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Abstract. We survey recent work on the use of Hankel matrices H(f,2)
for real-valued graph parameters f and a binary sum-like operation 2

on labeled graphs such as the disjoint union and various gluing opera-
tions of pairs of laeled graphs. Special cases deal with real-valued word
functions. We start with graph parameters definable in Monadic Sec-
ond Order Logic MSOL and show how MSOL-definability can be re-
placed by the assumption that H(f,2) has finite rank. In contrast to
MSOL-definable graph parameters, there are uncountably many graph
parameters f with Hankel matrices of finite rank. We also discuss how
real-valued graph parameters can be replaced by graph parameters with
values in commutative semirings.

In this talk we survey recent work done together with the first author’s former
and current graduate students B. Godlin, E. Katz, T. Kotek, E.V. Ravve, and
the second author on the definability of word functions and graph parameters
and their Hankel matrix. There are three pervasive themes.

– Definability of word functions and graph parameters f in some logical formal-
ism L which is a fragment of Second Order Logic SOL, preferably Monadic
Second Order Logic MSOL, or CMSOL, i.e., MSOL possibly augmented
with modular counting quantifiers;

– Replacing the definability of f by the assumption that certain Hankel ma-
trices have finite rank; and

– Replacing the field of real numbers R by arbitrary commutative rings or
semirings S.

1 Hankel Matrices

In linear algebra, a Hankel matrix, named after Hermann Hankel, is a square ma-
trix with constant skew-diagonals. In automata theory, a Hankel matrix H(f, ◦)
is an infinite matrix where the rows and columns are labeled with words w over a
fixed alphabet Σ, and the entry H(f, ◦)u,v is given by f(u◦v). Here f : Σ∗ → R
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is a real-valued word function and ◦ denotes concatenation. A classical result
of G.W. Carlyle and A. Paz [3] in automata theory characterizes real-valued
word functions f recognizable by weighted (aka multiplicity) automata (WA-
recognizable) in algebraic terms:

Theorem 1 (G.W. Carlyle and A. Paz, 1971).
A word function is WA-recognizable iff its Hankel matrix has finite rank.

Hankel matrices for graph parameters (aka connection matrices) were intro-
duced by L. Lovász [33] and used in [14, 34] to study real-valued partition func-
tions of graphs. In [14, 34] the role of concatenation is played by k-connections of
k-graphs, i.e., graphs with v1, . . . , vk distinguished vertices. Given two k-graphs
G,G′ the k-connections GtkG′ is defined by taking first the disjoint union of G
and G′ and then identifying corresponding labeled vertices. The Hankel matrix
H(f,tk) is the infinite matrix where rows and columns are labeled by k-graphs
and the entry H(f,tk)G,G′ is given by f(G tk G′). We say that f has finite
connection rank if all the matrices H(f,tk) have finite rank.

Partition functions are defined by counting weighted homomorphisms, which
in some way generalize weighted automata. Let H = (V (H), E(H)) be a fixed
graph, and let α : V (H) → R and β : E(H) → R be real-valued functions
(weights). For a graph G = (V (G), E(G)) we define

ZH,α,β(G) =
∑

h:G→H

∏
(v)∈V (G)

α(h(v)) ·
∏

(u,v)∈E(G)

β(h(u), h(v))

M. Freedman, L. Lovász and A. Schrijver [14] give the following characteri-
zation of partition functions:

Theorem 2 (M. Freedman, L. Lovász and A. Schrijver, 2007).
A real-valued graph parameter f can be presented as a partition function

f(G) = ZH,α,β(G)

for some H,α, β, iff all its connection matrices H(f,tk) have finite rank and
are positive definite.

In [34] many variations of this theorem are discussed using different notions of
connections of labeled graphs.

2 Definability in MSOL via Guiding Examples

Second Order Logic SOL allows quantification over vertices, edges and relations
thereof. Monadic Second Order Logic MSOL allows quantification only over
unary relations over the universe. In the case of graphs we have to distinguish
between graphs G as structures where the universe V (G) consists of vertices
only and edges are given by the edge relation E(G), and hypergraphs, where
the universe consists of vertices and edges, and the hyperedges are given by
an incidence relation R(G). The notion of definability of graph parameters and



graph polynomials in SOL and MSOL was first introduced in [7] and extensively
studied in [18, 12, 26, 22, 17, 25, 36, 24]. Later these studies also included MSOL
augmented by modular counting quantifiers Dm,kx Φ(x) which assert that there
are, modulo m, exactly k elements satisfying φ. This logic is denoted by CMSOL.

The set of real-valued graph parameters definable in SOL (MSOL,CMSOL) is
denoted by SOLEVAL (MSOLEVAL,CMSOLEVAL), as they are evaluations of
SOL-definable (MSOL,CMSOL-definable) graph polynomials. Words are treated
here as special cases of labeled graphs.

Our first examples use small, i.e., polynomial sized sums and products:

(i) The cardinality |V | of V is FOL-definable by

|V | =
∑
v∈V

1

(ii) The number of connected components of a graph G, k(G) is MSOL-definable
by

k(G) =
∑

C⊆V :component(C)

1

where component(C) says that C is a connected component.
(iii) The graph polynomial Xk(G) is MSOL-definable by

Xk(G) =
∏

c∈V :first−in−comp(c)

X

if, in addition, we have a linear order on the vertices and first− in− comp(c)
says that c is a first element in a connected component.

Our next examples use possibly large, i.e., exponential sized sums:

(iv) The number of cliques ]Clique(G) in a graph is MSOL-definable by

]Clique(G) =
∑

C⊆V :clique(C)

1

where clique(C) says that C induces a complete graph.
(v) Similarly “the number of maximal cliques” ]MClique(G) is MSOL-definable

by

]MClique(G) =
∑

C⊆V :maxclique(C)

1

where maxclique(C) says that C induces a maximal complete graph.
(vi) The clique number of G, ω(G) is is SOL-definable by

ω(G) =
∑

C⊆V :largest−clique(C)

1

where largest− clique(C) says that C induces a maximal complete graph of
largest size.



An inductive definition of a fragment L of SOLEVAL can be sketched as
follows:

Definition 3 Let R be a (polynomial) ring. A numeric graph parameter p :
Graphs→ R is L-definable if it can be defined inductively as follows:

– Monomials are of the form
∏
v̄:φ(v̄) t where t is an element of the ring R and

φ is a formula in L with first order variables v̄.
– Polynomials are obtained by closing under small products, small sums, and

large sums.

Usually, summation is allowed over second order variables, whereas products are
over first order variables only.

Our definition of SOLEVAL is somewhat reminiscent to the definition of
Skolem’s Lower Elementary Functions, [39, 37, 38].

3 The Finite Rank Theorem

In [18] the following Finite Rank Theorem is proved:

Theorem 4 (Finite Rank Theorem).
Let f be a real-valued graph parameter definable in CMSOL. Then f has finite
connection rank.

The same holds for a wider class of Hankel matrices arising from sum-like binary
operations on labeled graphs. A binary operation on labeled graphs is sum-like if
it can be obtained from the disjoint union of two graphs by applying a quantifier-
free scalar transduction, see e.g. [35, 4].

If we consider words instead of graphs, also the converse holds for the Hankel
matrix of concatenation, [28, 29]:

Theorem 5 (NL and JAM, 2013). A real-valued word function f is definable
in MSOL iff its Hankel matrix for concatenation has finite rank.

These results are reminiscent to results by [10], but their logical formalism differs
from ours and was introduced later than MSOL-definability of graph parameters,
[7].

The Finite Rank Theorem can also be used to show non-definability, [23,
24], which gives a more convenient and versatile tool than the usual methods
involving Ehrenfeucht-Fräıssé games.

4 Meta-theorems Using Logic

The notions of path-width, tree-width and clique-width are the most used notions
of width of graphs, cf. [20]. Widths are graph parameters with non-negative
integer values. The exact definition is not needed here. What matters is that



graphs can have unbounded width of either kind. Classes of bounded path-
width have bounded tree-width, which in turn have bounded clique-width, but
not conversely.

B. Courcelle’s celebrated theorem for graph properties and graph classes
of bounded tree-width [9, 4] says that on graph classes of bounded tree-width,
MSOL-definable graph properties can be decided in linear time.

In [5], [6, Theorem 4], [7, Theorem 31], this is extended to graph parameters
and bounded clique-width:

Theorem 6 (B. Courcelle, JAM, and U. Rotics, 1998). Let f be a CMSOL-
definable graph parameter with values in a ring R. Then f can be computed in
polynomial time1 on graph classes of bounded clique-width.

As a generalization of graph classes of given tree-width or clique-width, the
notion of CMSOL-inductive classes of graphs was introduced in [35]. Special
cases of CMSOL-inductive classes are the sum-like inductive classes.

Definition 7 (Sum-like inductive) C is sum-like inductive if it is inductively
defined using a finite set of basic labeled graphs Gj , j ≤ J and a finite set of
sum-like binary operations 2i, i ≤ I. In other words, each Gj , j ≤ J is in C, and
whenever H1, H2 ∈ C then also 2i(H1, H2) ∈ C for all i ≤ I.

The classes of graphs of fixed tree-width (path-width, clique-width) are all sum-
like inductive, cf. [35]. Other examples of sum-like inductive classes of labeled
graphs can be found using various graph grammars, cf. [15, 16, 35]. In the frame-
work of sum-like inductive classes, Theorem 6 can be stated in model theoretic
terms, [35, Theorem 6.6].

Theorem 8 (JAM, 2004/14).
Let C be sum-like inductive2, and f be a graph parameter in CMSOLEVAL.

Then the computation of f(G) is Fixed Parameter Tractable3 in the size of the
parse tree witnessing that G ∈ C.

5 Eliminating Logic

L. Lovász, in [34], also noted that Hankel matrices can be used to make Cour-
celle’s Theorem logic-free for the case of bounded tree-width by replacing MSOL-
definability by a finiteness condition on the rank of its connection matrices. In
addition, graph parameters are allowed to take values in an arbitrary field K.

1 For real-valued graph parameters we have to be careful abut the model of computa-
tion. Either we work in a Turing computable subfield of R, or we use the computa-
tional model of Blum-Shub-Smale BSS, cf. [1].

2 Originally the theorem was stated for MSOL-smooth operations. The proof I had in
mind in [35] only works for sum-like operations. However, it is not known whether
there are MSOL-smooth operations which are not sum-like.

3 A graph parameter is Fixed Parameter Tractable (FPT), if it can be computed in
time O(c(k) · nd(k)) where n is the size of the graph, and c(k), d(k) are functions
depending on the parameter k, but independent of the size of the graph, cf. [9, 13].
Here the parameter is hidden in the fact that C is CMSOL-inductive.



Theorem 9 (L. Lovász, 2007).
Let K be a field and let f be a K-valued graph parameter with finite connection
rank. Then f can be computed in linear time on graph classes of bounded tree-
width.

In [31, 30] this is extended to make Theorem 6 logic-free for the case of
bounded clique-width. To do this one defines a suitable sum-like binary operation
ηP,Q on graphs with additional unary predicates P (G), Q(G) on the vertices
V (G). ηP,Q(G1, G2) is the disjoint union of G1 and G2 augmented with all the
edges from

EP,Q = {(u, v) ∈ (V (G1)tV (G2))2 : u ∈ P (G1)tP (G2) and v ∈ Q(G1)tQ(G2)}

In words ηP,Q(G1, G2) is the disjoint union of G1 and G2 augmented with all
the edges with one vertex in P (G1 ∪G2) and one vertex in Q(G1 ∪G2).

Theorem 10 (NL and JAM, 2014). Let f be a real-valued graph parameter
with H(f, ηP,Q) of finite rank. Then f can be computed in polynomial time on
graph classes of bounded clique-width.

In [27] this is further extended to make Theorem 8 also logic-free. A detailed
discussion will appear in [32]. For this extension we introduce the notion of
linearly linked Hankel matrices.

Definition 11 (Linearly linked Hankel matrices) Let 2i, i ≤ I be finitely
many binary operations on labeled graphs, and let Gj , j ≤ J be a finite set of
basic graphs. pk, k ≤ K be finitely many real-valued graph parameters. For a
labeled graph H let p̄(H) denote the vector (p1(H), . . . , pK(H)).

1. C is inductively defined using Gj , j ∈ J and 2i, i ≤ I if each Gj , j ∈ J is
in C, and whenever H1, H2 ∈ C then also 2i(H1, H2) ∈ C. Here 2i does not
have to be sum-like.

2. The Hankel matrices H(pk,2i, i ≤ I, j ≤ J are linearly linked if the following
hold:
(a) For each pk, k ≤ K and 2i, i ≤ I the Hankel matrices H(pk,2i) are of

finite rank.
(b) For each i ≤ I there is a matrix Pi such that for all graphs H1, H2

p̄(2i(H1, H2)) = Pi · p̄(21(H1, H2))

Theorem 12 (NL and JAM, 2014).
Let C be inductively defined using Gj , j ∈ J and 2i, i ≤ I, and let pk, k ≤ K
be finitely many graph parameters, such that the Hankel matrices H(pk,2i), i ≤
I, j ≤ J are linearly linked. Then for graphs H ∈ C with parse-tree pt(H), all
the graph parameters pk, k ≤ K can be computed in polynomial time in the size
of pt(H).

Theorem 12 is a proper generalization of Theorem 8:



Proposition 13 If C is sum-like inductive using Gj , j ∈ J and 2i, i ≤ I, and
f ∈ CMSOLEVAL, there are finitely many graph parameters p1, . . . , pK such
that all the Hankel matrices H(pk,2i), i ≤ I, j ≤ J are linearly linked.

To prove Proposition 13 one uses the Bilinear Reduction Theorem from [35],
which is proven in full detail as [24, Theorem 8.7].

In the logical versions of these theorems there are only countably many
CMSOL-definable graph parameters. However, there are uncountably many graph
parameters with finite rank Hankel matrices even for the disjoint union of graphs.
Hence, in contrast to the case of word functions, the finiteness assumption on
the rank does not imply MSOL-definability. Furthermore, eliminating logic from
these theorems allows us to separate the algebraic character of the proof from
its logical part given by the Finite Rank Theorem for sum-like operations.

6 From Fields to Semirings

Finally, we discuss how to formulate Theorem 8 both logic-free and for graph
parameters with values in a commutative semiring. A motivating example for
this shift of perspective is the clique number ω(G) of a graphG, which has infinite
connection rank over the reals, but finite row-rank in the tropical semiring Tmax,
the max-plus algebra defined over the reals. There are several notions of rank
for matrices over commutative semirings. All of them coincide in the case of a
field, and some of them coincide in the tropical case, [2, 19, 8].

In [31, 30] Lovász’s Theorem is generalized to graph parameters with values
in the tropical semirings rather than a field, and graph classes of bounded clique-
width. There we work with two specific notions: row-rank in the tropical case,
and a finiteness condition introduced by G. Jacob [21], which we call J-finiteness,
in the case of arbitrary commutative semirings.

Theorem 14 (NL and JAM, 2014). Let f be a graph parameter with values
in Tmax with H(f, ηP,Q) of finite row rank. Then f can be computed in polynomial
time on graph classes of bounded clique-width.

In the case of graph parameters with values in arbitrary commutative semirings,
this remains true for graph classes of bounded linear clique-width, cf. [11]. Linear
clique-width relates to clique-width like path-width relates to tree-width.
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