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Overview

• Hankel matrices: A brief history

• Hankel matrices in Automata Theory

• Definability in (Monadic) Second Order Logic

• Characterzing word functions

• The Finite Rank Theorem

• Meta Theorems and Hankel matrices

• Tropical semirings

• Conclusions
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What are Hankel matrices?
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Hankel matrices (over a field F)

Let f : F → F be a function.

A finite or infinite matrix H(f) = hi,j over a field F is a Hankel matrix for f
if hi,j = f(i+ j).

Hankel matrices have many applications in:
numeric analysis, probability theory and combinatorics.

• Padé approximations

• Orthogonal polynomials

• Probability theory (theory of moments)

• Coding theory (BCH codes, Berlekamp-Massey algorithm)

• Combinatorial enumerations
(Lattice paths, Young tableaux, matching theory)
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Hankel matrices over words

Let Σ be a finite alphabet and F be a field and let f : Σ? → F be a function
on words.

A finite or infinite matrix H(f) = hu,v indexed over the words u, v ∈ Σ? is a
Hankel matrix for f if hu,v = f(u ◦ v). Here ◦ denotes concatenation.

Hankel matrices over words have applications in

• Formal language theory and stochastic automata,
J. Carlyle and A. Paz 1971

• Learning theory (exact learning of queries).
A.Beimel, F. Bergadano, N. Bshouty, E. Kushilevitz, S. Varricchio 1998
J. Oncina 2008

• Definability of picture languages.
O. Matz 1998, and D. Giammarresi and A. Restivo 2008
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Hankel matrices for graphs

If we want to define Hankel matrices for (labeled) graphs,

what plays the role of concatenation?

• Disjoint union
Used by Freedman, Lovász and Schrijver, 2007, for characterizing multi-
plicative graph parameters over the real numbers

• k-unions (connections, connection matrices)
Used by Freedman, Lovász, Schrijver and Szegedy, 2007ff, for character-
izing various forms and partition functions.

• Joins, cartesian products, generalized sum-like operations
used by Godlin, Kotek and JAM to prove non-definability.

Back to overview
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Hankel matrices in Automata Theory

• Probabilistic Automata

• Multiplicity Automata

• Back to overview
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Probabilistic automata (Rabin 1961)

A vector α = (α1, . . . , αr) ∈ Rr is stochastic if each αi ≥ 0 and
∑

i αi = 1.

A matrix µ ∈ Rr×r is row-stochastic (column-stochasttic) if each row-vector
(column-vector) is stochastic. µ is doubly stochastic if it is both row- and
column-stochastic.

A Probabilistic Automaton (PA) A of size r is given by:

• A set {µσ : σ ∈ Σ} of r × r doubly stochastic matrices;

• Two stochastic vectors λ, γ ∈ Fr.

• A defines a function fA : Σ? → R

fA(w) = fA(σ1 ◦ σ2 ◦ . . . ◦ σn) = λµσ1µσ2 · . . . · µσnγt

• A function f : Σ? → R is PA-recognizable if f = fA for some PA A.
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Intuition behind probabilistic automata

• The automaton has r states.

• λ gives the probability λi that the automaton is in state i when reading
the empty word.

• µσ is the transition matrix for the transition when reading σ..

• γ gives the probability γi that state i is an accepting state.
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Multiplicity automata (Schutzenberger, 1961)

A Multiplicity Automaton (MA) A of size r over a field F is given by:

• A set {µσ : σ ∈ Σ} of r × r matrices over F;

• Two vectors λ, γ ∈ Fr.

• A defines a function fA : Σ? → F

fA(w) = fA(σ1 ◦ σ2 ◦ . . . ◦ σn) = λµσ1µσ2 · . . . · µσnγt

• A function f : Σ? → F is MA-recognizable if f = fA for some MA A.

Probabilistic automata (PA) and Multiplicity automata (MA) where intro-

duced independently, generalizing the developments described in the famous

paper by M. Rabin and D. Scott (1959).
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Word functions and power series

Let F be a field (or semi-ring) and Σ an alphabet.

We can view Σ as a set of non-commutative indeterminates and Σ? is its set
of monomials.

A function f : Σ? → F the defines a power series

Sf(w) =
∑
w∈Σ?

f(w)w

A power series is rational if it can be obtained from polynomials by addition,

multiplication, external products and the star-operation.
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Regular languages and power series

We define a language L(f) = {w ∈ Σ? : f(w) 6= 0}.

L(f) is FA-recognizable if there is a determinsitic finite automaton A which
accepts L(f).

Theorem: (Kleene-Schützenberger)

In the case of F = Z2 the following are equivalent:

(i) L(f) is FA-recognizable;

(ii) L(f) is regular;

(iii) Sf(w) is rational.

File:l-automata 12
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MA-Recognizable word functions

A function f : Σ? → F is MA-recognizable if there exists an MA A such that
fA = f .

Theorem: (Schützenberger 1961)

For arbitrary semi-rings F the following are equivalent:

(i) f MA-recognizable

(ii) Sf(w) is rational

Is there an analogue for regular expressions for MA over F?

File:l-automata 13



LATA invited lecture, March 2015 Hankel matrices

Multiplicity Automata and Hankel matrices (over a field)

THEOREM: (J. Carlyle and A. Paz 1971)

For a function f : Σ? → F the following are equivalent:

(i) f is MA-recognizable;

(ii) Sf is rational

(iii) the Hankel matrix H(f) has finite rank over F.

This is an ALGEBRAIC characterization of MA-recognizability.
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The Büchi-Elgot-Trakhtenbrot Theorem (around 1960)

A word w of size n over an alphabet Σ can be considered as a structure

Aw = 〈[n], <nat, Pσ, (σ ∈ Σ)〉
where Pσ : σ ∈ Σ is a partition of [n] into possibly empty sets.

THEOREM: (R. Büchi, C. Elgot and B. Trakhtenbrot)

The following are equivalent:

(i) L is FA-recognizable;

(ii) L is regular;

(iii) The class {Aw : w ∈ L} of structures is

definable in Monadic Second Order Logic.

Is there an analogue for MA-recognizability ?
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Definability of Word Functions

and Graph Parameters

in Monadic Second Order Logic

• The general framework of SOLEVAL

• SOLEVAL Word functions

• SOLEVAL Graph parameters and polynomials

File:l-soleval 16



LATA invited lecture, March 2015 Hankel matrices

MSOLEVALF , I

Let F be a field (or a ring or a commutative semiring).
Let τ be a vocabulary (set of relation symbols and constants)/

MSOLEVALF consists of those functions
mapping relational structures into F which are
definable in Monadic Second Order Logic MSOL.

The functions in MSOLEVALF are represented as
terms associating with each τ-structure A a polynomial p(A, X̄) ∈ F[X̄].

Similarily, CMSOLEVALF is obtained by replacing MSOL by

Monadic Second Order Logic with modular counting CMSOL.

MSOLEVALF was first studied in a sequence of papers on graph polynomials by

J.A.M. co-authored with B. Courcelle, B. Godlin, T. Kotek, U. Rotics, B. Zilber.
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MSOLEVALF , II

MSOLEVALF is defined inductively:

(i) monomials are products of constants in F and indeterminates in X̄ and
the product ranges over elements a of A which satisfy an MSOL-formula
φ(a).

(ii) polynomials are then defined as sums of monomials where the sum ranges
over unary relations U ⊂ A satisfying an MSOL-formula ψ(U).

We procced now by examples of word functions in MSOLEVAL.
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Examples of word functions in MSOLEVAL, I

Let Σ = {0,1} and w ∈ Σ∗ be represented by the structure

Aw = 〈[`(w)], <, P0, P1〉.

Counting occurrences:

(i) The function ]1(w) counts the number of occurences of 1 in a word w
can be written as

]1(w) =
∑

i∈[n]:P1(i)

1.

(ii) The polynomial X]1(w) can be written as

X]1(w) =
∏

i∈[n]:P1(i)

X.
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Examples of word functions in MSOLEVAL, II

Let L be a regular language defined by the MSOL-formula φL.

The polynomial

]L(w) =
∑

u∈L:∃v1,v2(w=v1◦u◦v2)

X`(u)

is the generating function of the number of (contiguous) occurences of words
u ∈ L in a word w of size i.

It can also be written as

]L(w) =
∑

U⊆[n]:ψL(U)

∏
i∈U

X,

where ψL(U) says that U is an interval and φUL , the relativization of φL to U

holds.
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Examples of word functions in MSOLEVAL, III

Let int(w) =
∑`(w)−1

i=0 2−iw[i].

int(w) considers w as a rational number in [0,1] written in binary and computes
its value.

int(w) can be written as

int(w) =
∑

U⊂[`(w)]:INIT1(U)

∏
i∈U

(2−1)

where INIT1(U) says that U is an initial segment of 〈`(w), <〉 where the last
element is in P1.

It should be clear that it is very convenient and user friendly to define word

functions as terms in MSOLEVALF.
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Examples of word functions NOTin MSOLEVAL

(i) The function sqexp(w) = 2`(w)2

=
∏

(x,y):x=x∧y=y 2 is not in MSOLEVAL
because the product is over tuples, rather than elements.

(ii) The function dexp(w) = 22`(w)

is not representable in MSOLEVALF due
to a growth argument.
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Definability of numeric graph invariants and
graph polynomials

We denote by G = (V (G), E(G)) a graph,
and by G and Gsimple the class of finite (simple) graphs, respectively.

A numeric graph invariant or graph parameter is a function

f : G → R
which is invariant under graph isomorphism.

(i) Cardinalities: |V (G)|, |E(G)|

(ii) Counting configurations:

k(G) the number of connected components,
mk(G) the number of k-matchings

(iii) Size of configurations:

ω(G) the clique number
χ(G) the chromatic number

(iv) Evaluations of graph polynomials:

χ(G,λ), the chromatic polynomial, at λ = r for any r ∈ R.
T (G,X, Y ), the Tutte polynomial, at X = x and Y = y with (x, y) ∈ R2.

p-counting.tex 23
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Definability of numeric graph parameters, I

We first give examples where we use small, i.e., polynomial sized sums and products:

(i) The cardinality of V is FOL-definable by ∑
v∈V

1

(ii) The number of connected components of a graph G, k(G) is MSOL-definable by∑
C⊆V :component(C)

1

where component(C) says that C is a connected component.

(iii) The graph polynomial Xk(G) is MSOL-definable by∏
c∈V :first−in−comp(c)

X

if we have a linear order in the vertices and first− in− comp(c) says that c is a first
element in a connected component.

p-counting.tex 24
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Definability of numeric graph parameters, II

Now we give examples with possibly large, i.e., exponential sized sums:

(iv) The number of cliques in a graph is MSOL-definable by∑
C⊆V :clique(C)

1

where clique(C) says that C induces a complete graph.

(v) Similarly “the number of maximal cliques” is MSOL-definable by∑
C⊆V :maxclique(C)

1

where maxclique(C) says that C induces a maximal complete graph.

(vi) The clique number of G, ω(G) is is SOL-definable by∑
C⊆V :largest−clique(C)

1

where largest− clique(C) says that C induces a maximal complete graph of largest size.

p-counting.tex 25
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Definability of numeric graph parameters, III

Let R be a (polynomial) ring.

A numeric graph parameter p : Graphs→R is L-definable if it can be defined
inductively:

• Monomials are of the form
∏

v̄:φ(v̄)
t where t is an element of the ring R and φ is a

formula in L with first order variables v̄.

• Polynomails are obtained by closing under small products, small sums, and large sums.

p-counting.tex 26
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Definability of numeric graph parameters, IV

Usually, summation is allowed over second order variables, whereas products
are over first order variables.

L is typically Second Order Logic or a suitable fragment thereof.
We are especially interested in MSOL and CMSOL, Monadic Second Order
Logic, possibly augmented with modular counting quantifiers.

If L is SOL we denote the definable graph parameters by SOLEVALR, and
similarily for MSOL and CMSOL.

Our definition of SOLEVAL is somehow reminiscent to the defintion of Skolem’s definition
of the Lower Elementary Functions.

Back to overview
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Characterizing Word Functions with MSOLEVAL

An analogue to the
Büchi-Elgot-Trakhtenbrot Theorem

for multiplicity automata.

2005/07: M. Droste and P. Gastin,
Weighted Automata and Weighted Logics,
ICALP 2005, and
Theor. Comput. Sci., 380.1-2(2007), pp. 69-86

2013: N. Labai and J.A. Makowsky,
Weighted Automata and Monadic Second Order Logic,
Fourth International Symposium on Games, Automata, Logics and For-
mal Verification, GandALF 2013
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Characterizing functions defined by Multiplicity Automata

Theorem: (M. Droste and P. Gastin 2005, N. Labai and J.A.M., 2012)

Let F be a field, and f : Σ∗ → F.

The following are equivalent:

(i) f = fA for some Multiplicity Automaton A over F.

(ii) f ∈MSOLEVALF

(iii) f ∈ CMSOLEVALF

(iv) M(◦, f) has finite rank.

Proof: (i) ↔ (iv) is the Carlyle-Paz Theorem.

(ii) ↔ (iii) follows from CMSOL equals MSOL on words.

(iii) → (iv) is the Finite Rank Theorem.

(i) → (ii) is proven using matrix algebra and logic.

Skip comparison
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Weighted RMSOL vs. MSOLEVAL, I

There are notational disadvantages in the Droste/Gastin approach with
RMSOL.

(i) The definition of RMSOL is not a purely syntactic.

(ii) The formulas are hybrid objects, mixing constants from F and logical
expressions. For instance ∀x · 2 is a weighted formula (for 2 = 1 + 1 in
a field) which represents the function 2`(w), and ∀x∀y · 2 is a weighted
formula which represents the function 22`(w)

.

(iii) Seemingly equivalent formulas can represent different functions: ∃xP1(x)
represents the function ]1(w) but ∃(P (x)∨ P (x)) represents the function
2 · ]1(w).

(iv) Some of these disadvantages have been corrected in very recent papers.
M. Droste and P. Gastin in the Handbook and
B. Bollig, P. Gastin , B. Monmege and M. Zeitoun presented at ICALP 2010.
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Weighted RMSOL vs. MSOLEVAL, II

In contrast to these disadvantages,
MSOLEVALF has the following advantages:

(i) The expressions are natural and intuitive.

(ii) The expressions are defined for all formulas of MSOL without any re-
strictions.

(iii) If we replace formulas occurring in an expression by equivalent formulas,
the word function it represents remains the same.

(iv) MSOLEVALF was used since 2000 in the study of Metatheorems and
Graph polynomials.

Back to overview
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Hankel Matrices

and the

Finite Rank Theorem
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General Hankel Matrices: I

Let C be a class possibly labeled graphs, hyper-graphs or τ-structures.

Let 2 be a binary operation define on C.

Let Gi be an enumeration of all (labeled) finite graphs

Let f be graph parameter.

The (full) Hankel matrix M(f,2) is defined by

M(f,2)i,j = f(Gi2Gj)

and is called the Full Hankel Matrix of f for 2 on C,

or just a Hankel matrix.

We shall often look at infinite submatrices of M(f,2).

File:l-frt 33



LATA invited lecture, March 2015 Hankel matrices

Logics

In this talk a logic L is a fragment of Second Order Logic SOL.

Let L be a subset of SOL. L is a fragment of SOL if the following conditions hold.

(i) For every finite relational vocabulary τ the set of L(τ) formulas contains all the atomic
τ-formulas and is closed under boolean operations and renaming of relation and constant
symbols.

(ii) L is equipped with a notion of quantifier rank and we denote by Lq(τ) the set of formulas
of quantifier rank at most q. The quantifier rank is subadditive under substitution of
subformulas,

(iii) The set of formulas of Lq(τ) with a fixed set of free variables is, up to logical equivalence,
finite.

(iv) Furthermore, if φ(x) is a formula of Lq(τ) with x a free variable of L, then there is a
formula ψ logically equivalent to ∃xφ(x) in Lq′(τ) with q′ ≥ q + 1.

(v) A fragment of SOL is called tame if it is closed under scalar transductions.

File:l-frt 34



LATA invited lecture, March 2015 Hankel matrices

Typical fragments

• First Order Logic FOL.

• Monadic Second Order Logic MSOL.

• Logics augmented by modular counting quantifiers: Dm,ixφ(x) which says
that the numbers of elements satisfying φ equals i modulo m.

• CFOL,CMSOL denote the logics FOL, resp. MSOL, augmented by all
the modular counting quantifiers.

• Logics augmented by Lindström quantifiers.

• Logics restricted a fixed finite set of bound or free variables.
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L-smooth operations.

Let L be a logic.

We say that two graphs G,H are (L, )q-equivalent, and write G ∼qL H, if G
and H satisfy the same L-sentences of quantifier rank q.

We say that 2 is L-smooth, if wwhenever we have

Gi ∼qL Hi, i = 0,1

then

G02G1 ∼qL H02H1

This definition can be adapted to k-ary operations for k ≥ 1.

Proving that an operation 2 is L-smooth may be difficult.

For FOL this can be achieved using

Ehrenfeucht-Fräıssé games also know as pebble games.

Anther way of establishing smoothness is via the Feferman-Vaught theorem.
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Examples of L-smooth operations, I

(i) Quantifier-free scalar transductions are both FOL and MSOL-smooth.

(ii) Quantifier-free vectorized transductions are FOL but not MSOL-smooth.

(iii) The (rich) disjoint union is both FOL and MSOL-smooth.

The rich disjoint union has two additional unary predicates to distinguish
the universes.

For FOL this was shown by E. Beth in 1952.

For MSOL this is due to H. Läuchli, 1966, using Ehrenfeucht-Fräıssé games

(iv) Sum-like operations are obtained from rich disjoint
unions using quantifier-free scalar transductions.
Sum-like operations are MSOL-smooth.
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Examples of L-smooth operations, II

(i) The cartesian product is FOL-smooth but not MSOL-smooth.
It can be obtained from the rich disjoint union
unions using quantifier-free vectoriced transductions.

This was shown by A. Mostowski in 1952.

(ii) Product-like operations are obtained from rich disjoint
unions using quantifier-free vectoriced transductions.
Product-like operations are FOL-smooth but not MSOL-smooth.

(iii) Adding modular counting quantifiers to a logic L preserves L-smoothness.

For CMSOL and the disjoint union this is due to B. Courcelle, 1990.

For CFOL and the product this is due to T. Kotek and J.A.M., 2012.
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The Finite Rank Theorem

THEOREM (Godlin, Kotek, Makowsky 2008):

Let f be a numeric parameter or polynomial for τ-structures
definable in L and taking values in an integral domain R.

Let 2 be an L-smooth operation.

Then the Hankel matrix M(f,2) has finite rank over R.

**********************

The Proof uses a Feferman-Vaught-type theorem for graph polynomials, due
to B. Courcelle, J.A.M. and U. Rotics, 2000.

Back to overview
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Finite Hankel rank vs. definability

Proposition:(after an idea of E. Specker, 1982)

• There are only countably many graph parameters p ∈ CMSOLEVAL.

• Let A ⊆ N. Let CliqueA be the graph property which says that
G is a clique of size k ∈ A.

• There are continuum many distinct graph properties of the form CliqueA.

• The Hankel rank of H(CliqueA,t) is 1,
because the disjoint union of two graphs cannot be a clique.
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Metatheorems

Metatheorems relate definability criteria of concepts
to their mathematical properties (or vice versa):

Folklore: Every real function f definable by a polynomial expression
is continuous.

Birkhoff’s HSP Theorem: A class of algebras A is definable by a set of
equational identities iff A is closed under homomorphisms, subalgebras
and direckt products.

Mal’cev’s Theorem: A class of algebras A is definable by a set of conditional
equations iff A is closed under subalgebras and direckt products.

Büchi, Elgot, Trakhtenbrot: A language L is recognizable by a finite au-
tomaton iff L is definable in Monadic Second Order Logic

Robertson, Seymour, Courcelle: Every minor closed class of finite graphs
is definable in Monadic Second Order Logic.

File:l-meta 41
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Notions of Width for Graphs

The width of a graph is a numeric graph parameter which measures (some-
how) how far a given graph G is from highly structured graphs in a class W.
Lower width means closer to W.
We do not need the exact definitions for this talk.

Tree-width: W is the disjoint unions of trees.
A graph G has tree-with tw(G) = 1 iff G is a forest.
A class of finite graphs K is of bounded tree-width (BTW) if there is
k ∈ N such that for every G ∈ K we have tw(G) ≤ k.

Clique-width: W is the disjoint unions of cliques.
If a graph G is a clique, then it has clique-with cw(G) = 2.
A class of finite graphs K is of bounded clique-width (BCW) if there is
k ∈ N such that for every G ∈ K we have cw(G) ≤ k.

If K is BTW then it is also BCW.

Let k0 ∈ N be fixed.
For every k ∈ N there are graphs G with tw(G) = k and cw(G) = k0.
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Connection matrices for tree-width and clique-width

We look at the following binary operations on labeled graphs.

G tk H:

Input: Two graphs G,H with k vertices distinctly labeled.
Operation: Disjoint union with vertices of corresponding labels indetified.

GηP,QH:

Input: Two graphs G,H with two subsets each, PG, QG and PG, QH.
Operation: Disjoint union with additional edges connection all vertices
from PGtH with QGtH.

Both operations are CMSOL-smooth and sum-like.
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Identifying labeled vertices a and b Adding all the edges between P and Q
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Metatheorems for tree-width:
The Theorems of Courcelle and Lovász

Let K be of bounded tree-width (BTW), G ∈ K, and
p be a graph parameter with values in a field.

Courcelle 1990:
If p is boolean-valued and definable in CMSOL,
p(G) is computable in polynomial (even linear) time

Courcelle, JAM, Rotics 2000:

If p is real-valued and in CMSOLEVAL,

p(G) is computable in polynomial (even linear) time.

Lovász 2006:
If p is real-valued,
and the Hankel matrix H(p,tk) has finite rank,
then p(G) is computable in polynomial time.
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Metatheorems for clique-width

Let K be of bounded clique-width (BCW), and
p be a graph parameter with values in a field.

Courcelle, JAM, Rotics 2000:

If p is boolean and definable in CMSOL,

or real-valued and p ∈ CMSOLEVAL,

p(G) is computable in polynomial (even linear) time.

JAM, Labai 2014:
If p is real-valued,
and the Hankel matrix H(p, ηP,Q) has finite rank,
p(G) is computable in polynomial time.

Back to overview

Skip inductive classes
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Sum-like Inductive Classes of Structures

Skip inductive classes

Back to overview
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Sum-like inductive classes of structures, I

CMSOL-inductive classes of graphs are a generalization of graph classes of
given tree-width or clique-width, and were introduced by JAM in 2004.

Special cases of CMSOL-inductive classes are the sum-like inductive classes.

A class of τ-structures C is sum-like inductive if, given

• a finite set of basic labeled graphs Gj, j ≤ J,

• and a finite set of sum-like binary operations 2i, i ≤ I.

We define C inductively by

• each Gj, j ≤ J is in C,

• and whenever H1, H2 ∈ C then also 2i(H1, H2) ∈ C for all i ≤ I.

• C is L-smooth inductive, if all the operations involved are L-smooth.
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Sum-like inductive classes of structures, II

Theorem:(JAM, 2004)

(i) The classes of graphs of fixed tree-width k is sum-like inductive, using
t, ti : i ≤ k and relabeling operations ρi,j : i < j ≤ k for labeled vertices.

(ii) The classes of graphs of fixed clique-width k is sum-like inductive, using
t, ηPi→Pj : i, j ≤ k and recoloring operations ρ̄i,j : i < j ≤ k for colored sets
vertices.

Other examples of sum-like inductive classes of labeled graphs can be found
using various graph grammars, as studied in A. Glikson’s MSc Thesis (2003).

We do not know whether every L-smooth operation on τ-structures is also
sum-like.
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Sum-like inductive classes of structures, III

Theorem:(Courcelle and JAM, 2002; Adler and Adler, 2008)

(i) A graph class C is of bounded clique-with iff it is sum-like inductive.

(ii) For general τ-structures this is not the case.

Theorem:(JAM, 2004/14)

Let C be a sum-like inductive class of τ-structures,

and p ∈ CMSOLEVAL be a graph parameter.

Then P can be computed on graphs G ∈ C in polynomial time in the size

pt(G) of the parse tree which shows that G ∈ C.

In 2004 I stated the theorem for MSOL-smooth operations. However, the proof I had in

mind then only works for sum-like operations.
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Linearily linked Hankel matrices

Let 2i, i ≤ I be finitely many binary operations on labeled graphs, and let
Gj, j ≤ J be a finite set of basic graphs. pk, k ≤ K be finitely many real-
valued graph parameters. For a labeled graph H let p̄(H) denote the vector
(p1(H), . . . , pK(H)).

(i) Assume C is inductively defined using Gj, j ∈ J and 2i, i ≤ I:

Each Gj, j ∈ J is in C, and whenever H1, H2 ∈ C then also 2i(H1, H2) ∈ C.

Here 2i does not have to be sum-like.

(ii) The Hankel matrices H(pk,2i, i ≤ I, j ≤ J are linearly linked if the fol-
lowing hold:

(ii.a) For each pk, k ≤ K and 2i, i ≤ I the Hankel matrices H(pk,2i) are of
finite rank.

(ii.b) For each i ≤ I there is a matrix Pi such that for all graphs H1, H2

p̄(2i(H1, H2)) = Pi · p̄(21(H1, H2))
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Main Theorem

Main Theorem:(Labai and JAM, 2014)

Let C be inductively defined using Gj, j ∈ J and 2i, i ≤ I.

Let pk, k ≤ K be finitely many graph parameters, such that the Hankel matrices
H(pk,2i), i ≤ I, j ≤ J are linearly linked.

Then for graphs H ∈ C with parse-tree pt(H), all the graph parameters pk, k ≤
K can be computed in polynomial time in the size of of the parse tree pt(H)

which shows that H ∈ C.
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Tropical commutative semirings

Let Tmin = 〈R ∪ {∞},min,+,0,1,∞〉 the structure consisting of the real R
augmented with a new element ∞, min the usual minimum and + the usual
addition, extended with the obvious rules for ∞:

• Every real is smaller then ∞.

• For every real a ∈ R, a+∞ =∞

Tmin is a commutative semiring with + as multiplication and min as addition.

Tmin is called the tropical semiring or the (min,+)-algebra.

Matrices are defined in the ususal way, but rank of a matrix is more compli-
cated, as several options to define it are not necessarily equivalent.

In the case of weighted automata with weights in an arbitrary semiring the
characterization theorem works as well.

In the case graph parameters with weights in a tropical semiring the theorems
do generalize as well.

However, in the case of arbitrary semirings, we only proved the meta-theorem
for bounded linear clique-width. tropical
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Conclusions

• We have shown that the formalism of CMSOLEVAL captures the notion
of definability for graph parameters and leads to various meta-theorems.

• We have shown that graph parameters definable in CMSOLEVAL have
finite rank Hankel matrices for sum-like graph operations.

• We have shown how to use finite rank Hankel matrices in order to prove
meta-theorems without definability assumptions.

What remains be done?

Develop the theory and applications of finite rank Hankel matrices further.

Back to overview
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Thank you for your attention!
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