, X) are contained in a disk of radius $\rho(p(G))$ where p(G) is some numeric graph parameter (degree, girth, clique number, etc).
- (iv) For every G the roots of P(G, X) are contained in a disk of constant radius.
- (v) The roots of P(G, X) are dense in the complex plane.
- (vi) The roots of P(G, X) are dense in some absolute region.

Studying *P*-roots

We now overview polynomials P for which P-roots have been studied.

- Spectra of graphs, chromatic polynomial, matching polynomial, independence polynomial.
 Studying the location of their roots is motivated by applications in chemistry, statistical mechanics.
- Edge cover polynomial and domination polynomial. Studying the location of their roots is motivated by analogy only.
- All these polynomials are SOL-definable.
- All are univariate.

Roots of graph polynomials

Spectral graph theory

Let G(V, E) be a simple undirected graph with |V| = n, and Let A_G and L_G be the (symmetric) adjacency resp. Laplacian matrix of G.

The characteristic polynomial of G is defined as

$$P_A(G,\lambda) = \det(\lambda \cdot 1 - A_G)$$

and the Laplacian polynomial of G is defined s

 $P_L(G,\lambda) = \det(\lambda \cdot 1 - L_G)$

Theorem 6 The roots of $P_A(G, \lambda)$ and $P_L(G, \lambda)$ are all real.

There is a rich literature.

A.E. Brouwer and W. H. Haemers Spectra of Graphs Springer 2010.

Roots of graph polynomials

The (vertex) chromatic polynomial

Let G = (V(G), E(G)) be a graph, and $\lambda \in \mathbb{N}$.

```
A \lambda-vertex-coloring is a map
```

 $c: V(G) \to [\lambda]$

such that $(u, v) \in E(G)$ implies that $c(u) \neq c(v)$.

We define $\chi(G,\lambda)$ to be the number of λ -vertex-colorings

Theorem 7 (G. Birkhoff, 1912) $\chi(G,\lambda)$ is a polynomial in $\mathbb{Z}[\lambda]$.

Proof:

(i) $\chi(E_n) = \lambda^n$ where E_n consists of n isolated vertices.

(ii) For any edge e = E(G) we have $\chi(G - e, \lambda) = \chi(G, \lambda) + \chi(G/e, \lambda)$.

The Four Color Conjecture

Birkhoff wanted to prove the **Four Color Conjecture** using techniques from real or complex analysis.

Conjecture: (Birkhoff and Lewis, 1946) If *G* is planar then $\chi(G, \lambda) \neq 0$ for $\lambda \in [4, +\infty) \subseteq \mathbb{R}$.

Theorem 8 (Birkhoff and Lewis, 1946) For planar graphs G we have $\chi(G, \lambda) \neq 0$ for $\lambda \in [5, +\infty)$.

Still open: Are there planar graphs G such that

 $\chi(G,\lambda) = 0$ for some $\lambda \in (4,5)$?

More on chromatic roots, I

For real roots of χ we know:

Theorem 9 (Jackson, 1993, Thomassen, 1997)

For simple graphs *G* we have $\chi(G, \lambda) \neq 0$ for real $\lambda \in (-\infty, 0)$, $\lambda \in (0, 1)$ and $\lambda \in (1, \frac{32}{27})$. The only real roots $\leq \frac{32}{27}$ are 0 and 1.

The real roots of all chromatic polynomials are dense in $\left[\frac{32}{27},\infty\right)$

Roots of graph polynomials

More on chromatic roots, II

For complex roots of χ we know:

Theorem 10 (Sokal, 2004)

The complex roots are dense in \mathbb{C} .

The complex roots are bounded by $7.963907 \cdot \Delta(G) \leq 8 \cdot \Delta(G)$ where $\Delta(G)$ is the maximal degree of G.

We shall see that this is not a semantic property of the chromatic polynomial.

However, we have an interpretation in physics:

The chromatic polynomial corresponds to the zero-temperature limit of the antiferromagnetic Potts model. In particular, theorems guaranteeing that a certain complex open domain is free of zeros are often known as Lee-Yang theorems.

The above theorem says that no such domain exists.

Roots of graph polynomials

More on chromatic roots, III

Theorem 11 (C. Thomassen, 2000)

If the chromatic polynomial of a graph has a real noninteger root less than or equal to

$$t_0 = \frac{2}{3} + \frac{1}{3}\sqrt[3]{26 + 6\sqrt{33}} + \frac{1}{3}\sqrt[3]{26 - 6\sqrt{33}} = 1.29559\dots$$

Then the graph has no Hamiltonian path.

This result is best possible in the sense that it becomes false if t_0 is replaced by any larger number.

This is **not** a semantic property of the chromatic polynomial.

A semantic version would be:

The chromatic polynomial determines the existence of Hamiltonian paths.

The three matching polynomials

Let $m_i(G)$ be the number sets of independent edges of size *i*. We define

$$dm(G,x) = \sum_{r} (-1)^{r} m_{r}(G) x^{n-2r}$$
(6)

$$gm(G,x) = \sum_{r} m_r(G)x^r$$
(7)

$$M(G, x, y) = \sum_{r} m_r(G) x^r y^{n-2r}$$
(8)

We have $dm(G; x) = x^n gm(G; (-x)^{-2}) = M(G, -1, x)$ where n = |V|.

All three matching polynomials are d.p-equivalent.

Theorem 12 (Heilmann and Lieb 1972) The roots of dm(G,x) are real and symmetrically placed around zero, i.e., dm(G,x) = 0 iff dm(G,-x) = 0

The roots of gm(G, x) are real and negative

Roots of graph polynomials

Independence polynomial

Let $in_i(G)$ be the number of independent sets of G of size *i*, and the **independence polynomial**

$$I(G,X) = \sum_{i} in_i(G)X^i$$

Clearly there are no positive real independence roots. For a survey see: V.E. Levit and E. Mandrescu, The independence polynomial of a graph - a survey, Proceedings of the 1st International Conference on Algebraic Informatics, Thessaloniki, 2005, pp. 233-254.

J. Brown, C. Hickman and R. Nowakowski showed in Journal of Algebraic Combinatorics, 2004:

Theorem 13 (J. Brown, C. Hickman and R. Nowakowski, 2004) The real roots are dense in $(-\infty, 0]$ and the complex roots are dense in \mathbb{C} .

Edge cover polynomial

Let $e_i(G)$ be the number of edge coverings of G of size *i*, and the edge cover polynomial

$$E(G,X) = \sum_{i} e_i(G)X^i$$

Theorem 14 (P. Csikvári and M.R.Oboudi, 2011) All roots of E(G, X) are in the ball

$$\{z \in \mathbb{C} : |z| \le \frac{(2+\sqrt{3})^2}{1+\sqrt{3}} = \frac{(1+\sqrt{3})^3}{4}\}.$$

Domination polynomial

Inspired by the rich literature on dominating sets, **S. Alikhani** introduced in his Ph.D. thesis the **domination polynomial**;

Let $d_i(G)$ be the number of dominating sets of G of size *i*, and the **domination** polynomial

$$D(G,X) = \sum_{i} d_i(G)X^i$$

It is easy to see that 0 is a domination root, and that there are no real positive domination roots.

J. Brown and J. Tufts (Graphs and Combinatorics, , 2013) showed:

```
Theorem 15 (J. Brown and J. Tufts)
The domination roots are dense in \mathbb{C}.
```

Roots of graph polynomials

D.p.-Equivalence and the

Location of the Roots

of SOL-Definable Graph Polynomials

From now on all graph polynomials

are supposed to be SOL-definable.

Roots of graph polynomials

Roots vs distinctive power, I

Let s(G) be a similarity function. Theorem 16 (MRB)

For every univariate graph polynomial $P(G; X) = \sum_{i=0}^{s(G)} h_i(G)X^i$ where s(G) and $h_i(G), i = 0, ..., s(G)$ are graph parameters with values in \mathbb{N} , there exists a univariate graph polynomials $Q_1(G; X)$, prefactor equivalent to P(G; X) such that for every Gall real roots of $Q_1(G; X)$ are

positive (negative) or the only real root is 0.

Roots of graph polynomials

Roots vs distinctive power, II

Let s(G) be a similarity function. Theorem 17 (MRB)

For every univariate graph polynomial

$$P(G;X) = \sum_{i=0}^{i=s(G)} h_i(G)X^i \in \mathbb{Z}[X], \text{ resp. } \mathbb{R}[X]$$

there is a d.p.-equivalent graph polynomial

$$Q_2(G;X) = \sum_{i=0}^{i=s(G)} H_i(G)X^i \in \mathbb{Z}[X], \text{ resp. } \mathbb{R}[X]$$

such that all the roots of Q(G; X) are real.

Roots of graph polynomials

Roots vs distinctive power, III

Let P(G; X) as before.

Theorem 18 (MRB)

For every univariate graph polynomial P(G; X)there exist univariate graph polynomials $Q_3(G; X)$ substitution equivalent to P(G; X) such that for every G the roots of $Q_3(G; X)$ are contained in a disk of constant radius. If we want to have all roots real and bounded in \mathbb{R} , we have to require d.p.-equivalence.

Roots of graph polynomials

Roots vs distinctive power, IV

Let P(G; X) as before.

Theorem 19 (MRB)

For every univariate graph polynomial P(G; X)there exists a univariate graph polynomial $Q_4(G; X)$ prefactor equivalent to P(G; X) such that $Q_4(G; X)$ has only countably many roots, and its roots are dense in the complex plane. If we want to have all roots real and dense in \mathbb{R} , we have to require d.p.-equivalence. File:b-roots

Roots of graph polynomials

The proofs use various tricks!

Roots of graph polynomials

Proofs: Theorem 16

Let $P(G, X) = \sum_{i} c_i(G) X^i = \sum_{A \subset V(G)^r} X^{|A|}$ be SOL-definable. We want to show:

For every G all real roots of P(G, X) are negative.

This is true, because all coefficients of P(G, X) are non-negative integers, due to SOL-definability.

If we want to find $Q_1(G; X)$ d.p.-equivalent to P(G; X) such that

for every G all real roots of $Q_1(G, X)$ are positive,

we put $Q_1(G, X) = P(G, -X) = \sum_i c_i(G)(-X)^i = \sum_i (-1)^i c_i(G)(X)^i$.

If we want to find $Q'_1(G; X)$ d.p.-equivalent to P(G; X) such that

for every G the only real root of $Q_1(G, X)$ is 0,

we put $Q'_1(G, X) = P(G, X^2) = \sum_i c_i(G)(X)^{2i}$.

Q.E.D.

Proofs: Theorem 17

Let P(G, X) as before be SOL-definable.

We want to find $Q_3(G; X)$ d.p.-equivalent to P(G; X) such that all roots of $Q_2(G; X)$ are real.

We define $Q_2(G; X) = \prod_{i=0}^{s(G)} (X - h_i(G)).$

Q.E.D.

Roots of graph polynomials

Proofs: Theorem 18

Let P(G, X) be SOL-definable.

We want to show:

For every G the roots of $Q_3(G, X)$ are contained in a disk of constant radius.

To relocate the roots of P(G, X) we use Rouché's Theorem in the following form:

Lemma 20 Let $P(X) = \sum_{i=0}^{d} h_i X^i$ and $P'(X) = A \cdot X^{2d}$ with $A \ge \max_i \{h_i : 0 \le i \le d-1\}$. Let $Q_3(X) = P(X) + P'(X)$.

Then all complex roots ξ of $Q_3(X)$ satisfy $|\xi| \leq 2$.

Clearly, P'(G, X) is SOL-definable and d.p. equivalent to P(G, X). Q.E.D.

Reference: P. Henrici, Applied and Computational Complex Analysis, volume 1,

Wiley Classics Library, John Wiley, 1988.

Section 4.10, Theorem 4.10c

Proofs: Theorem 19

Lemma 21

There exist univariate similarity polynomials $D^i_{\mathbb{C}}(G; X), i = 1, 2, 3, 4$ of degree 12 such that all its roots of $D^i_{\mathbb{C}}(G; X)$ are dense in the *i*th quadrant of \mathbb{C} .

We use this lemma and put

$$Q_4(G;X) = \left(\prod_{i=1}^{i=4} D^i(G;X)\right) \cdot P(G;X).$$

To get the real roots to be dense we proceed similarily.

Q.E.D.

Roots of graph polynomials

Budapest, April, 29 2014

Are the locations of *P*-roots semantically meaningfull?

Our results seems to suggest:

- The location of *P*-roots depends strongly on the syntactic presentation of *P*.
- We still don't understand the particular rôle syntactic presentation of graph polynomials have to play.
- d.p. equivalence garantees that the information conveyed by coefficients or roots is inherent in every presentation. The choice of presentation only serves in making it more or less visible.
- Although the location of chromatic roots is easily interpretable, the same is not true for edge cover or domination roots.
- The study of *P*-roots needs better justifications besides mere mathematical curiosity.

Roots of graph polynomials

The rôle of recurrence relations

The chromatic polynomial, Tutte polynomial and the matching polynomial satisfy recurrence relations of the type

 $P(G,X) = \alpha \cdot P(G_{-e},X) + \beta \cdot P(G_{/e}X) + \gamma \cdot P(G_{\dagger e},X)$

where G_{-e} is deletion of the edge e, $G_{/e}$ is contraction of the edge e, and $G_{\dagger e}$ is extraction of the edge e, and $\alpha, \beta, \gamma \in \mathbb{Z}[X]$ are suitable polynomials.

It is conceivable, and the proofs use these relations, that the location of the corresponding *P*-roots are intrinsically related to these recurrence relations.

Note: It is not clear how recurrence relations **behave** under d.p. equivalence.

Note: Ilia Averbouch, PhD Thesis, Haifa, February 2011

"Completeness and Universality Properties of Graph Invariants and Graph Polynomials",

http://www.cs.technion.ac.il/ janos/RESEARCH/averbouch-PhD.pdf

Roots of graph polynomials

Thank you for your attention!