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Overview

• Semantic properties of graph polynomials

• Definability of graph polynomials in Second Order Logic SOL

• Many examples

• Roots of graph polynomials

• What do we learn?
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Semantic Properties of Graph Polynomials
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Graph polynomials

Let R be a (polynomial) ring.

A function P : G → R is a

graph parameter

if for any two isomorphic graphs G1, G2 ∈ G we have P (G1) = P (G2).

It is a

graph polynomial

if for each G ∈ G it is a polynomial.

In this lecture we study univariate graph polynomials P with R = Z[X] or
C[X].

A complex number z ∈ C is a P -root if there is a graph G ∈ G such that

P (G, z) = 0.
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Similar graphs and similarity functions

Two graphs G1, G2 are similar if they have the same number of vertices, edges
and connected components, i.e.,

• |V (G1)| = n(G1) = n(G2) = |V (G2)|,

• |E(G1)| = m(G1) = m(G2) = |E(G2)|, and

• k(G1) = k(G2).

A graph parameter or graph polynomial is a similarity function if it is invariant
and similarity.

(i) The nullity ν(G) = m(G)− n(G) + k(G) and the rank ρ(G) = n(G)− k(G) of a graph G
are similarity polynomials with integer coefficients.

(ii) Similarity polynomials can be formed inductively starting with similarity functions f(G)
not involving indeterminates, and monomials of the form Xg(G) where X is an indeter-
minate and g(G) is a similarity function not involving indeterminates. One then closes
under pointwise addition, subtraction, multiplication and substitution of indeterminates
X by similarity polynomials.
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Distinctive power of graph polynomials, I

Two graph polynomials are usually compared via their distinctive power.

A graph polynomial Q(G,X) is less distinctive than P (G, Y ), Q � P ,
if for every two similar graphs G1 and G2

P (G1, X) = P (G2, X) implies Q(G1, Y ) = Q(G2, Y ).

We also say the P (G;X) determines Q(G;X) if Q � P .

Two graph polynomials P (G,X) and Q(G, Y ) are
equivalent in distinctive power (d.p-equivalent)
if for every two similar graphs G1 and G2

P (G1, X) = P (G2, X) iff Q(G1, Y ) = Q(G2, Y ).

The same definition also works for graph parameters and multivariate graph

polynomials.
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Distinctive power of graph polynomials, II

C∞ denotes the set of finite sequences of complex numbers.
We denote by cP (G) ∈ C∞ the sequence of coefficients of P (G,X).

Proposition 1
Two graph polynomials P (G,X1, . . . Xr) and Q(G, Y1, . . . , Ys) are equivalent
in distinctive power (d.p-equivalent) (P ∼d.p. Q) iff there are two functions
F1, F2 : C∞ → C∞ such that for every graph G

F1(n(G),m(G), k(G), cP (G)) = cQ(G) and

F2(n(G),m(G), k(G), cQ(G)) = cP (G)

Proposition 1 shows that our definition of equivalence of graph polynomials
is mathematically equivalent to the definition proposed by
C. Merino and S. Noble in 2009.
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Computability

The functions F1, F2 in Proposition 1 need not be computable in any sense,
even if the coefficients of P (G) and Q(G) are integers.

A graph polynomial P (G;X) with coefficients in a ring R is computable (in a
suitable model of computation for R) if

(i) the function cP : G →
⋃
nRn computing the coefficients of P (G;X) is

computable, and

(ii) the decision problem, given s ∈
⋃
nRn is there a graph with cP(G) = s is

decidable.

Theorem 2
Let P (G;X) and Q(G;X) be two computable graph polynomials which are
d.p.-equivalent. Then there are F1, F2 as in Proposition 1 which are com-
putable.

In this case we say that P (G;X) and Q(G;X) are computably d.p.-equivalent.
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Prefactor and subtsitution equivalence, I

• We say that P (G; X̄) is prefactor reducible to Q(G; X̄) and we write

P (G; Ȳ ) �prefactor Q(G; X̄)

if there are similarity functions

f(G; X̄), g1(G; X̄), . . . , gr(G; X̄)

such that

P (G; Ȳ ) = f(G; X̄) ·Q(G; g1(G; Ȳ ), . . . , g(G; Ȳ )).

• We say that P (G; X̄) is substitutions reducible to Q(G; X̄), and we write

P (G; Ȳ ) �subst Q(G; X̄)

if f(G; X̄) = 1 for all values of X̄.

• P (G; X̄) and Q(G; X̄) are prefactor (substitution) equivalent if the rela-
tionship holds in both directions.

It follows that if P (G; X̄) and Q(G; X̄) are prefactor (substitution) equivalent

then they are computably d.p.-equivalent.
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Semantic properties of graph parameters

A semantic property is a class of graph parameters (polynomials) closed under
d.p.-equivalence.

Let p(G) be a graph parameter with values in N, and P (G;X) be a graph
polynomial.

• The degree of P (G;X) equals p(G) is not a semantic property of P (G;X).

Using Proposition 1 we see that P (G;X) and P (G;X2) are d.p.-equivalent,

but they have different degrees.

• P (G;X) determines p(G) is a semantic property of P (G;X).
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Semantic vs syntactic properties of graph polynomials, I

Semantically meaningless properties:

(i) P (G,X) is monic for each graph G, i.e., the leading coefficient of P (G;X)
equals 1.

Multiplying each coefficient by a fixed polynomial gives an equivalent
graph polynomial.

(ii) The leading coefficient of P (G,X) equals the number of vertices of G.

However, proving that two graphs G1, G2 with P (G1, X) = P (G2, X) have
the same number of vertices is semantically meaningful.

(iii) The graph polynomials P (G;X) and Q(G;X) coincide on a class C of
graphs, i.e. for all G ∈ C we have P (G;X) = Q(G;X).

The semantic content of this situation says that if we restrict our graphs
to C, then P (G;X) and Q(G;X) have the same distinguishing power.

The equality of P (G;X) and Q(G; a)X is a syntactic conincidence or
reflects a clever choice in the definitions P (G;X) and Q(G;X.
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Semantic vs syntactic properties of graph polynomials, II

Clever choices of can be often achieved.

Let C be class of finite graphs closed under graph isomorphisms.

Proposition 3
Assume that P (G;X) and Q(G;X) have the same distinguishing power on a
class of graphs C. Then there is P ′ ∼d.p. P such that the graph polynomials
P ′(G;X) and Q(G;X) coincide on a class C of graphs.

If, additionally, C, P (G;X) and Q(G;X) are computable, then P ′(G;X) can be
made computable, too.

Proposition 3 also holds when we replace computable by definable in SOL,
as we shall see later.
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Prominent graph polynomials
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Spectral graph theory, I

Let G = (V (G), E(G)) be a loopless graph without multiple edges.

• AG is the adjacency matrix of a graph G.

• DG is the diagonal matrix with (DG)i,i = d(i), the degree of the vertex i.

• LG = DG −AG is the Laplacian of G.

In spectral graph theory two computable graph polynomials are considered:

• The characteristic polynomial PA(G;X) of G defined as

PA(G;X) = det(X · I−AG)

• and the Laplacian polynomial PL(G;X) of G defined as

PL(G;X) = det(X · I− LG)

Here I denotes the unit element in the corresponding matrix ring.
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Spectral graph theory, II

G and H below are similar.

G H

We have

PA(G;X) = PA(H;X) = (X − 1)(X + 1)2(X3 −X2 − 5X + 1),

but G has eight spanning trees, and H has six.

Therefore, PL(G;X) 6= PL(H;X), as one can compute the number of spanning

trees from PL(G;X).
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Spectral graph theory, III

On the other hand, the graphs below G′ and H ′ are similar,
but G′ is not bipartite, whereas, H ′ is.

G′ H ′

As PA determines bipartiteness, we have PA(H ′;X) 6= PA(G′, X),
but one can easily check that PL(H ′;X) = PL(G′;X).

Conclusion:

The characteristic polynomial and the Laplacian polynomial are d.p.-incomparable.

However, if restricted to k-regular graphs, they are d.p.-eqivalent.
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Matching polynomials, I

There are two versions of the univariate matching polynomial:
The matching defect polynomial (or acyclic polynomial)

dm(G;X) =

bn
2
c∑

k=0

(−1)kmk(G)Xn−2k,

and the matching generating polynomial

gm(G;X) =
n∑

k=0

mk(G)Xk

The relationship between the two is given by

dm(G;X) =

bn
2
c∑

k=0

(−1)kmk(G)Xn−2k = Xn

bn
2
c∑

k=0

(−1)kmk(G)X−2k =

and

= Xn

bn
2
c∑

k=0

mk(G)((−1) ·X−2)k = Xn

bn
2
c∑

k=0

mk(G)(−X−2)k = Xngm(G; (−X−2))
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The matching polynomials, II

It follows that

• Both matching polynomials are computable.

• gm and dm are d.p.-equivalent.

• However, gm(G;X) is invariant under addition or
removal of isolated vertices, whereas dm(G;X) counts them.

Furthermore we have

Theorem 4 (Godsil and Gutmann)
A graph G is a forest iff dm(G,X) = PA(G;X).

This is a syntactic theorem. One cannot replace dm(G;X) by gm(G;X).

It holds for PL(G;X) only if one restricts it to k-regular forests.
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Definability of Graph Polynomials

in Second Order Logic SOL
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Graph polynomials definable in Second Order Logic SOL, I

There are too many d.p.-equivalent graph polynomials.

For example, let f : N→ N and g : N→ N be two injective functions and

let P (G,X) =
∑

i
ai(G)Xi a graph polynomial.

Then Q(G,X) =
∑

i
af(i)(G)X

g(i) is equivalent to P (G,X).

SOL-definable generating functions:

Let φ(U) be an SOL-formula in the language of graphs with a free relation
variable U . Let

ai(G) =| {U ⊆ V : (G,U) |= φ(U) and |U | = i} |
be uniformly defined numeric graph parameters.

Then ∑
i

ai(G)Xi =
∑
U :φ(u)

X |U |

is a the simplest form of an SOL-definable graph polynomial.
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Graph polynomials definable in Second Order Logic SOL, II

We can form many d.p.-equivalent graph polynomials such as∑
i

ai(G)Xi =
∑
U :φ(u)

X |U | (1)∑
i

ai(G)(−1)iXi =
∑
U :φ(u)

(−1)|U |X |U | (2)∑
i

ai(G)X |V (G)|−i =
∑
U :φ(u)

X |V (G)−U | (3)

∑
i

ai(G)
(X
i

)
=
∑
U :φ(u)

(X
|U |
)

(4)∑
i

ai(G)Xi =
∑
U :φ(u)

X
|U |

(5)
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Simple SOL-definable graph polynomials

The graph polynomial dm(G;X) =
∑

imi(G) ·Xi, can be written also as

dm(G;X) =
∑

M⊆E(G)

∏
e∈E

X

where M ranges over all matchings of G.
To be a matching is definable by a formula φ(I) of Second Order Logic SOL
.

A simple SOL-definable graph polynomial P (G,X) is a polynomial of the
form

P (G,X) =
∑

A⊆V (G)r:φ(A)

∏
v∈A

X

where A ranges over all subsets of V (G)r satisfying φ(A)

and φ(A) is a SOL-formula.
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General SOL-definable graph polynomials

For the general case

• One allows several indeterminates X1, . . . , Xt.

• One gives an inductive definition.

• One allows an ordering of the vertices.

• One requires the definition to be invariant under the ordering, i.e.,
different orderings still give the same polynomial.

• This also allows to define the modular counting quantifiers
Cm,q ”there are, modulo q exactly m elements...”

The general case includes the Tutte polynomial, the cover poly-

nomial, and virtually all graph polynomials from the literature.
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Graph polynomials definable in Second Order Logic SOL, III

Let P (G,X) be a SOL-definable graph polynomial and

let S(G,X) be and SOL-definable similarity function.

Then the following polynomials are SOL-definable and d.p.-equivalent:

• S(G,X) + P (G,X)

• S(G,X) · P (G,X)

In the second case S(G;X) is called in the literature a prefactor.

The two matching polynomials are related to each other
by a substitution and by a prefactor.

dm(G;X) = Xn · gm(G; (−X−2))
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(Almost) all graph polynomials

from the literature

are SOL-definable!
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Computability of SOL-definable graph polynomials

Proposition 5
Every SOL-definable graph polynomial P (G;X)
with coefficients in a ring R
is computable in a model of computation suitable for R.

For a detailed discussion of the model of computation, cf.

T. Kotek, J.A. Makowsky and E.V. Ravve,

A Computational Framework for the Study of Partition Functions and Graph Polynomials

Proceedings of the 12th Asian Logic Conference,

Wellington, New Zealand, 15 - 20 December 2011

Edited by: Rod Downey, Jörg Brendle, Robert Goldblatt and Byunghan Kim.

DOI: 10.1142/9789814449274 0012
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Roots of Graph Polynomials
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P -roots

It is an established topic to study the locations of the roots of graph polyno-
mials.

For a fixed graph polynomial P (G,X) typical statements about roots are:

(i) For every G the roots of P (G,X) are real.

(ii) For every G all real roots of P (G,X) are positive (negative)
or the only real root is 0.

(iii) For every G the roots of P (G,X) are contained in a disk of radius ρ(p(G))
where p(G) is some numeric graph parameter
(degree, girth, clique number, etc).

(iv) For every G the roots of P (G,X) are
contained in a disk of constant radius.

(v) The roots of P (G,X) are dense in the complex plane.

(vi) The roots of P (G,X) are dense in some absolute region.
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Studying P -roots

We now overview polynomials P for which P -roots have been studied.

• Spectra of graphs, chromatic polynomial, matching polynomial, indepen-
dence polynomial.
Studying the location of their roots is motivated by applications in chemistry, statistical

mechanics.

• Edge cover polynomial and domination polynomial.
Studying the location of their roots is motivated by analogy only.

• All these polynomials are SOL-definable.

• All are univariate.
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Spectral graph theory

Let G(V,E) be a simple undirected graph with |V | = n, and
Let AG and LG be the (symmetric) adjacency resp. Laplacian matrix of G.

The characteristic polynomial of G is defined as

PA(G,λ) = det(λ · 1−AG)

and the Laplacian polynomial of G is defined s

PL(G,λ) = det(λ · 1− LG)

Theorem 6
The roots of PA(G,λ) and PL(G,λ) are all real.

There is a rich literature.

A.E. Brouwer and W. H. Haemers

Spectra of Graphs

Springer 2010.
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The (vertex) chromatic polynomial

Let G = (V (G), E(G)) be a graph, and λ ∈ N.

A λ-vertex-coloring is a map

c : V (G)→ [λ]

such that (u, v) ∈ E(G) implies that c(u) 6= c(v).

We define χ(G,λ) to be the number of λ-vertex-colorings

Theorem 7 (G. Birkhoff, 1912)
χ(G,λ) is a polynomial in Z[λ].

Proof:

(i) χ(En) = λn where En consists of n isolated vertices.

(ii) For any edge e = E(G) we have χ(G− e, λ) = χ(G,λ) + χ(G/e, λ).

File:b-main 32



Budapest , April, 29 2014 Roots of graph polynomials

The Four Color Conjecture

Birkhoff wanted to prove the Four Color Conjecture
using techniques from real or complex analysis.

Conjecture:(Birkhoff and Lewis, 1946)
If G is planar then χ(G,λ) 6= 0 for λ ∈ [4,+∞) ⊆ R.

Theorem 8 (Birkhoff and Lewis, 1946)
For planar graphs G we have χ(G,λ) 6= 0 for λ ∈ [5,+∞).

Still open: Are there planar graphs G such that

χ(G,λ) = 0 for some λ ∈ (4,5)?

File:b-main 33



Budapest , April, 29 2014 Roots of graph polynomials

More on chromatic roots, I

For real roots of χ we know:

Theorem 9 (Jackson, 1993, Thomassen, 1997)

For simple graphs G we have χ(G,λ) 6= 0 for
real λ ∈ (−∞,0), λ ∈ (0,1) and λ ∈ (1, 32

27
).

The only real roots ≤ 32
27

are 0 and 1.

The real roots of all chromatic polynomials are dense in [32
27
,∞)
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More on chromatic roots, II

For complex roots of χ we know:

Theorem 10 (Sokal, 2004)

The complex roots are dense in C.

The complex roots are bounded by 7.963907 ·∆(G) ≤ 8 ·∆(G) where ∆(G)
is the maximal degree of G.

We shall see that this is not a semantic property of the chromatic polynomial.

However, we have an interpretation in physics:

The chromatic polynomial corresponds to the zero-temperature limit of the
antiferromagnetic Potts model. In particular, theorems guaranteeing that a
certain complex open domain is free of zeros are often known as Lee-Yang
theorems.

The above theorem says that no such domain exists.
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More on chromatic roots, III

Theorem 11 (C. Thomassen, 2000)

If the chromatic polynomial of a graph has a real noninteger root less than
or equal to

t0 =
2

3
+

1

3

3

√
26 + 6

√
33 +

1

3

3

√
26− 6

√
33 = 1.29559 . . .

Then the graph has no Hamiltonian path.

This result is best possible in the sense that it becomes false if t0 is replaced
by any larger number.

This is not a semantic property of the chromatic polynomial.

A semantic version would be:

The chromatic polynomial determines the existence of Hamiltonian paths..
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The three matching polynomials

Let mi(G) be the number sets of independent edges of size i. We define

dm(G, x) =
∑
r

(−1)rmr(G)xn−2r (6)

gm(G, x) =
∑
r

mr(G)xr (7)

M(G, x, y) =
∑
r

mr(G)xryn−2r (8)

We have dm(G;x) = xngm(G; (−x)−2) = M(G,−1, x) where n =| V |.

All three matching polynomials are d.p-equivalent.

Theorem 12 (Heilmann and Lieb 1972)
The roots of dm(G, x) are real and symmetrically placed around zero, i.e.,
dm(G, x) = 0 iff dm(G,−x) = 0

The roots of gm(G, x) are real and negative
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Independence polynomial

Let ini(G) be the number of independent sets of G of size i,
and the independence polynomial

I(G,X) =
∑
i

ini(G)Xi

Clearly there are no positive real independence roots.
For a survey see: V.E. Levit and E. Mandrescu,

The independence polynomial of a graph - a survey,

Proceedings of the 1st International Conference on Algebraic Informatics,

Thessaloniki, 2005, pp. 233-254.

J. Brown, C. Hickman and R. Nowakowski showed in Journal of Algebraic
Combinatorics, 2004:

Theorem 13 (J. Brown, C. Hickman and R. Nowakowski, 2004)
The real roots are dense in (−∞,0] and the complex roots are dense in C.
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Edge cover polynomial

Let ei(G) be the number of edge coverings of G of size i, and the edge cover
polynomial

E(G,X) =
∑
i

ei(G)Xi

Theorem 14 (P. Csikvári and M.R.Oboudi, 2011)
All roots of E(G,X) are in the ball

{z ∈ C : |z| ≤
(2 +

√
3)2

1 +
√

3
=

(1 +
√

3)3

4
}.
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Domination polynomial

Inspired by the rich literature on dominating sets, S. Alikhani introduced in
his Ph.D. thesis the domination polynomial;

Let di(G) be the number of dominating sets of G of size i, and the domination
polynomial

D(G,X) =
∑
i

di(G)Xi

It is easy to see that 0 is a domination root, and that there are no real positive
domination roots.

J. Brown and J. Tufts (Graphs and Combinatorics, , 2013) showed:

Theorem 15 (J. Brown and J. Tufts)
The domination roots are dense in C.
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D.p.-Equivalence and the

Location of the Roots

of SOL-Definable Graph Polynomials

From now on all graph polynomials

are supposed to be SOL-definable.
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Roots vs distinctive power, I

Let s(G) be a similarity function.

Theorem 16 (MRB)

For every univariate graph polynomial P (G;X) =
∑s(G)

i=0 hi(G)Xi

where s(G) and hi(G), i = 0, . . . s(G) are graph parameters with values in N,

there exists a univariate graph polynomials Q1(G;X),

prefactor equivalent to P (G;X) such that for every G

all real roots of Q1(G;X) are

positive (negative) or the only real root is 0.
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Roots vs distinctive power, II

Let s(G) be a similarity function.

Theorem 17 (MRB)

For every univariate graph polynomial

P (G;X) =

i=s(G)∑
i=0

hi(G)Xi ∈ Z[X], resp. R[X]

there is a d.p.-equivalent graph polynomial

Q2(G;X) =

i=s(G)∑
i=0

Hi(G)Xi ∈ Z[X], resp. R[X]

such that all the roots of Q(G;X) are real.
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Roots vs distinctive power, III

Let P (G;X) as before.

Theorem 18 (MRB)

For every univariate graph polynomial P (G;X)

there exist univariate graph polynomials Q3(G;X)

substitution equivalent to P (G;X) such that

for every G the roots of Q3(G;X) are contained in a disk of constant radius.

If we want to have all roots real and bounded in R,

we have to require d.p.-equivalence.
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Roots vs distinctive power, IV

Let P (G;X) as before.

Theorem 19 (MRB)

For every univariate graph polynomial P (G;X)

there exists a univariate graph polynomial Q4(G;X)

prefactor equivalent to P (G;X) such that

Q4(G;X) has only countably many roots,

and its roots are dense in the complex plane.

If we want to have all roots real and dense in R,

we have to require d.p.-equivalence.
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The proofs use various tricks!
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Proofs: Theorem 16

Let P (G,X) =
∑

i ci(G)Xi =
∑

A⊂V (G)r X
|A| be SOL-definable. We want to

show:

For every G all real roots of P (G,X) are negative.

This is true, because all coefficients of P (G,X) are non-negative integers,
due to SOL-definability.

If we want to find Q1(G;X) d.p.-equivalent to P (G;X) such that

for every G all real roots of Q1(G,X) are positive,

we put Q1(G,X) = P (G,−X) =
∑

i ci(G)(−X)i =
∑

i(−1)ici(G)(X)i.

If we want to find Q′1(G;X) d.p.-equivalent to P (G;X) such that

for every G the only real root of Q1(G,X) is 0,

we put Q′1(G,X) = P (G,X2) =
∑

i ci(G)(X)2i.

Q.E.D.
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Proofs: Theorem 17

Let P (G,X) as before be SOL-definable.

We want to find Q3(G;X) d.p.-equivalent to P (G;X) such that all roots of
Q2(G;X) are real.

We define Q2(G;X) =
∏s(G)
i=0 (X − hi(G)).

Q.E.D.
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Proofs: Theorem 18

Let P (G,X) be SOL-definable.

We want to show:

For every G the roots of Q3(G,X) are contained in a disk of constant radius.

To relocate the roots of P (G,X) we use Rouché’s Theorem in the following
form:

Lemma 20
Let P (X) =

∑d
i=0 hiX

i and P ′(X) = A ·X2d with A ≥ maxi{hi : 0 ≤ i ≤ d− 1}.
Let Q3(X) = P (X) + P ′(X).

Then all complex roots ξ of Q3(X) satisfy |ξ| ≤ 2.

Clearly, P ′(G,X) is SOL-definable and d.p. equivalent to P (G,X). Q.E.D.

Reference: P. Henrici, Applied and Computational Complex Analysis, volume 1,

Wiley Classics Library, John Wiley, 1988.

Section 4.10, Theorem 4.10c
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Proofs: Theorem 19

Lemma 21
There exist univariate similarity polynomials Di

C(G;X), i = 1,2,3,4 of degree
12 such that all its roots of Di

C(G;X) are dense in the ith quadrant of C.

We use this lemma and put

Q4(G;X) =

(
i=4∏
i=1

Di(G;X)

)
· P (G;X).

To get the real roots to be dense we proceed similarily.

Q.E.D.
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Are the locations of P -roots
semantically meaningfull?

Our results seems to suggest:

• The location of P -roots depends strongly
on the syntactic presentation of P .

• We still don’t understand the particular rôle
syntactic presentation of graph polynomials have to play.

• d.p. equivalence garantees that the information conveyed by coefficients
or roots is inherent in every presentation.
The choice of presentation only serves in making it more or less visible.

• Although the location of chromatic roots is easily interpretable, the same
is not true for edge cover or domination roots.

• The study of P -roots needs better justifications
besides mere mathematical curiosity.
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The rôle of recurrence relations

The chromatic polynomial, Tutte polynomial and the matching polynomial
satisfy recurrence relations of the type

P (G,X) = α · P (G−e, X) + β · P (G/eX) + γ · P (G†e, X)

where G−e is deletion of the edge e,
G/e is contraction of the edge e, and
G†e is extraction of the edge e, and
α, β, γ ∈ Z[X] are suitable polynomials.

It is conceivable, and the proofs use these relations, that the location of the
corresponding P -roots are intrinsically related to these recurrence relations.

Note: It is not clear how recurrence relations behave under d.p. equivalence.

******************

Note: Ilia Averbouch, PhD Thesis, Haifa, February 2011

”Completeness and Universality Properties of Graph Invariants and Graph Polynomials”,

http://www.cs.technion.ac.il/ janos/RESEARCH/averbouch-PhD.pdf
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Thank you for your attention!
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